- A. C. Yüzügüler, C. Sönmez, M. Drumond, Y. Oh, B. Falsafi, and P. Frossard, "Scale-Out Systolic Arrays," ACM Transactions of Architecture and Code Optimization, Volume 20, Issue 2, 2023.
- S. B. Harma, A. Chakraborty, B. Falsafi, M. Jaggi and Y. Oh, "Accuracy Boosters: Epoch-Driven Mixed-Mantissa Block Floating-Point for DNN Training," arXiv preprint arXiv:2211.10737, 2022.
- M. Drumond, L. Coulon, A. Pourhabibi, A. C. Yüzügüler, B. Falsafi, and M Jaggi, "Equinox: Training (for Free) on a Custom Inference Accelerator," 54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2021.
- S. B. Harma, M. Drumond and B. Falsafi, "Numerical Encoding for DNN Training," Computer Architecture Today, sigarch.org, 2021.
- T. Lin, S. U. Stich, L. Barba, D. Dmitriev, M. Jaggi, "Dynamic Model Pruning with Feedback," International Conference on Learning Representations (ICLR), 2020.
- A. Koloskova, T. Lin, S. U. Stich, M. Jaggi, "Decentralized Deep Learning with Arbitrary Communication Compression," International Conference on Learning Representations (ICLR), 2020.
- T. Lin, S. U. Stich, K. K. Patel, M. Jaggi, "Don't Use Large Mini-Batches, Use Local SGD," International Conference on Learning Representations (ICLR), 2020.
- A. C. Yüzügüler, F. Celik, M. Drumond, B. Falsafi, and P. Frossard, "Analog Neural Networks for Deep-Submicron Nonlinear Synapses," IEEE Micro special issue on ML Accelerators, 2019.
- M. Drumond, T. Lin, M. Jaggi, and B. Falsafi, "Training DNNs with Hybrid Block Floating Point," Proceedings of the Thirty-second Conference on Neural Information Processing Systems (NeurIPS 2018), 2018.