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Internet-of-Things (IoT):
Data in Flight
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Source: IDC Worldwide and Regional IoT forecast, EMC Digital Universe with Research and Analysis by IDC

20 Billion Connected Devices

4 Zettabytes of Data, 10% of Digital Universe
$7 Trillion 
Market Revenue



Data Shaping All Science & 
Technology

Science entering 4th paradigm
§Analytics using IT on

§ Instrument data
§ Simulation data
§ Sensor data
§ Human data 
§ …

Complements theory, empirical 
science & simulation

Data-centric science key for innovation-based economies! 
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Source: James Hamilton, 2014
mvdirona.com/jrh/TalksAndPapers/JamesHamilton_Reinvent20131115.pdf

Daily IT growth in 2014 = All of AWS in 2004!



Modern Datacenters are 
Warehouse-Scale Computers
§Millions of interconnected 

home-brewed servers
§Centralization helps exploit 

economies of scale
§Network fabric provides 

micro-second connectivity
§At physical limits
§Need sources for

§ Electricity
§ Network
§ Cooling

20MW, 20x Football Field 
$3 billion



Warning! 
Datacenters are not Supercomputers

• Run heterogeneous data services at massive scale
• Driven for commercial use
• Fundamentally different design, operation, reliability, TCO

• Density 10-25KW/rack as compared to 25-90KW/rack
• Tier 3 (~2 hrs/downtime) vs. Tier 1 (upto 1 day/downtime)
• ……and lots more

Datacenters are the IT utility plants of the future

Supercomputing Cloud Computing

≠



Cloud Taking Over Enterprise

Source: Dell ‘Oro 2Q15 



But…., 
silicon is running out of steam!
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Manycore Accelerators
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With voltages leveling:
§ Parallelism has emerged as the 

only silver bullet
§Use simpler cores 

§ Prius instead of Audi R8
§ Restructure software
§ Each core è
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Massively Parallel Cores
§Data parallel
§Higher memory b/w

Super simple cores
§Shared front end
§10x slower clocks 

Great for dense parallel 
computation
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Parallelism Alone Can’t Help

ISA opportunities
§ Integration

§ Less energy moving
§ Closer to memory

§Specialization
§ Customize work
§ Less work/computation

§Approximation
§ Adjust precision

Hardavellas et. al., 
“Toward Dark Silicon in Servers”, 

IEEE Micro, 2011
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Center to bring efficiency to data
§ 18 faculty, 50 researchers
§ $6M/year external funds

Mission:
§ Energy-efficient data-centric IT
§ From algorithms to infrastructure
§Maximizing value for data

ecocloud.ch



Our Vision:
Holistic Optimization of Datacenters

From algorithms to 
infrastructure:
• Cross-layer integration & 

specialization
• Introspection & resource 

provisioning

Open technologies!
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Outline

§Overview 
§Memory-Centric Servers
§Near-Memory Processing
§Summary



Scale-Out Datacenters

Vast data sharded across servers

Memory-resident workloads
§ Necessary for performance
§ Major TCO burden

Put memory at the center
§ Design system around memory
§ Optimize for data services

Servers driven by the DRAM market!

Memory

Core Core Core

$

Core Core Core
NI



In-Memory Services

§Many independent requests/tasks
§Huge dataset split into shards
§Use aggregate memory over network

17
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In-Memory Analytics
Recommendation System

Media Streaming
Nginx, HTTP Server

Web Search 
Apache Solr & Nutch

Web Serving
Nginx, PHP server

Data Serving
Cassandra NoSQL

Graph Analytics
GraphX

Data Caching
Memcached

Data Analytics
Machine learning

Building block for Google PerfKit, EEMBC Big Data!

Server Benchmarking with
CloudSuite 3.0 (cloudsuite.ch)



Services are Stuck in Memory
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• On-chip memory overprovisioned
• Instruction supply is bottlenecked 
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Copyright 2014 Cavium Inc. 

VP/GM, Data Center Processing Group 

Cavium Thunder X
• Based on SOP @ EPFL
• Designed to serve data
• Optimized code supply
• Trade off SRAM for cores
• Runs stock software
• 10x faster than Xeon for 

CloudSuite

Manycore Accelerator for 
Data Serving



NOC-Out:
NoC for Server Processors

Exactly the opposite of current NoCs
§ Cache coherent
§ But, designed for core-to-cache traffic
§ Not core-to-core!

LLC network:
§ Flattened Butterfly (FB) topology

Request & Reply networks: 
§ Tree topology
§ Limited connectivity for efficiency

FB’s performance at 1/10th cost
21
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Emerging DRAM as Cache

CPU

DDR bus
Serial links

H
O
T!

C!
O!
L!
D!

Emerging DRAM

Conventional DRAM

Cache

MB (instructions) GB (hot data) TB (cold data)



DRAM Cache with 
Storage-Class Memory

SCM extends DRAM capacity as memory

DRAM cache + SCM:
§Provides high b/w access to hot data
§Mitigates the read/write disparity

§Data read/written in pages (bulk) 

DRAM cache + battery:
§Helps mitigate persistent ordering stalls
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Scale-Out NUMA:
Rack-Scale Memory Pooling

Pool memory over a light fabric:
§ Balance load skew in data serving
§Mitigate partition skew in analytics

soNUMA:
§ Socket-integrated network interface (e.g., Sonoma)
§ Protected global memory read/write + synch

core . . .

