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DATACENTER GROWTH

§Data → fuel for digital 
economy
§Exponential demand for 
digital services
§Many apps (e.g., AI) with 
higher exponential demand



DATACENTERS ARE BACKBONE OF CLOUD

§100s of 1000 of commodity or home-
brewed servers

§Centralized to exploit economies of scale
§Network fabric w/ µ-second connectivity
§Often limited by

§ Electricity
§ Network
§ Cooling

350MW, Boydton
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Temporal/Sensitive/Local Data Persistent/Global Data

CLOUDS AT VARIOUS SCALES



End of Moore’s Law (of Silicon)
• Five decades of doubling density
• Recent slowdown in density 
• Chip density limited by physics

Growth means building more
• 41%/year → 28x in ten years
• At 15%/year →  7x more DCs

DATACENTERS NOT GETTING DENSER

2015
with Moore’s law

28x

2025

lower density

4x each

W/o Moore, building more
2005

2015
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IT device use
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50% increase

DC

[Digital economy & climate impact, May 2022]

ELECTRICITY IN 1000TWH



POST-MOORE DATACENTERS

Design for “ISA”

§Integration
§Move data less frequently
§Move data less distance

§Specialization
§Customize resources
§ Less work/computation

§Approximation
§Adjust precision

Algorithm

In
fra
str
uc
tu
re



OUTLINE

§Overview
§Post-Moore servers
§Today’s servers
§ISA opportunities

§Datacenter sustainability
§Summary



SCALE-OUT DATACETNERS

Cost is the primary metric
Online services hosted in memory
Divide data up across servers
Design server for low cost, scale out
☞Memory most precious silicon 

Memory

Network Disk
CPU



TODAY’S SERVERS

Today’s platforms are PCs of the 80’s
§CPU “owns” and manages memory
§OS moves data back/forth from peripherals
§Legacy interfaces connecting the CPU/mem to outside
§Legacy POSIX abstractions

Fragmented logic/memory:
§Manycore network cards w/ own memory
§ Flash controllers with embedded cores and memory
§Discrete accelerators with own memory



80S’ DESKTOP

CPU

• 33 MHz 386 CPU, 250ns DRAM
• OS: Windows, Unix BSD (or various flavors)
• Focus: mlutiprogrammed in-memory compute

 DRAM

I/O Bus

NIC

HW Zone OS Zone
C
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TODAY’S SERVER: 80S’ DESKTOP

• Dual 2GHz CPU’s, 50ns DRAM
• OS: Linux (and various distributions)

HW Zone OS Zone
I/O Bus

NIC

CPU

 DRAM

CPU

 DRAM



TODAY’S SERVER: 80S’ DESKTOP

• Dual 2GHz CPU’s, 50ns DRAM, Linux
• Bottlenecked by legacy interfaces
• Fragmented silicon

HW Zone OS Zone
I/O Bus

NIC

CPU

 DRAM

CPU

 DRAM

FPGA
CPU

DRAM

SSD
CPU

DRAM

GPU

DRAM

DRAM



TODAY’S SERVER: 80S’ DESKTOP

• Dual 2GHz CPU’s, 50ns DRAM, Linux
• Bottlenecked by CPU, OS & legacy interfaces
• Fragmented silicon

HW Zone OS Zone
I/O Bus

NIC

CPU

 DRAM

CPU

 DRAM

FPGA
CPU

DRAM

SSD
CPU

DRAM

GPU

DRAM

DRAM

✗
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IDEAL POST-MOORE SERVER

• Think of the server as a network
• Control plane: set up via CPU & OS
• Data plane: protected access to memory
• Eliminates silicon fragmentation

CPU

                                            DRAM

ACC1 NICACC2 ACC3

Control/Data planes



OUTLINE

§Overview
§Post-Moore servers
§Today’s servers
§ISA opportunities

§CPU/Memory/Storage/Network
§AI

§Datacenter sustainability
§Summary



THE SPECIALIZATION FUNNEL

17

General Purpose
• Intel CPU
• Oracle DB
• Linux OS
• Python/C PL
• …..

ASIC
• Crypto
• Network logic
• Analog NN

Domain-specific languages to platforms
New interfaces (i.e., IRs, hardware abstractions)

Specialized
• Thunder X/TPU
• DBToaster
• IX Kernel
• PyTorch



THE LIMITS OF CPUS

CPUs follow the von Neumann machine organization
§Machine instructions fetched from memory
§Operands fetched/written to memory
§Referred to as von Neumann bottleneck

18
[src: Chen, et. al., IEEE Transactions, 2006]  

Only 6% power in Pentium 4 
spent in arithmetic (ALU)



CPU SPECLIAZATION FOR WORKLOADS

§First-party workloads (e.g., search, retail, media)
§Data management
§Analytics
§Monoliths to microservices

§Third-party workloads (cloud)
§Containerized
§Serverless

19



(4.0 release @ cloudsuite.ch)

