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OUR DIGITAL UNIVERSE [POAL=E]
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Fueled by:

= Data volume

= Data growth rate

B = Monetization of data
" Data’s impact on GDP

= now Al




DATACENTERS ARE BACKBONE OF cLouD [P =R
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= 100s of 1000 of commodity or home-
brewed servers

= Centralized to exploit economies of scale

" Network fabric w/ py-second connectivity

= Often limited by

= Electricity
= Network
= Cooling

Boydton, VA (300 MW)
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DS AT VARIOUS SCALES [POAL=E]
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Edge Cloud Enterprise Cloud Public Cloud
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Temporal/Sensitive/Local Data Persistent/Global Data sl



LONG LIVE MOORE'’S LAW BALSH
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ENERGY GROWTH PROJECTIONS — [2EU=60
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Electricity consumption

500 ........ |[EA. CC BY 4.0.

: Other Infra
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[ AISA
POST-MOORE DATACENTERS

Design for “ISA”

" [ntegration
" reduce data movement
= Specialization
= cut resources to analyze data

" Approximation
" compress data & computation

Algorithm
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From algorithms to infrastructure




C/S AT EPFL SINCE 2011

= WV,
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EcoCloud — HUA
—
Mission Hewlett Packard
=S ustainable computing j—
"Bestpractices, metrics & methodologies (.
Impact liile]Ventures
= Server-grade ARM CPU S
= Cloud-native network/database stacks (D) GEMATEG
= Liguid-cooling from chip to rack infomaniak
ORrRACLE

=Pr-L ecocloud.ch



METRICS & METHODLOGIES

[+ DATA

CENTER
DC INFRASTRUCTURE EFFICIENCY

» electricity w/ renewables, cooling, heat recycling

EFFICIENCY

IT INFRASTRUCTURE EFFICIENCY Scan the code to find
+ compute, storage, network and workloads about our label

[=] % [=]

DC CARBON FOOTPRINT :r
+ emissions from input electricity sources 8 'E

”\) Hewlett Packard B SWISS . HOCHSCHULE
cPrL ecocioud  Enterprise CISU|' Gl e LUZERN
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OUTLINE [POAL=E]
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=Post-Moore servers
=" [oday's servers
=|SA opportunities

="\Wrapping up



SCALE-OUT DATACETNERS [POAL=E]
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Cost is the primary metric (~50%)
Online services hosted in memory

Divide data up across servers

Network

Design server for low cost, scale out
I"Memory most precious silicon
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DAY'S SERVERS

oday’s platforms are PCs of the 80's

= CPU "owns” and manages memory
= OS moves data back/forth from peripherals

* | egacy interfaces connecting the CPU/mem to outside

= | egacy POSIX abstractions

Fragmented logic/memory:

Vanycore network cards w/ own memory
-lash controllers with embedded cores and memory

Discrete accelerators with own memory

|
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80S’ DESKTOP [POAL=E]
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/O Bus

HW Zone OS Zone

» 33 MHz 386 CPU, 250ns DRAM
* OS: Windows, Unix BSD (or various
flavors)

F




TODAY’S SERVER: 80S’ DESKTOP [2FH=

HW Zone

OS Zone

» Dual 2GHz CPU’s, 50ns DRAM

ARCHITECTURE LAB

e, Red Hat

* OS: Linux (and various distributions)



TODAY’S SERVER: 80S’ DESKTOP |
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/O Bus

HW Zone

OS Zone

» Dual 2GHz CPU’s, 50ns DRAM, Lint <& RedHat
» Bottlenecked by legacy interfaces

* Fragmented silicon



TODAY’S SERVER: 80S’ DESKTOP [2FH=
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DRAM T DRAM DRAM

SSD

414

DRAM

S
X |

HW Zone OS Zone

 Dual 2GHz CPU’s, 50ns DRAM, LinL <&,

» Bottlenecked by CPU, OS & legacy
interfaces

R%at



POST-MOORE INTEGRATED [ ArSA
S E RVEB PARALLEL SYSTEMS

ARCHITECTURE LAB

ACC1_ACC2_ACC3

Control/Data planes

* Think of the server as a network
* Control plane: set up via CPU & OS
« Data plane: protected access to memory

* Use chiplets to disaggregate at node level



POS

-MOORE RACK

= Fabrics at 100s Gb/s/lane
=E.g., Nvlink, NeuronLink, UB
* Hardware-terminated protocols

"Disaggregated rack-level
hardware

= Reduces fragmented silicon

=S services in nanoseconds
= Return of single-address space OS

2025 SKU
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OUTLINE [POAL=E]
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.

