Dark Silicon & its Implication on Server Design

Babak Falsafi

Parallel Systems Architecture Lab
EPFL
parsa.epfl.ch
ecocloud.ch
Energy: Shaping IT’s Future

• 40 years of energy scalability
 ▪ Doubling transistors every two years
 ▪ Quadratic reduction in energy from voltages

• But, while Moore’s law continues
 ▪ Voltages have started to level off
 ▪ ITRS projections in 2000 for voltage levels in 2009 are way off!

An exponential increase in energy usage every generation?
Household IT Energy Usage
(from Sun)

Source: BERR (2008) *Energy consumption in the UK*
Shift towards Cloud Computing Helps

- Ubiquitous connectivity & access to data
- Consolidate servers ➔ Amortize energy costs
But, the Cloud has hit a wall!

Trends:
• Moore’s law continues
• Server density is increasing
• But, voltage scaling has slowed
→ It’s too expensive to buy/cool servers

A 1,000m² datacenter is 1.5MW!
(carbon footprint of airlines in 2012)
Enterprise IT Energy Usage

Kenneth Brill (Uptime Institute)
- “Economic Meltdown of Moore’s Law”
- In 2012: Energy/server lifetime 50% more than price/server
 - And 2% of all Carbon footprint in the US

Energy Star report to Congress:
- Datacenter energy 2x from 2000 to 2006
- Roughly 2% of all electricity & growing
Example Projections for Datacenters

- Projections for 2011 are already off
- Exponential increase in usage
What lies ahead?

For the next ten years:
- CMOS is still the cheapest technology

But,
- need ~100x reduction in energy just to keep up with Moore’s Law

Chip design recommendations:
- Short-term, lean chips (squeeze all fat)
 - Cores, caches, NoC
- Long-term, cannot power up all of chip
 - Live with “dark silicon”, specialize
10 faculty, CSEM & industrial affiliates
- HP, Intel, IBM, Microsoft, ...

Research:
- Energy-minimal cloud computing
- Elastic data bricks and storage
- Scalable cloud applications & services

Making tomorrow’s clouds green & sustainable
Outline

- Where are we?
 - Energy scalability for servers
- Where do we go from here?
- Future on-chip caches
- Future NoC’s
- Summary
Where does server energy go?

Many sources of power consumption:

- **Server only** [Fan, ISCA’07]
 - Processors chips (37%)
 - Memory (17%)
 - Peripherals (29%)
 - ...

- **Infrastructure** (another 50%)
 - Cooling
 - Power distribution
How did we get here?
Leakage killed the supply voltage

Historically,

\[\text{Power} \propto V^2 f \]

Four decades of reducing V to keep up
But, can no longer reduce V due to leakage!!
- Exponential in area
- Exponential in temperature
Voltages have already leveled off

ITRS estimates for today were off by > 2x
A Study of Server Chip Scalability

Actual server workloads today
- Easily parallelizable (performance-scalable)

Actual physical char. of processors/memory
ITRS projections for technology nodes
Modeled power/performance across nodes

For server chips
- Bandwidth is near-term limiter
→ Energy is the ultimate limiter
A few words about our model

Physical char. modeled after Niagara

Area: cores/caches (72% die)
- scaled across tech. nodes

Power:
- Active: projected V_{dd}/ITRS
 - Core=scaled, cache=$f(\text{miss})$, crossbar=$f(\text{hops})$
- Leakage: projected V_{th}/ITRS, $f(\text{area})$, 62C

Performance:
- Parameters from real server workloads
 (DB2, Oracle, Apache, Zeus)
- Cache miss rate model (validated)
- CPI model based on miss rate
Caveat: Simple Parallelizable Workloads

Workloads are assumed parallel

- Scaling server workloads is reasonable

CPI model:

- Works well for workloads with low MLP
- OLTP, Web & DSS are mostly memory-latency dependent

Future servers will run a mix of workloads
Good news: can fit hundreds of cores

Can not use them all at highest speed
Of course one could pack more slower cores, cheaper cache

- Result: a performance/power trade-off
- Assuming bandwidth is unlimited

© 2010 Babak Falsafi
But, limited pin b/w favors fewer cores + more cache

For clarity, only showing two bandwidth lines
Where would the best performance be?
Peak Performing with Conventional Memory

- B/W constrained, then power constrained
- Fewer slower cores, lots of cache

44 cores @ 2.67 GHz
128 MB

© 2010 Babak Falsafi
Mitigating B/W Limitations:
3D-stacked Memory

[Loh, ISCA’08]

• Delivers TB/sec of bandwidth
Peak Performing w/ 3D-stacked Memory

- Only power-constrained
- Virtually eliminates on-chip cache
Core Scaling across Technologies

- Assumes a 130-Watt chip envelope
- Pin b/w keeps Niagara from scaling
Niagara + 3D-stacked Memory

- Power limits Niagara to 75% area!
But, even Niagara is an overkill!

Servers mostly access memory
Benefit little from core complexity
Niagara cores are too big!

E.g., Kgil et al., ASPLOS06:
• Servers on embedded cores + 3D

Can we run servers with embedded cores?
ARM9 + 3D-stacked Memory

- Can not scale with a 130-Watt envelope!!!
- On-chip hierarchy + interconnect not scalable
Long-term: Where to go from here?

