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Energy: Shaping IT’s Future 

•  40 years of energy scalability 
  Doubling transistors every two years 
  Quadratic reduction in energy from voltages 

•  But, while Moore’s law continues 
  Voltages have started to level off 
  ITRS projections in 2000 for voltage levels in 

2009 are way off!  

An exponential increase in energy usage 
every generation? 
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Household IT Energy Usage  
(from Sun) 

Cell phones 
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Shift towards Cloud Computing Helps 

Data Centers 

•  Ubiquitous connectivity & access to data 
•  Consolidate servers   Amortize energy costs 
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But, the Cloud has hit a wall! 

Trends: 
•  Moore’s law continues 
•  Server density is increasing 
•  But, voltage scaling has slowed 
➔ It’s too expensive to buy/cool servers 

A 1,000m2 datacenter is 1.5MW! 
(carbon footprint of airlines in 2012) 
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Enterprise IT Energy Usage 

Kenneth Brill (Uptime Institute) 
•  “Economic Meltdown of Moore’s Law” 
•  In 2012: Energy/server lifetime 50% more 

than price/server 
  And 2% of all Carbon footprint in the US 

Energy Star report to Congress: 
•  Datacenter energy 2x from 2000 to 2006 
•  Roughly 2% of all electricity & growing 

6 



© 2010 Babak Falsafi 

Example Projections for Datacenters 

•  Projections for 2011 are already off 
•  Exponential increase in usage 

2001     2003      2005      2007      2009      2011      2013     2015     2017  
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What lies ahead? 

For the next ten years: 
•  CMOS is still the cheapest technology 

But,  
•  need ~100x reduction in energy just to keep 

up with Moore’s Law 

Chip design recommendations: 
  Short-term, lean chips (squeeze all fat) 

 Cores, caches, NoC 
  Long-term, cannot power up all of chip 

 Live with “dark silicon”, specialize 
8 
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ecocloud.ch 

10 faculty, CSEM & industrial affiliates 
  HP, Intel, IBM, Microsoft, … 

Research: 
•  Energy-minimal cloud computing 
•  Elastic data bricks and storage 
•  Scalable cloud applications & services 

Making tomorrow’s clouds green & 
sustainable 9 
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Outline 

•  Where are we? 
➔ Energy scalability for servers 
•  Where do we go from here? 
•  Future on-chip caches 
•  Future NoC’s 
•  Summary 
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Where does server energy go? 

Many sources of power consumption: 
•  Server only [Fan, ISCA’07] 

  Processors chips (37%) 
  Memory (17%) 
  Peripherals (29%) 
  … 

•  Infrastructure (another 50%) 
  Cooling 
  Power distribution 
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How did we get here? 
Leakage killed the supply voltage 

Historically,  

                 Power ∞ V2f 

Four decades of reducing V to keep up  
But, can no longer reduce V due to leakage!! 

  Exponential in area 
  Exponential in temperature        
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Voltage Frequency 
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Voltages have already leveled off 

ITRS estimates for today were off by > 2x  
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A Study of Server Chip Scalability 

Actual server workloads today 
  Easily parallelizable (performance-scalable) 

Actual physical char. of processors/memory 
ITRS projections for technology nodes 
Modeled power/performance across nodes 

For server chips 
  Bandwidth is near-term limiter 
→ Energy is the ultimate limiter 
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A few words about our model 

Physical char. modeled after Niagara 

Area: cores/caches (72% die) 
  scaled across tech. nodes 

Power: 
  Active: projected Vdd/ITRS 

  Core=scaled, cache=f(miss), crossbar=f(hops) 
  Leakage: projected Vth/ITRS, f(area), 62C 

Performance: 
  Parameters from real server workloads  
   (DB2, Oracle, Apache, Zeus) 
  Cache miss rate model (validated) 
  CPI model based on miss rate 
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Caveat: Simple  
Parallelizable Workloads 

Workloads are assumed parallel 
•  Scaling server workloads is reasonable 

CPI model: 
•  Works well for workloads with low MLP 
•  OLTP, Web & DSS are mostly memory-

latency dependent 

Future servers will run a mix of workloads 
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Area vs. Power Envelope (22nm) 