=Post-Moore servers

1 3

=|SA opportunities
=CPU
=Network
=Memory

"\Wrapping up



Specialized

e Thunder X/TPU

 DBTloaster ASIC

o X Kernel * Crypto

THE SPECIALIZATION FUNNEL [POAL=E]
* Network logic

ARCHITECTURE LAB
D * Analog NN
General Purpose
Intel CPU

Oracle DB
Linux OS
Python/C PL

Py Torch

Domain-specific languages to platforms

New interfaces/abstractions .



THE LIMITS OF CPUS [POAL=E]
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CPUs follow the von Neumann machine organization
* Machine instructions fetched from memory

= Operands fetched/written to memory
= Referred to as von Neumann bottleneck

M Instruction Fetch
M Register File
HALU

HDs

Only 6% power in Pentium 4
spent in arithmetic (ALU)

M Pipeline Registers

m Control

[src: Chen, et. al,, IEEE Transactions, 2006]
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CPU SPECLIAZATION FOR WORKLOADS BALSHA
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"First-party workloads (e.g., search, retail, media)
" Data management
= Analytics
= Monoliths to microservices

* [ hird-party workloads (cloud)
= Containerized
=Serverless

24
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< CloudSuiteo release @ cloudsuite.ch)

Data Analytics Graph Analytics In-Memory Analytics

Recommendation System

Machine learning GraphX

m ’ oESFGraphX

Web Search
Apache Solr & Nutch

movielens spoff(z

Media Streaming

Web Serving

Nginx, HT TP Server

Solf? emufiy NCMK || NGk

Nginx, PHP server

Data Caching Data Serving
Memcached Cassandra NoSQL

W ™ || comen T
Cassandra

Supports x86, ARMé4, RISC-V (coming)



FRVICESSTUCK IN MEMORY psiosia [t

Normalized Performance

«9-Scale-out €SPECint (mcf)
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4 5 6 7 8 9 10 11
Cache size (MB)

Cache overprovisoned

ARCHITECTURE LAB

Fetch Misseg/Kilo Instructions

Data Andytlcs Video AT Web Web
Serving Jreaming Serving Search

Instruction supply bottlenecked




SCALE-OUT PROCESSOR (SOP) [POAL=E]
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Core | Core | Core | Core

Coie | Core Cdre

= General-purpose CPU =3-way OoO ARM
XLogic 60% of silicon v'85% logic, 7x more

cores

/™ 4 2w g4 _ g®

X 6x bigger cores
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D-NATIVE CPU 1.0 [ca. 2014]

|

BAISA

PARALLEL SYSTEMS
ARCHITECTURE LAB

. VP/GM, Data Center Processing Group

|
1
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Thunder X

Based on S OP blueprint
Designed to serve data

/X more core than cache
Optimizes instruction supply
Ran stock software

10x throughput over Xeon




CHASING POINTERS W/ WALKERS  [REH=F
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® [raverse data structures (e.g., hash table, B-tree)
=Parallelize pointer chains
= Overlap pointer access across chains

[ZZz
Walkers QQ,_@A}E

WIdX %]:D@%E Result OOO
Hash Producer | 3
= E@g ) s
g :

15X better performance/Watt over Xeon




VWALKERS IN SOF T WARE o]

Use insights to help CPUs
" Decouple hash & walk(s) in software
= Schedule off-chip pointer access with co-routines

2.3x speedup on Xeon

Unclogs dependences in microarchitecture
Maximizes memory level parallelism
DSL w/ co-routines

ntegrated in SAP HANA [vipe1s

|

BHAISA
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OUTLINE [POAL=E]
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.

