Post-Moore Server Architecture

Babak Falsafi

HPC is (mostly) moving to the Cloud

- •Al needs data and data is in the cloud
- Cloud investment in (proprietary) Al platforms
- Cloud pushes the cost of computing to the limit

Modern Datacenters: The Backbone of Cloud

ecocloud
an EPFL research center

- A million home-brewed servers
- Centralized to exploit economies of scale
- Network fabric w/ µ-second connectivity
- At physical limits
- Need sources for
 - Electricity
 - Network
 - Cooling

250MW, Bedford

But, Silicon out of steam!

Silicon efficiency is dead (long live efficient silicon)

Moore's Law dying [David Brooks, SIGARCH' 18]

But, Silicon out of steam!

Silicon efficiency is dead (long live efficient silicon)

Moore's Law dying [David Brooks, CAT'18]

Conventional scaling 41%/year Recent years 15%/year!

[David Brooks, Computer Architecture Today]

The future of Digital Platforms: Cross-Stack Optimization

ecocloud an EPFL research center

ISA opportunities

- Integration
 - Move less frequently
 - Move less distance
- Specialization
 - Customize work
 - Less work/computation
- Approximation
 - Adjust precision

Decarbonizing datacenters:

- Center at EPFL founded in 2011
- 21 faculty, 100+ researchers

Holistic datacenter design:

- Minimizing electricity in IT services
- Post-Moore server design
- Integrated cooling, renewables
- From algorithms to infrastructure

Outline

Overview

- Post-Moore Servers
 - Blades are 80's Desktops
 - Specialized logic
 - Integrated logic/memory
 - Integrated network
 - ML approximation
- Summary

Scale-Out Datacenters

Vast data sharded across servers

Memory-resident workloads

- Necessary for performance
- MajorTCO burden

Put memory at the center

- Design system around memory
- Optimize for data services

Servers driven by the DRAM market!

Today's Server Blades

Today's platforms are PC's of the 80's

- CPU "owns" and manages DRAM in hardware
- OS moves data back/forth from peripherals (SSD, Net)
- Legacy interfaces connecting the CPU/mem to outside
- Legacy POSIX abstractions

Fragmented logic/memory:

- NIC's w/ manycores interfacing DRAM
- Flash controllers with cores and DRAM
- Discrete accelerators on PCle with DRAM

80's Desktop

- 33 MHz 386 CPU, 250ns DRAM
- OS: Windows, Unix BSD (or various flavors)
- Focus: mlutiprogrammed in-memory compute

Today's Blade: 80's Desktop

- Dual 2GHz CPU's, 50ns DRAM
- OS: Linux (and various distributions)

Today's Blade: 80's Desktop

- Dual 2GHz CPU's, 50ns DRAM, Linux
- Bottlenecked by legacy interfaces
- Fragmented silicon

Today's Blade: 80's Desktop

- Dual 2GHz CPU's, 50ns DRAM, Linux
- Bottlenecked by legacy interfaces
- Fragmented silicon

The Elephant in the Room

Ideal Blade of Tomorrow

- Intra-node fabric connecting components
- Control path: setup via CPU & OS
 - Data path: direct access @ hardware speed

Babystep Towards Ideal

Accelerator on the network:

- I.CPU/OS host set up control plane
- 2. Accelerators directly communicate over network
- 3. Implement distributed ML service

Outline

- Overview
- Post-Moore servers
 - Blades are 80's Desktops
 - Specialized logic
 - Integrated logic/memory
 - Integrated network
 - ML approximation
- Summary

The Specialization Funnel

General Purpose

- Intel CPU
- Oracle DB
- Linux OS
- Python/C PL
-

- GPU/Thunder X
- DBToaster
- IX Kernel
- PyTorch

- Crypto
- Network logic
- Analog NN

Domain-specific languages to platforms Novel HW/SW interfaces

Server Benchmarking with CloudSuite 3.0 (cloudsuite.ch)

Data Analytics Machine learning

Graph Analytics GraphX

In-Memory Analytics Recommendation System

Web Search Apache Solr & Nutch

Media Streaming Nginx, HTTP Server

NGINX

Web Serving Nginx, PHP server

Data Caching Memcached

Data Serving Cassandra NoSQL

Building block for Google PerfKit, EEMBC Big Data!

