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A Brief History of IT

§ From computing-centric to data-centric
§Consumer Era: Internet-of-Things in the Cloud

1970s-

PC Era

Mobile Era

Mainframes
1980s 1990s Today+

Consumer Era



The future of IT is Data

§ Data growth (by 2015) = 100x in ten years [IDC 2012]
§ Population growth = 10% in ten years

§ Monetizing data for commerce, health, science, services, ….
§ Big Data is shaping IT & pretty much whatever we do!



Data Shaping All Science & 
Technology

Science entering 4th paradigm
§Analytics using IT on

§ Instrument data
§ Simulation data
§ Sensor data
§ Human data 
§ …

Complements theory, empirical 
science & simulation

Data-centric science key for innovation-based economies! 
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Source: James Hamilton, 2014
mvdirona.com/jrh/TalksAndPapers/JamesHamilton_Reinvent20131115.pdf

Daily IT growth in 2014 = All of AWS in 2004!



Warning! 
Datacenters are not Supercomputers

• Run heterogeneous data services at massive scale
• Driven for commercial use
• Fundamentally different design, operation, reliability, TCO

• Density 10-25KW/rack as compared to 25-90KW/rack
• Tier 3 (~2 hrs/downtime) vs. Tier 1 (upto 1 day/downtime)
• ……and lots more

Datacenters are the IT utility plants of the future

Supercomputing Cloud Computing

≠



Cloud Taking Over Enterprise

Source: Dell ‘Oro 2Q15 



Internet-of-Things (IoT) 
Growing Fast Too

8

Source: IDC Worldwide and Regional IoT forecast, EMC Digital Universe with Research and Analysis by IDC

20 Billion Connected Devices

4 Zettabytes of Data, 10% of Digital Universe
$7 Trillion 
Market Revenue



Moore’s Law:
Five Decades of Exponential Growth

Made IT an indispensable pillar of our society!

Intel 4004, 1971

Intel Xeon, 2014

92,000 ops/sec

266,000,000,000 ops/sec



[source: ITRS]

The fundamental energy silver bullet is gone! 

Today

Projections
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Parallelism is out of steam!

With voltages leveling:
§Parallelism has emerged as 

the only silver bullet
§Use simpler cores 

§ Prius instead of race car
§Restructure software
§Each core è

less joules/op
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End of Multicore Scaling

But parallelism can not 
offset leveling voltages

Even in servers with 
abundant parallelism

Need a holistic approach 
to optimization

Hardavellas et. al. 
“Toward Dark Silicon in Servers” 

IEEE Micro, 2011

Dark 
Silicon
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Slowdown in Moore’s Law
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Moore’s Law: $/transistor dropping for fifty years
• Intel is pushing for a bit more
• Competitor saw $/transistor go up 2015



Higher Demand + Lower Efficiency:
Datacenters at Physical Limits!

§Centralization helps exploit economies of scale
§But, platform scaling is a grand challenge
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65 million Swiss 
homes

17x football field, 20MW

$3 Billion investment



Center at EPFL
§ 18 faculty, 50 researchers
§ 6M CHF/year external funds

Mission:
§Designing datacenters of future
§ From algorithms to infrastructure
§Maximizing value for data

ecocloud.ch



Today’s Server Ecosystem
Conventional IT:
§ Product based
§ Per-vendor layer
§ Well-defined interfaces
§ Near-neighbor optimization at best

Big vendors (e.g., Amazon, Google)
§ Can do cross-layer optimizations
§ But,

§ Only limited to services of interest
§ Are limited in extent (e.g., software)
§ Monopolize (closed) technologies

Middleware
(data,	web	services)

Application

Runtime	System
(scripting,	DSLs)

Operating	System
(resource	management)

Server
(processor,	mem,	storage,	network)

Infrastructure
(cooling,	power)



Our Vision:
Holistic Optimization of Datacenters

Holistic optimization
• From algorithms to 

infrastructure
• Cross-layer integration
• IT paradigms to monitor, 

manage & reduce energy 

Open technologies!
Algorithm
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Our Vision:
The ISA Triangle of Efficiency

Approximation
(Tailor Precision for Fewer Joules)

Holistic 
Optimization



Outline

§Overview
§How efficient are servers today?
§DB Accelerators
§Summary



Scale-Out Datacenters

Vast data sharded across servers

Memory-resident workloads
§ Necessary for performance
§ Major TCO burden

Put memory at the center
§ Design system around memory
§ Optimize for data services

Servers driven by the DRAM market!