=Post-Moore servers

1 3

=|SA opportunities
=CPU
=Network
=Memory

"\Wrapping up
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NETWWORKS

ETHERNET SPEEDS

o =

Network stack bottleneck: T T DT
400G
=B/W growing faster than silicon 5 1o0c e @
: . S 406G — O O\ s060E B
" Emerging pServices + serverless 3 e o wur 82(5;?
@
= RPC, orchestration, .... 8 i N @25t
. Ethernet
= TOOM o ) O
. Ethernet |
Key challenges: 10M +-O—
. 1980 1990 2000 2010 2020 2030
u NeW abStraCthﬂS Standard Completed
™ CO—deS|gn Of netWOrk StaCkS @ cEthernet Speed £ Possible Future Speed

32



RPC ACCELERATORS Rl
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® Network Stack B RPC Layer

0 5 10 15 20 25
Latency (us)

= Wire time and protocol stacks have shrunk
= RPC dominates CPU cycles in pServices
= .o, data transformation @ ~2.4Gbps w/ Thrift on Xeon

33



CEREBROS RPC PROCESSOR

[ISCA151920,ASPLOS 20,MICRO™21]

Server CPU
TOR NI

RPC

C
C
C
S

OO0 OO

OORIO OO

OORIOIOIO

OORIOIOIO

OORIOIO0O

OO0

C

DRAM Memory Controllers

C

Socket-integrated NICs:

= Zero-copy transfers

= Single-queue semantics (RPCValet)

OOIOREO OO

C

* HW-terminated protocol (Nebula)

C

C

OOIOREOIOIO
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[ AISA

to/f
: rom
NI Glue

Control

to/f
o/from Data

Transformer

NoC

RPC Processor:

= Thrift "schema” as interface (Optimus
Prime)

» Dispatch, load balancing, affinity schedulin
= RPC at line rate = 100 Gbps



OUTLINE [POAL=E]
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=Post-Moore servers

1 3

=|SA opportunities
=CPU
=Network
=Memory

"\Wrapping up



THE VM BOT TLENECK: TLBs

Core

B TLB

~10 entries

~KBs

Vi

Platforms in 90s

Core

TLB

PARALLEL SYSTEMS
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[ AISA

~1000 entries

‘ -

Bs

Platforms today

Product Year Cores Cache capacity TLB entries Coverage (4KB)
Intel P4 2000 1 256KB SRAM 64 256KB
Intel KabylLake 2016 4 128MB eDRAM 1536 6MB
Apple M1 2020 8 (4+4) 16MB SRAM 3096 12MB (16KB)
AMD Zen3 2021 64 (8x8) 256MB SRAM 2048 8MB
Intel Sapphire Rapids 2022 956 (14x4) 64GB HBM2 ? ?

36



VIRTUAL MEMORY [POAL=E]
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= Classic programming abstraction
= Provides process isolation using private address spaces

= Provides memory management without application involvement

= Ubiquitous in all modern computing devices (servers, desktops, mobile)

Essential abstraction for programming and memory management

37



VIRTUAL MEMORY 101 (O5)

App O App 1

Physical Address Space

* Operating System (OS) provides

= Virtual address space for applications
= Physical address space for memory

= Mapping of virtual addresses to physical addresses

|

BAISA

PARALLEL SYSTEMS
ARCHITECTURE LAB
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VIRTUAL MEMORY 101 (HW) [POAL=E]
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App O App 1

Translation
Protection check

Physical Address Space

= Architectural support is required for

= Translating virtual addresses to physical addresses

* Performing protection checks

39



HOW ARE ADDRESS SPACES ORGANIZED? [[PEH=F
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App O App 1

VMA

" Virtual address space

= Organized using Virtual Memory Areas (VMAS)
= Protection is defined at a VMA granularity

40



HOW ARE ADDRESS SPACES ORGANIZERL=M]
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App O App 1