1. Redo SW stack
 - Minimize joules/work (algo. down to HW)
 - Program for locality + heterogeneity

2. Pray for technology
 - Energy-scalable silicon devices
 - Emerging nanoscale technologies?

3. Infrastructure technology
 - Renewable/carbon-neutral energy
 - Scalable cooling + power delivery
Short-term Scaling Implications

• Caches are getting huge
 - Need cache architectures to deal with >> MB
 - E.g., Reactive NUCA [ISCA’09]

• Interconnect + cache hierarchy power
 - Need lean on-chip communication/storage
 - Eurocloud chip: ARM+3D [ACLD’10]

• Dark Silicon
 - Specialized processors
 - Use only parts of the chip at a time
Outline

• Where are we?
• Energy scalability for servers
• Where do we go from here

➔ Future on-chip caches
• Future NoC’s
• Summary
Optimal Data Placement in Large On-chip Caches

Data placement determines performance
Goal: place data on chip close to where they are used
Prior Work

- Several proposals for CMP cache management
 - ASR, cooperative caching, victim replication, CMP-NuRapid, D-NUCA

- ...but suffer from shortcomings
 - complex, high-latency lookup/coherence
 - don’t scale
 - lower effective cache capacity
 - optimize only for subset of accesses

We need:

- Simple, scalable mechanism for fast access to all data
Our Proposal: Reactive NUCA
[ISCA’09, IEEE Micro Top Picks ‘10]

• Cache accesses can be classified at run-time
 □ Each class amenable to different placement

• Per-class block placement
 □ Simple, scalable, transparent
 □ No need for HW coherence mechanisms at LLC

• Speedup
 □ Up to 32% speedup
 □ -5% on avg. from ideal cache organization
Terminology: Data Types

Private

Shared Read-Only

Shared Read-Write
Conventional Multicore Caches

Shared

- Addr-interleave blocks
- + High effective capacity
- − Slow access

Private

- Each block cached locally
- + Fast access (local)
- − Low capacity (replicas)
- − Coherence: via indirection (distributed directory)

—we want: high capacity (shared) + fast access (priv.)
Where to Place the Data?

- Close to where they are used!
- Accessed by single core: migrate locally
- Accessed by many cores: replicate (?)
 - If read-only, replication is OK
 - If read-write, coherence a problem
 - Low reuse: evenly distribute across sharers
Methodology

Flexus: Full-system cycle-accurate timing simulation

Workloads

- **OLTP:** TPC-C 3.0 100 WH
 - IBM DB2 v8
 - Oracle 10g
- **DSS:** TPC-H Qry 6, 8, 13
 - IBM DB2 v8
- **SPECweb99** on Apache 2.0
- **Multiprogammed:** SPEC2K
- **Scientific:** em3d

Model Parameters

- Tiled, LLC = L2
- 16-cores, 1MB/core
- OoO, 2GHz, 96-entry ROB
- Folded 2D-torus
 - 2-cycle router
 - 1-cycle link
- 45ns memory
Cache Access Classification

- Each bubble: cache blocks shared by x cores
- Size of bubble proportional to % L2 accesses
- y axis: % blocks in bubble that are read-write

% RW Blocks in Bubble

Number of Sharers

% L2 accesses

Instructions Data-Private Data-Shared
Cache Access Clustering

Accesses naturally form 3 clusters

- Instructions
- Data-Private
- Data-Shared

Server Apps

% RW Blocks in Bubble

Number of Sharers

% RW Blocks in Bubble

R/W

R/O

migrate

replicate

share

sharers#

© 2010 Babak Falsafi
Instruction Replication

- Instruction working set too large for one cache slice

Distribute in cluster of neighbors, replicate across
Coherence:
No Need for HW Mechanisms at LLC

- Reactive NUCA placement guarantee
 - Each R/W datum in unique & known location

Fast access, eliminates HW overhead
Evaluation

- Delivers robust performance across workloads
- Shared: same for Web, DSS; 17% for OLTP, MIX
- Private: 17% for OLTP, Web, DSS; same for MIX
R-NUCA Conclusions

Near-optimal block placement and replication in distributed caches

- Cache accesses can be classified at run-time
 - Each class amenable to different placement

- Reactive NUCA: placement of each class
 - Simple, scalable, low-overhead, transparent
 - Obviates HW coherence mechanisms for LLC

- Robust performance across server workloads
 - Near-optimal placement (-5% avg. from ideal)
Outline

• Overview
• Where are we?
• Energy scalability for servers
• Where do we from here?
• Future on-chip caches
 ➔ Future NoC’s
• Summary
Optimal Interconnect

On-chip interconnect is an energy hog!
• Over 30% of chip energy (e.g., SCC, RAW)

Modern NoC’s:
• Optimize for worst-case traffic
• Virtualize req/rep to avoid protocol deadlock

But,
• Cache-coherent chips have bimodal traffic
 • Requests are control, replies are blocks
 • Typically just load cache blocks
CCNoC: Optimal for Bimodal Traffic

- Narrow request plane
- Full-width response plane
- No need for virtual channels

→ 30%-40% power improvement
Bringing it all together: The EuroCloud Chip
(www.eurocloudserver.com)

Datacenters with mobile processors
- ARM cores
 - Will likely have to be multithreaded!
- 3D-stacked memory
- Nokia’s Ovi Cloud applications

Your 1-Watt Future Datacenter Chip
[ACLD’10]
Design for Dark Silicon
Long-term: Vertically Integrate

Can not power up entire chip?

➡ Specialize!

Vertically-integrated server architecture (VISA)

- Identify services which are energy hogs
- Integrate SW/HW to minimize energy/service
- Provide service API not ISA
- E.g., Intel’s TCP/IP processor @ 1W

Good places to start:

- OS, DBMS, machine learning
Summary

• Moore’s law continues (for another decade)
• CMOS is still cheap
• But, energy scaling has slowed down

Recommendation: Energy-Centric Computing
• Can’t get there with parallelism alone
• Holistic approach to energy

Time to put the “embedded” into all of computing!
For more information

please visit us online at parsa.epfl.ch, ecocloud.ch