Memory

Core Core Core

$

Core Core Core



In-Memory Scale-Out Services

§Many independent requests/tasks
§Huge dataset split into shards
§Use aggregate memory over network

21
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In-Memory Analytics
Recommendation System

Media Streaming
Nginx, HTTP Server

Web Search 
Apache Solr & Nutch

Web Serving
Nginx, PHP server

Data Serving
Cassandra NoSQL

Graph Analytics
GraphX

Data Caching
Memcached

Data Analytics
Machine learning

How Efficient are Servers Today?
CloudSuite 3.0 (parsa.epfl.ch/cloudsuite)

Building block for Google PerfKit, EEMBC Big Data!



But, Services are Stuck in 
Memory!
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L2

Core Inefficiencies
§ Underutilized complexity
§ Scale-out requirements low

§ couple parallel memory ops.
§ one execution unit
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L2

Instruction-Fetch Inefficiencies

• Large instruction working set
§ Larger than L1 & L2 capacity
§ Instructions read from LLC

§Core stalled during i-fetch Core
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Where do instructions/data 
come from?

§ Instructions: in LLC 
§ Data: in memory Nothing useful in remote L1 caches!

0

5

10

15

20

Data 
Serving

Map 
Reduce-C

Map 
Reduce-W

SAT Solver Web 
Frontend

Web 
Search

%
 o

f L
LC

 A
cc

es
se

s 
Tr

ig
ge

ri
ng

 C
oh

er
en

ce
 A

ct
iv

ity

Average across workloads: 2%



0%

25%

50%

75%

100%

O
ff-

ch
ip

 m
em

or
y 

ba
nd

w
id

th
 u

til
iz

at
io

n

Off-chip Memory Bandwidth

Off-chip BW severely underutilized

85%



L2

LLC and Bandwidth 
Inefficiencies
§Scale-out needs modest LLC

§ Beyond 3-4MB useless
§Area & latency w/o payoff

§Low per-core BW needs
§<15% utilization
§ Too many channels
§ Too high frequency
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CloudSuite on Modern Servers [ASPLOS’12, best paper]
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Too few 
cores!

Cores 
too fat!}} }

8 MB (60%) waste of space (no reuse)!

B/W 
unused!

Workload/Server Mismatch



What do Scale-Out Services Need? 

Cores share instructions
§ Large code footprint fits in LLC
§ A few MB SRAM for instructions

Data is in memory
§ Data footprint dwarfs LLC
§ Do not waste SRAM for data

Cores communicate rarely
§ Independent requests
§ Core-to-cache traffic

32Common traits across applications

Code access

Data access

Core Core Core

$

Core Core Core
Server 

requests

Memory



Scale-Out Processors
[ISCA’13,ISCA’12,Micro’12]

Server Chip:
§ Disconnected cache-coherent pods
§ 3D memory 
§ 10x performance/TCO
§ Runs Linux LAMP stack

Processor SoC:
§ 64-bit ARM cores
§ Custom degree of OoO/MLP
§ NoC designed for fast instruction supply
§ LLC designed for on-chip instruction working set

UCy



NOC-Out: [MICRO’12]
Specialized Network-on-Chip for Servers

Exactly the opposite of current NoCs
§ Cache coherent
§ But, designed for core-to-cache communication
§ Not core-to-core!

LLC network:
§ Flattened Butterfly (FB) topology

Request & Reply networks: 
§ Tree topology
§ Limited connectivity for efficiency

FB’s performance at 1/10th cost
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Effective Die-Stacked 
Caching for Servers  
[ISCA’13, MICRO’14,IEEE Micro’16]

Die-Stacked Caching:
§ Rich connectivity à High on-chip BW
§ High capacity à Low off-chip BW

Hybrid block-based/page-based designs
§ Embed tags in DRAM
§ Predict & fetch page’s footprint
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Specialized Instruction Supply
[MICRO’08,11,13,15]
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Instruction supply highly repetitive
Record & replay instruction streams
§ Eliminate 99.7% of all i-cache misses
§Capture discontinuities in control flow
§ Embed front-end meta data

Centralized engine
§ Stream front-end state

Emerging server processors call for a holistic front-end solution

C

C

C $

C
C

C C

C

C

C

C

C C

C
C C

C

$

C
C

C

C C

C
C

$ C

C

C

C
C

C C

C
C C

C

C

$

C
C

C
C C

C

C
C



Cavium ThunderX:
A Scale-Out Processor

48-core 64-bit ARM SoC
[based on “Clearing the Clouds”, ASPLOS’12]:
• 3x L1instruction cache size
• Custom cores for moderate MLP
• Minimal LLC (replaced with cores)
• Crossbar for fast instruction fills



Integrated Compute in Memory
[IEEE Micro’16]

Why in-memory? 
• Minimize data movement & energy
• Leverage DRAM's massive internal BW

Basic data services:
• Scan, Join, GroupBy, Filter
• Best for sequential access
• Accelerators must co-exist with

conventional memory semantics

10x better efficiency for a database join operation!