VMA

R RERE BRBRERA A = Protection info

= Physical address space

= Organized using fixed-size pages for efficient capacity management

= VMAs are divided and mapped to numerous pages

Protection and translation information is replicated for pages




PERFORMANCE REQUIREMENTS [POAL=E]
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= Cores directly interact with cache hierarchy
* Translation/protection should work at cache latency

= VMAs could give us fast translation/protection at a large granularity

= But we lost VMAs and divided them into numerous, small pages

= Page-based translation/protection
= Require lookup of replicated information for each page

" | ookups become expensive with larger cache/memory capacity

Translation/protection should match cache speed




HARDWARE SUPPORT TODAY

* Translation Lookaside Buffer (TLB)

= Cache mappings for recently used pages

= Accelerate translation and protection checks

= [ Bs do not scale
= Memory capacity has grown from MBs to ~10 TB
= Cache hierarchies have grown up to ~10 GB
= TLBs only have 1000s of entries i.e. ~10 MB coverage

= End of Moore’s law prohibits further silicon scaling

[ AISA

PARALLEL SYSTEMS
ARCHITECTURE LAB

B T8

LLC

Platforms today

TLBs cannot provide the required coverage

10 TB



PRIOR WORK [POL=E]
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= Aim to create contiguity in the physical address space
" Huge pages
" Direct segments [Basu, ISCA'13]
= Memory defragmentation [Yan, ISCA"19]

= Contiguity can help achieve faster translation/protection
= Creating contiguity dynamically leads to implementation complexity

= Virtual hierarchies
" |n-cache address translation [Wood, ISCA'86]
= VBl [Hajinazar, ISCA20]

Previous proposals help, but do not solve the problem




MIDGARD ADDRESS SPACE [POAL=E]
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App O App 1

&

Midgard Address Space

= A sparse intermediate address space that retains VIMAS

= Protection check and contiguous translation at VMA granularity

= OS deduplicates shared VMAs, ensuring no synonyms/homonyms

Midgard provides an address space for the cache hierarchy




MIDGARD-ADDRESSED CACHE HIERARCHY

App O App 1

[F]

= Cache hierarchy now uses Midgard addresses
= Virtual to Midgard translation is fast because of VMAs
" Protection is implemented at a VMA granularity

= Midgard to Physical translation is only required on cache misses

[ AISA

PARALLEL SYSTEMS
ARCHITECTURE LAB

Midgard optimizes the common-case cache accesses




VIRTUAL-TO-MIDGARD TRANSLATION
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[ AISA

" Translation and protection at VMA granularity

" Process-private VMA table contains mappings

= Fach process typically contains ~100 VMASs

= Fg., range tables, B-trees

= Virtual Lookaside Buffer (VLB)
= Cache VMA mappings to benefit from locality

= Only ~10 VMAs are freguently accessed

Only ~10 VLB entries required per core

47
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MIDGARD-TO-PHYSICAL TRANSLATION  [[2EH=R

= Cache hierarchy filters most of the memory accesses

* Translation required only for cache misses

= | arger cache hierarchy requires fewer translations VLB

" Translations stored in Midgard page table

Optional

= Shared by all the processes/cores

= Little temporal locality left in the translation requests
= Optionally cache in Midgard Lookaside Buffers (MLBs)

Page table walk required only on cache misses




MIDGARD PAGE TABLE [POL=E]
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B
\
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§
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\
R

SRS

gz
/l‘
1123
Layout in Physical Memory

e

A
Layout in Midgard

TR

= Page table can be mapped to Midgard to ease the walk

= Sparse Midgard address space allows reserving contiguous space for every level

= Direct lookup of any entry in the cache hierarchy (like TLBs, MMU caches)

Cache hierarchy can directly serve Midgard page table entries
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MIDGARD PAGE FAULTS P26

= Midgard (store) page faults are detected late in the pipeline [Qiu, ISCA99]

= After a store ends up retiring and is in the store buffer

= Precise exception handling requires keeping all retired state [Gniady, ISCA'99]

* Post-retirement speculation needs a lot of silicon (e.g., 20KB of state)