Supports x86, ARM64, RISC-V (coming)

In-Memory Analytics
Recommendation System

Graph Analytics
GraphX

Data Analytics
Machine learning

Web Search 
Apache Solr & Nutch

Media Streaming
Nginx, HTTP Server

Web Serving
Nginx, PHP server

Data Serving
Cassandra NoSQL

Data Caching
Memcached



SERVICES STUCK IN MEMORY [ASPLOS’12] 

21

0.4

0.5

0.6

0.7

0.8

0.9

1.0

4 5 6 7 8 9 10 11

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Cache size (MB)

Scale-out SPECint (mcf)

Cache overprovisioned

0

25

50

In
st

ru
ct

io
n

 m
is

se
s

p
er

 k
-i

n
st

ru
ct

io
n L1-I L1-I L2 L2

Data     Analytics  Video     SAT        Web       Web
Serving              Streaming             Serving   Search

Fetch Misses/Kilo Instructions 

Like desktop
Workloads

Instruction supply bottlenecked



SCALE-OUT PROCESSOR (SOP)

§General-purpose CPU
✘Logic 60% of silicon
✘6x bigger cores 22

MEMORY

§3-way OoO ARM
ü85% logic, 7x more cores
üFaster instruction supply
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Copyright 2014 Cavium Inc. 

VP/GM, Data Center Processing Group 

Thunder X
• Based on SOP blueprint
• Designed to serve data
• 7x more core than cache
• Optimizes instruction supply
• Ran stock software
• 10x throughput over Xeon

CLOUD-NATIVE CPU [c.a. 2014]



X86 VS. ARM SINGLE THREAD 
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SILICON EFFICIENCY IN X86 VS. ARM

0.00

1.00

2.00

3.00

4.00

Online Services Analytics

Ice Lake Ice Lake SMT Zen 3 Zen 3 SMT Neoverse N2

C
or

e 
Pe

rf
or

m
an

ce
 D

en
sit

y 
(IP

C
/m

m
2 )

The online services meet end-to-end tail latency requirements



TB-SCALE HIERARCHIES
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Regs

Caches 
(SRAM)

Main memory
(DRAM)

SSD

Hard disk

Regs

Caches 
(SRAM)

CXL
(DRAM)

SSD

Hard disk

Moving ForwardYesterday

DDR
(DRAM)

UCIe
(DRAM)

Faster

Bigger



THE VM BOTTLENECK: TLBs

Product Year Cores Cache capacity TLB entries Coverage (4KB)
Intel P4 2000 1 256KB SRAM 64 256KB

Intel KabyLake 2016 4 128MB eDRAM 1536 6MB
Apple M1 2020 8 (4+4) 16MB SRAM 3096 12MB (16KB)
AMD Zen3 2021 64 (8x8) 256MB SRAM 2048 8MB

Intel Sapphire Rapids 2022 56 (14x4) 64GB HBM2 ? ?
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Memory

LLC

L1

TLB

Platforms today

P

Memory

L1

TLB

Platforms in 90s

Core

P ~10 entries ~1000 entries

~KBs

~MBs
~GBs

~TBs

Core



TB-SCALE MEMORY WITHOUT TLB

Virtual

Physical

Midgard

• Keeps POSIX (VMA) interface to apps
• Linux, MacOS/iOS, Android

• Eliminates page-based translation in $
ü Unclogs virtual memory for security, 
     virtualization, accelerators

Higher overhead

Lower overhead

CPU

Memory

Page-based VM
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4K pageMidgard 2M page

Cache Hierarchy ($) Capacity

midgard.epfl.ch

http://midgard.epfl.ch/


TB-SCALE MEMORY WITHOUT TLB

Midgard Roadmap:
CPU microarchitecture/OS [ISCA’21’23]

Compartmentalization [IEEE S&P’23]

Virtualization/Containerization
Accelerator ecosystem/IO
Monolith/µservices/serverless
….

29

Intel Transformative Server 
Architecture Center
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CLOUD-NATIVE MEMORY HIERARCHIES

30
32 GB 1TB
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PCIe BANDWIDTH PROJECTIONS

§CXL will eventually subsume DDR

32

[A Case for CXL-Centric Servers, Cho, et. al.]