Scale-Out NUMA:
In-memory Rack-Scale Computing 
[ASPLOS’14 ,ISCA’15, MICRO’16]

Rack-scale networking suffers from 
§ Network interface on PCI + TCP/IP
§ Microseconds of roundtrip latency at best

soNUMA:
§ Manycore network interface integrated into NoC
§ Protected global memory read/write
§ Supports fine-grain & bulk object communication

core . . .

LLC

core

Memory 
Controller

Remote 
MC

N  
I

core

NUMA 
fabric

Coherence 
domain 1

Coherence 
domain 2

300ns round-trip latency 
to remote memory



Outline

§Overview
§How efficient are servers today?
§DB Accelerators
§Summary



Databases underlie data-
intensive apps

Most frequent task: find data
– E.g., build a user’s Facebook page

Indexes used for fast data lookup
– Rely on pointer-intensive data structures

Indexing efficiency is critical 
– Many requests, abundant parallelism 
– Power-limited hardware

Data

Index

Need high-throughput and energy-efficient index lookups



Indexing Basics

Hash index: fundamental index structure

Dominant operation: join via hash index

TR
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Join

Join: find the matching values in A and B

Join via Hash Index

Lookup on index for every entry in A

Hash Index on BA B

Walk



How Much Time is Spent in 
Index Lookups?
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Dissecting Index Lookups
Hash: avg. 30% time of each lookup 

§Computationally intensive, high cache locality
Walk: avg. 70% time of each lookup

§Trivial computation, low cache locality
Next lookup: inherently parallel

§Beyond the instruction window capacity

Inst. Window
OoO Core



Inst. Window

OoO Core

Index Lookups
• Data in memory
• Inherent parallelism

OoO Cores
• Pointer-chasing à Low MLP
• Limited OoO inst. window

– One lookup at a time

Index Lookups

Memory

OoO cores ill-matched to indexing

Index Lookups on General-
Purpose Cores



Roadmap for Efficient and 
High-Throughput Index Lookups

1. Specialize
§ Customize hardware for hashing and walking

2. Parallelize
§Perform multiple index lookups at a time

3. Generalize
§Use a programmable building block



Step 1: Specialize
Design a dedicated unit for hash and walk

§ Hash: compute hash values from a key list
§ Walk: access the hash index and follow pointers

Specialized
hash and walk hardware

General-purpose
OoO

Hash Walk



Step 2: Parallelize
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Step 3: Generalize Widx Units

Common building block for hash and walk
§Two-stage RISC core
§Custom ISA

Programmable
§Execute functions written in Widx ISA
§Support limitless number of data structure layouts 

Widx
unit

hash( ) walk( )

H W



Putting it all together : Widx

When Widx runs, core goes idle

Widx

Hash

H MMU

OoO
Core

L1

WidxW

W

W

W
P

Result 
Producer

Walkers

Simple, parallel hardware



Methodology
Flexus simulation infrastructure [Wenisch '06]

Benchmarks
– TPC-H on MonetDB
– TPC-DS on MonetDB
– Dataset: 100GB

uArch Parameters
– Core Types

• OoO: 4-wide, 128-entry ROB
• In-order: 2-wide

– Frequency: 2GHz
– L1 (I & D): 32KB
– LLC: 4MB

Area and Power
– Synopsys Design Compiler
– Technology node: TSMC 40 nm, std. cell
– Frequency: 2GHz
– Widx Area: 0.24mm2

– Widx Power: 0.3W
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Asynchronous Memory 
Access Chaining [VLDB’16]

Use insights to help Xeon servers
§Decouple hash & walk in software
§Create & manage walker queues in software 

wraparound

2.3x speedup on Xeon
§Unclogs the internal microarchitecture
§Maximizes memory level parallelism
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Summary

Trends for data & online services:
§Data growing at exponential rate
§Online services are in-memory
§Memory is a big fraction of TCO

Specialize servers around DRAM
§Opportunities abound
§Processors, accelerators, memory, network, system
§E.g., accelerators for database management

55



Thank You!

For more information please visit us at 
ecocloud.ch