* Imprecise store exceptions [Gupta, [SCA'23]
= Microarchitecture + OS co-design to handle late store exceptions
= Obviates the need for post-retirement speculation

= Formalism to guarantee maintaining memory consistency

50



METHODOLOGY

* Trace analysis of memory accesses with QFlex

= AMAT analysis to guantify VM overhead
" Workloads:; GAP benchmark suite, Graph500

= 16 ARM cores

= 256(GB of dataset

= Baseline TLB: 64-entry L1, 1024-entry L2
= Midgard: 16-entry VLB, no MLB by default

|

BAISA
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POST-MOORE VM PERFORMANCE  [2E=20

-e—-Traditional (4K)

w
U

° — —— —— —o
= As cache hierarchy capacity =30
. . . £
increases, time spent in data g 25 "
O c
accesses goes down, thus c 20 g ¢ ©
- — N 8
increasing VM overhead v 15 5 2 £
© >~ < 0o
~ 10 c
& 4
)
é 5
< 0
16MB 64MB 256 MB 1GB 4GB 16GB
LLC Capacity
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FUTURE-PROOFING VM WITH MIDGARD  [PFL=F]
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-—Midgard -e—Traditional (4K)
;\'535 — —o— —o— Y
= For 16MB, Midgard has T 30
v
<5% performance g 25
& e
overhead compared to c 20 g % S
= — N S
. (© > wn
traditional s 15 5 g 2
© - < 20
~ 10 c
& V4
£5
= Secondary working sets fits < |
in 32|\/|B and 5’]2|\/|B LLC 16MB 64MB 256 MB 1GB 4GB 16GB

LLC Capacity

Midgard performance improves with the cache hierarchy capacity
53
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OPTIMISTIC COMPARISON TO HUGE PAGES

-e-Midgard -e-Traditional (4K) -»-Traditional (2M)

L 35 P s s o
= Overhead of huge page 8 30
i
transition ignored g 25 2
o O N §e]
S 20 ® @ © &
e - N -
& 2 SRAM to DRAM 2
, = 15 & % Cache transition %
= Overhead persists 10 G
: - 4
independent of page size 5 s
. < / - m ) ™
as cache capacity grows 0 P

16MB 32MB 64MB 128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB
Cache Capacity
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TB-SCALE MEMORY WITHOUT TLB & midgard

Midgard Roadmap: CpoL

<4 CPU microarchitecture/OS [ISCA21'23]

4 Compartmentalization [[EEE S&P’23] ) Yale University
4 Virtualization/Containerization

4+ Accelerator ecosystem/IO Intel Transformative
+ Monolith/uservices/serverless Server Architecture
+e Center

55


https://midgard.epfl.ch/

ONLINE SERVICES HOST DATA IN DRAM  [PEL=F
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%/ GB (log)

1980 1990 2000 2010 2020
= Crucial for high performance and low tail latency

* DRAM is expensive and is not scaling in density

DRAM is about 50% of overall server cost




ONLINE SERVICES IN FLASH (-rcaas [POAL=E]

SSD

1/30x-1/50x

Cost Latency
DRAM 1% ~100 ns
SCM 1/5% 1-10 ps

> 50 ps (OS)

" Host & serve mapped data from SSD

" Hardware-managed DRAM cache

= Co-design to eliminate OS overhead

" paging
" threading

ARCHITECTURE LAB

---DRAM-only -=-AstriFlash

>

- 100

g

o 380

X

< 60

o))

o))

O 40 —= u —R—N—
CIJ

N

TEU 20

- ? @ O~ =O—

S 0

Z 0) 0.5 1

Normalized Throughput

Maintains tail latency with only 5% lower throughput




SUMMARY [POAL=E]
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Post-Moore datacenters:

" |[ntegration + Specialization + Approximation

= Revisit legacy abstractions, SW/HWV interfaces
= Holistic algorithm/SVW/HW co-design

= Division of control vs. data plane

Datacenter sustainability:

" Best practices
= Metrics

58



ANK YOU [POAL=E]
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For more information, please visit us at
parsa.epfl.ch

=PrL
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