CXL OPPORTUNITIES

§Memory is currently wasted (50% in containers)
§Much memory is stranded (Pond, ASPLOS’23)
§Pool memory in proximity (e.g., Scale-Out NUMA)

§Both requests and data partitions are skewed
§Helps with load balancing

§Memory accounts for much of fabrication emissions
§Use CXL to keep (old not new) DDR memory

33



Data management
§Data copy/move
§Compression/decompression
§Serialization/deserialization
§Encrypt/decrypt
§Scatter/gather

Analytics
§Spark operations 
  (e.g., scan, filter, groupby)
§SQL operations
  (e.g., intersect, union, join)
§Matrix operations

ON-PACKAGE OPPORTUNITIES:
ACCELERATORS

34

Memory views: rows for data management , columns for analytics 



CHASING POINTERS W/ WALKERS

§Traverse data structures (e.g., hash table, B-tree)
§Parallelize pointer chains
§Overlap pointer access across chains

Widx
Hash
H MMU

OoO
Core

L1

WidxW

W

W

W
P

Result 
Producer

Walkers

15x better performance/Watt over Xeon



WALKERS IN SOFTWARE [VLDB’16]

Use insights to help CPUs
§Decouple hash & walk(s) in software
§Schedule off-chip pointer access with co-routines

2.3x speedup on Xeon
§Unclogs dependences in microarchitecture
§Maximizes memory level parallelism
§DSL w/ co-routines
§ Integrated in SAP HANA [VLDB’18]

36



NEAR-MEMORY PROCESSING [ISCA’17]

Stream data out of row buffers
SIMD cores + data streaming

§ Saturates b/w with parallel SIMD streams
§ 1024-bit SIMD @ 1 GHz
§ No caches

Runs Spark Analytic Ops
50x over Xeon

37

Stream Stream

StreamStream

Algorithm/hardware co-design maximize near-memory performance

Near-Memory Logic

Memory

Stream Stream

StreamStream

Stream Stream

StreamStream

Stream Stream

StreamStream



ONLINE SERVICES IN FLASH [HPCA’23]

§Host & serve data from SSD
§Map SSD as memory, DRAM as cache
§Co-design CPU & OS for

§ paging
§ µs-level thread switch
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Maintains tail latency with only 5% lower throughput
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NETWORKS

Network stack bottleneck:
§B/W growing faster than silicon
§Emerging µServices + serverless
§RPC, orchestration, ….

Key challenges:
§New abstractions
§Co-design of network stacks

39



RPC ACCELERATORS

§Wire time and protocol stacks have shrunk
§RPC dominates CPU cycles in µServices
§E.g., data transformation @ ~2.4Gbps w/ Thrift on Xeon

40
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40Gbps + eRPC

10Gbps + TCP

Latency (μs)

Protocol Processing Data TransformationNetwork Stack RPC Layer



CEREBROS & NEBULA [ASPLOS’20,ISCA’20,MICRO’21]

RPC processing at line rate:
§A ”schema” (not instructions) interface to an RPC core
§ Implements load balancing/affinity scheduling for µServices

41
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§CPU/Memory/Storage/Network
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§Datacenter sustainability
§Summary



COST OF LOGIC VS. MEMORY

43

[src: Gholami, et. al.]



DNN PLATFORM DIVERGENCE

44

Inference platforms:
• Tight latency constraints
• Ubiquitous deployment
• Relies on fixed-point arithmetic

Training platforms:
• Throughput optimized
• Server deployment
• Requires floating-point arithmetic



HYBRID BLOCK FLOATING POINT (HBFP)

1. Block floating point (BFP): one exponent/tensor
• Low magnitude variation in tensor products
• > 90% of all arithmetic operations

2. FP32 for all activations
§ High magnitude variation in gradient updates

Co-Located Training & Inference (ColTraIn)
üOne accelerator for training and inference
üEliminates quantization
üEnables online learning

45
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MIXED-MANTISSA HBFP VS. FP32

46

FP32 level accuracy while using HBFP4 for majority of operations with 21.3x higher density

Configuration BLEU Score

FP32 34.77

HBFP6 34.47

HBFP4 32.64

Booster 36.08

TransformersDenseNet40 on CIFAR100
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PUE =  
IT Power

Total DC Power

DC 

PUE has been around for two decades

Today’s efficiency metric
power usage efficiency

IT



What is wrong with PUE?
DC electricity goes to IT

SDEA ‒ Copyright 2023

2 MW DC in 2010

PUE = 2.0

1 MW IT
50%

20 MW DC in 2020

PUE = 1.2

16 MW IT
83%



DC CARBON FOOTPRINT
+ emissions from input electricity sources

IT INFRASTRUCTURE EFFICIENCY
+ compute, storage, network and workloads

DC INFRASTRUCTURE EFFICIENCY
• electricity w/ renewables, cooling, heat recycling

GOODBYE PUE!
HELLO FULL-STACK EFFICIENCY

Visit sdea.ch to find out 
about our label



DATACENTER BEST PRACTICES

Need:
§Metrics for datacenter output

§E.g., matrix multiply in Python is 10x more work than in C

§Metrics for chip design
§E.g., speedup not a great metric for accelerators

§Need life cycle from fabrication to recycling
§Half of the emissions are from fabrication



SUMMARY

Post-Moore datacenters:
§ Integration + Specialization + Approximation
§Revisit legacy abstractions, SW/HW interfaces
§Holistic algorithm/SW/HW co-design
§Division of control vs. data plane

Datacenter sustainability:
§Best practices
§Metrics

52



THANK YOU!

For more information, please visit us at 
parsa.epfl.ch