Services Stuck in Memory [ASPLOS'12]

Cache overprovisioned

Instruction supply bottlenecked

Scale-Out Processors (SOP)

- General-purpose CPU
- XLogic 60% of silicon

EcoCloud - Copyright 2020 bigger cores

3-way OoO ARM

DRAM

- ✓85% logic, 7x more cores
- ✓ Faster instruction supply 22

Commercialized SOP

Walkers: DB Accelerators [MICRO'13]

7ZZZ

- Traverse data structures (e.g., hash table, B-tree)
- Parallelize pointer chains
- Decouple hash&walk, overlap multiple walks

15x better perf/Watt over Xeon

Walkers in Software [VLDB'16]

Use insights to help Xeon

- Decouple hash & walk(s) in software
- Schedule off-chip pointer access with co-routines

2.3x speedup on Xeon

- Unclogs dependences in microarchitecture
- Maximizes memory level parallelism
- DSL w/ co-routines
- To be integrated in SAP HANA [VLDB'18]

25

Integrated Logic/Memory

DRAM stack w/ nearby logic

- Minimize data movement
- Massive internal bandwidth

[source: AMD]

Opportunities for algorithm/hardware co-design

Cost of moving data

Data access much more expensive than arithmetic operation

DRAM BW bottleneck

Internal DRAM BW presents big opportunity

ZT GD/S OII-CHIP DVV PEL CONTROLLER

Near-Memory Processing (NMP)

3D logic/DRAM stack (or interposer)

- Exposes internal BW to processing elements
- But constrains logic layer's area/power envelope

Exploit the bandwidth without data movement

NMP Commandments [IEEE Micro issue on Big Data'16]

Not (CPU) business as usual

- I. DRAM favors streaming over random access
- 2. DRAM favors parallelism over arithmetic speed
- 3. NMP DRAM must maintain CPU memory semantics

Co-design algorithm/HW for NMP

Why not random access?

Internally DRAM is a block device

- Activating a TKB row
- High latency & energy per row
- Exploit row locality for efficiency

Example:

- For DRAM with 128 GB/s internal bandwidth
- Optimal (parallel) random access only captures ~8 GB/s
- Requires 5x more power

Use algorithms that favor sequential access

The Mondrian Data Engine [ISCA'17]

SIMD cores + data streaming

- Saturates b/w with parallel SIMD streams
- 1024-bit SIMD @ 1 GHz
- No caches

Runs Spark Analytic Ops

50x over Xeon

Algorithm/hardware co-design maximize near-memory performance

Case Study: Join on Mondrian

Revisiting Sort join:

- Sort join (O(nlogn)) vs. Hash Join (O(n))
- Sort tables and then merge join
- Sequential vs. random access

Perform way more work

But, finish faster and use less power!

Trade off algorithm complexity for sequential memory accesses

Performance

- Algorithm alone gets ~ I 0x [ASBD'15]
- Algorithm/hardware co-design gets 50x

TB-Scale Hierarchies

Moving Forward

Capacity/Miss Rate 101

Emerging Hierarchies

Broken Legacy Abstractions: Address Translation

ASCYLIB on Broadwell (1.5K-entry TLB)

TB-Scale Address Translation

 Namespace in cache hierarchy fragmented into pages

 TLBs of 1000s of entries replicated per core

•Fragmentation hurts both lookup & access control

of Entries (%5 hot dataset)