  Good news: can fit hundreds of cores 
×  Can not use them all at highest speed 
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Of course one could pack more 
slower cores, cheaper cache 

•  Result: a performance/power trade-off 
•  Assuming bandwidth is unlimited 
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But, limited pin b/w favors 
fewer cores + more cache 

•  For clarity, only showing two bandwidth lines 
•  Where would the best performance be? 
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Peak Performing with 
Conventional Memory 

•  B/W constrained, then power constrained 
•  Fewer slower cores, lots of cache 



© 2010 Babak Falsafi 

 [Loh, ISCA’08] 

Mitigating B/W Limitations: 
3D-stacked Memory 

•  Delivers TB/sec of bandwidth 
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Peak Performing w/  
3D-stacked Memory 

•  Only power-constrained 
•  Virtually eliminates on-chip cache 
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Core Scaling across Technologies 
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•  Assumes a 130-Watt chip envelope  
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Niagara + 3D-stacked Memory 
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•  Power limits Niagara to 75% area! 
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But, even Niagara is an overkill! 

Servers mostly access memory 
Benefit little from core complexity 
Niagara cores are too big! 

E.g., Kgil et al., ASPLOS06: 
•  Servers on embedded cores + 3D 

Can we run servers with embedded cores? 
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•  Can not scale with a 130-Watt envelope!!! 
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Long-term: 
Where to go from here? 

1.  Redo SW stack 
  Minimize joules/work (algo. down to HW) 
  Program for locality + heterogeneity 

2.  Pray for technology 
  Energy-scalable silicon devices 
  Emerging nanoscale technologies? 

3.  Infrastructure technology 
  Renewable/carbon-neutral energy 
  Scalable cooling + power delivery 

27 
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Short-term Scaling Implications 

•  Caches are getting huge 
  Need cache architectures to deal with >> MB 
  E.g., Reactive NUCA [ISCA’09] 

•  Interconnect + cache hierarchy power 
  Need lean on-chip communication/storage 
  Eurocloud chip: ARM+3D [ACLD’10] 

•  Dark Silicon 
  Specialized processors 
  Use only parts of the chip at a time 

28 
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Outline 

•  Where are we? 
•  Energy scalability for servers 
•  Where do we go from here 
➔ Future on-chip caches 
•  Future NoC’s 
•  Summary 
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Optimal Data Placement in Large  
On-chip Caches 

30 
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"   Data placement determines performance 
"   Goal: place data on chip close to where they are used 

cache 
slice 
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Prior Work 

•  Several proposals for CMP cache management 
  ASR, cooperative caching, victim replication, 

CMP-NuRapid, D-NUCA 

•  ...but suffer from shortcomings 
  complex, high-latency lookup/coherence 
  don’t scale 
  lower effective cache capacity 
  optimize only for subset of accesses 

We need: 
"   Simple, scalable mechanism for fast access to all data 
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Our Proposal: Reactive NUCA 
[ISCA’09, IEEE Micro Top Picks ‘10] 

•  Cache accesses can be classified at run-time 
  Each class amenable to different placement 

•  Per-class block placement 
  Simple, scalable, transparent 
  No need for HW coherence mechanisms at LLC 

•  Speedup 
  Up to 32% speedup 
  -5% on avg. from ideal cache organization 
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Terminology: Data Types 
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Conventional Multicore Caches 
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"   We want: high capacity (shared) + fast access (priv.) 

Private Shared 

 Addr-interleave blocks 
+  High effective capacity 
−  Slow access 

 Each block cached locally 
+  Fast access (local) 
−  Low capacity (replicas) 
−  Coherence: via indirection 
 (distributed directory) 
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Where to Place the Data? 
•  Close to where they are used! 
•  Accessed by single core: migrate locally 
•  Accessed by many cores: replicate (?) 