100000000
10000000
1000000
100000
10000
10000
10000

10

GAK^B JM^B GAM^B JG^B GAG^B JT^B

◆4KB PTE ◆2MB PTE ■1GB PTE

TB-Scale Translation

Coalescing entries:

X Small factor (e.g., 2x) in improvement

Partitioned NUMA [Picorel' 18]:

- ✓ Linux support for both data placement & page walks
- X Small factor in improvement

Segmentation/Direct Access [Haria' 18]:

- X Segment fragmentation
- X Software exposure

Virtual hierarchies:

- ✓ Push translations off the critical path
- X Software exposure (synonyms)

Outline

- Overview
- Post-Moore servers
 - Blades are 80's Desktops
 - Specialized logic
 - Integrated logic/memory
 - Integrated network
 - ML approximation
- Summary

Networks

Network stack bottleneck:

- B/W growing faster than silicon
- Emerging µServices + serverless
- RPC, orchestration,

Key challenges:

- New abstractions
- Co-design of network stacks

42

Opportunities for Integrated Networks

Memory is the most precious silicon

- Pool memory over the network
 - Load balancing shared object store [Novakovic' | 4]
 - Shared swap space [Gu'l7]
- Offload pooling logic
 - Reduce effective access time
 - Intelligent management of pool resources & capacity
- Minimize fragmentation

43

Scale-Out NUMA

[ASPLOS'14'19,ISCA'15, MICRO'16]

soNUMA:

- Socket-integrated network interface
- Protected global memory read/write + synch
- Fine-grain (~64B) & bulk objects (~IMB)
- Remote memory ~ 2x local memory latency
- Extensions for messaging & RPC

RPC Accelerators: Dispatch [ASPLOS'19, ISCA'20]

ecocloud an EPFL research center

— RPCValet

— Multi-queue

Socket-integrated NICs

Can reduce RPC queuing:

- Load imbalance among cores
- DRAM B/W interference w/ spilling

- I. Single-queue dispatch w/ monitors
- 2. HW terminated protocol in LLC

RPC Accelerators: Data Transformation [ASPLOS'20]

- Orchestration (including transformation) is a bottleneck
- Transformation is 10x-100x slower than network line rate
- Hardware/software co-designed transformer @ line rate

Outline

- Overview
- Post-Moore servers
 - Blades are 80's Desktops
 - Specialized logic
 - Integrated logic/memory
 - Integrated network
 - ML approximation
- Summary

Arithmetic in Deep Learning (Microsoft Brainwave)

Floating vs. Fixed Point: Representable Range

Floating point

- Mantissa + exponent
- Wide representable range
- Value has independent range

Fixed point

- Narrow representable range
- Values range pre-determined

49

Floating vs. Fixed Point: Area and Power

- Floating point
- Mantissa + exponent
- Complex exponent management

- Fixed point
- Mantissa
- No exponent management

Hybrid BFP-FP (HBFP) [NeurlPS'18]

Block floating point (BFP) shares exponents in blocks

- Used in DSP's to reduce silicon footprint
- > 90% of arithmetic with one exponent/tensor

Use FP32 for all activations and other arithmetic

Co-Located Training & Inference (ColTraIn)

- ✓ Can piggyback training on an inference accelerator
- ✓ Uses fixed point logic (HBFP) for both training & inference
- ✓ Optimizes for data movement beyond logic

HBFP (Block FP) vs. FP32

Resnet-50 on ImageNet (BERT numbers coming soon)

Config.	Top-I
	Error (%)
HBFP8	23.88
HBFP12	23.58
FP32	23.64

FP32 performance with 8-bit logic

Summary

Trends:

- Demand is growing faster than Moore
- Moore's law is slowing down
- Memory is a growing fraction of TCO

Post-Moore servers:

- Revisit legacy abstractions
- Holistic Hardware/OS Co-design
- CPUs, accelerators, network, storage, system

Integration + Specialization + Approximation

Thank You!

For more information please visit us at ecocloud.ch