  If read-only, replication is OK 
  If read-write, coherence a problem 

 Low reuse: evenly distribute across sharers 
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Methodology 
Flexus: Full-system cycle-accurate timing simulation 

Model Parameters 

•  Tiled, LLC = L2 
•  16-cores, 1MB/core 
•  OoO, 2GHz, 96-entry ROB 
•  Folded 2D-torus 

  2-cycle router 
  1-cycle link 

•  45ns memory 

Workloads 

•  OLTP: TPC-C 3.0 100 WH 
  IBM DB2 v8 
  Oracle 10g 

•  DSS: TPC-H Qry 6, 8, 13 
  IBM DB2 v8 

•  SPECweb99 on Apache 2.0 

•  Multiprogammed: SPEC2K 

•  Scientific: em3d 
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Cache Access Classification 
•  Each bubble: cache blocks shared by x cores 
•  Size of bubble proportional to % L2 accesses 
•  y axis: % blocks in bubble that are read-write 
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Scientific/MP Apps 

Cache Access Clustering 

"   Accesses naturally form 3 clusters 

Server Apps migrate 
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Instruction Replication 
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"   Distribute in cluster of neighbors, replicate across 

•  Instruction working set too large for one 
cache slice 
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Coherence: 
No Need for HW Mechanisms at LLC 

"  Fast access, eliminates HW overhead 
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Private data: local slice Shared data: addr-interleave 

•  Reactive NUCA placement guarantee 
  Each R/W datum in unique & known location 
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Evaluation 

"   Delivers robust performance across workloads 
"   Shared: same for Web, DSS; 17% for OLTP, MIX 
"   Private: 17% for OLTP, Web, DSS; same for MIX 

    
   
    
   

 ASR (A) 
 Shared (S) 
 R-NUCA (R) 
 Ideal (I) 
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R-NUCA Conclusions 

Near-optimal block placement 
and replication in distributed caches 

•  Cache accesses can be classified at run-time 
  Each class amenable to different placement 

•  Reactive NUCA: placement of each class 
  Simple, scalable, low-overhead, transparent 
  Obviates HW coherence mechanisms for LLC 

•  Robust performance across server workloads 
  Near-optimal placement (-5% avg. from ideal) 
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Outline 

•  Overview 
•  Where are we? 
•  Energy scalability for servers 
•  Where do we from here? 
•  Future on-chip caches 
➔ Future NoC’s 
•  Summary 
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Optimal Interconnect 
On-chip interconnect is an energy hog! 
•  Over 30% of chip energy (e.g., SCC, RAW) 

Modern NoC’s: 
•  Optimize for worst-case traffic 
•  Virtualize req/rep to avoid protocol deadlock 

But, 
•  Cache-coherent chips have bimodal traffic 

  Requests are control, replies are blocks 
  Typically just load cache blocks 

44 
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CCNoC:  
Optimal for Bimodal Traffic 

•  Narrow request plane 

•  Full-width response 
plane 

•  No need for virtual 
channels 

➝ 30%-40% power 
improvement 
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Bringing it all together: 
The EuroCloud Chip 

(www.eurocloudserver.com) 

Datacenters with mobile 
processors 

•  ARM cores 
  Will likely have to be 

multithreaded! 

•  3D-stacked memory 
•  Nokia’s Ovi Cloud 

applications 

UCyprus 

Your 1-Watt Future 
Datacenter Chip 

[ACLD’10] 
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Design for Dark Silicon 
Long-term: Vertically Integrate 

Can not power up entire chip? 
➠  Specialize! 

Vertically-integrated server architecture (VISA) 
  Identify services which are energy hogs 
  Integrate SW/HW to minimize energy/service 
  Provide service API not ISA 
  E.g., Intel’s TCP/IP processor @ 1W 

Good places to start: 
  OS, DBMS, machine learning 
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Summary 

•  Moore’s law continues (for another decade) 
•  CMOS is still cheap 
•  But, energy scaling has slowed down 

Recommendation: Energy-Centric Computing 
•  Can’t get there with parallelism alone 
•  Holistic approach to energy 

Time to put the “embedded”  
into all of computing! 
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For more information 
please visit us online at parsa.epfl.ch, ecocloud.ch 