LLC

core

Memory 
Controller

Remote 
MC

N  
I

core

NUMA 
fabric

Coherence 
domain 1

Coherence 
domain 2

300ns round-trip latency 
to remote memory



Custom Computing
[FPGA’s vs. GPU’s in Data centers,  IEEE Micro’17]

Reconfigurable
§Best for spatial computing
§Not caching/reuse

Parallel, dataflow
§10x slower clocks 
§Better for sparse arithmetic

Microsoft, Amazon & Intel
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FPGA’s in Servers
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Latest version:
• One FPGA per blade
• Sits on the network
• Backend connected to CPU/NI
• Originally to accelerate Bing, Azure
• Now ML service called BrainWave
• Intel’s HARP: tighter integration

Microsoft Unveils Catapult to 
Accelerate Bing! 

[EcoCloud Annual Event, June 5th, 2014]



Memory-Centric 
Accelerators Abound

Google’s TPU:
§ Linear algebra for ML/NN
§ 10x over GPU
§ML as a service

Oracle’s RAPID:
§Accelerator for analytics in SQL
§Data movement engine in hardware
§Custom message passing cores
§Up to 15x better perf/Watt over Xeon



Walkers:
Accelerating Data Management
§ Pointer-based data structures (e.g., hash table, B-tree)
§ Parallel lookups require traversing chains
§Decouple chains in co-designed hw/sw

Widx
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Core
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WidxW
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Result 
Producer

Walkers

15x better performance/Watt over Xeon



Walkers in Software [VLDB’16]

Use insights to help Xeon
§Decouple hash & walk in software
§Create & manage queues in wraparound code

2.3x speedup on Xeon
§Unclogs dependences in microarchitecture
§Maximizes memory level parallelism
§Under consideration by SAP HANA [VLDB’18]

29



The Specialization Funnel
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General Purpose
• Intel CPU
• Oracle Database
• Linux
• Java/C
• …..

ASIC
• Crypto/Bitcoin
• Network logic

Specialize as algorithms mature
Domain-specific languages to platforms

Specialized
• GPU/ThunderX
• DBToaster
• IX Kernel
• Tensorflow



Approximation

Modern apps/services are statistical
§Analog input, analog output

Key: 
§Much redundancy in data/arithmetic
§Output quality not accuracy or error

Exploit in
§Processing, communication, storage

31



Outline

§Overview 
§Memory-Centric Servers
§Near-Memory Processing
§Summary



What happens on servers?
Huge datasets reside in memory

§ Fetch data
§ Perform minimal computation
§ Repeat over dataset

33

Data-centric services revolve around data movement

CPU MemoryDataadd



The Cost of Moving Data

Arithmetic operations are cheap
Moving data dissipates much energy

34

Memory access
16000 pJ

Energy is dominated by data movement!

CPU Memory

Floating Point Unit
20 pJ

[Dally, SC’14 Panel]



The Parallelism Bottleneck

CPU-DRAM bandwidth (DIMM Channel) ➜ 24 GB/s
§ External interfaces either low in b/w or power hungry

But, internal DRAM bandwidth (Chip) ➜ 128 GB/s

35

Parallelism is limited by connectivity 

CPU Memory



NMP comes to rescue
Near-memory processing (NMP):

§A layer of logic placed closer to DRAM
§Die-stacked or on interposer
§Helps exploit parallelism
§ Reduces data movement

36

Redesign algorithms, SW & HW to realize NMP potential

NMP logic

CPU

Memory16000 pJ
24 GB/s 200 pJ

128 GB/s



Why not compute inside DRAM?
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Idea emerged in the 90’s
§ IRAM/PIM 
§ Logic & Memory on the same die

Did not make it
§ Lowers DRAM density
§ Increases DRAM costs
§ DRAM is highly cost-sensitive

Must maintain DRAM cost advantages

Memory

Memory Array

Memory Array

Computational 
Unit



NMP Commandments
[IEEE Micro issue on Big Data’16]
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Must co-design algorithm/HW for NMP!

Not (CPU) business as usual
1. DRAM favors streaming vs. random access

§ CPU’s leverage reuse & locality in cache hierarchy
2. DRAM favors wide (slow) cores vs. many (fast) cores

§ Stream-level parallelism to match DRAM b/w
3. Memory must maintain semantics relative to CPU

§ Shared address space + coherence between NMP & CPU



Why not random access?
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DRAM row

DRAM

Internal DRAM structure dictates
§ Activating a 1KB row of data
§ Dominates access latency & energy

Treat DRAM as a block-oriented device
§ Stream data
§ Maximize bandwidth & efficiency

Example:
§ For DRAM with 128 GB/s internal bandwidth
§ Optimal (parallel) random access only captures ~8 GB/s
§ Requires 5x more power

Must use algorithms that favor sequential access!



The Mondrian Data Engine [ISCA’17]

SIMD cores + data streaming
§ 1024-bit SIMD @ 1 GHz
§ No caches

Runs Spark Analytic Ops
50x over Xeon

40

Stream Stream

StreamStream

Algorithm/hardware co-design maximize near-memory performance

Near-Memory Logic

Memory

Stream Stream

StreamStream

Stream Stream

StreamStream

Stream Stream

StreamStream



Case study: Join
Iterates over a pair of tables
Finds the matching keys in two tables
Major operation in data management

41

Q: SELECT ... FROM R, S WHERE R.Key = S.Key

R
S

Join
Result



CPU-centric (Hash) Join

Performed in two phases: Partition & Probe

1. Partition tables based on keys

2. Probe joins partitions
§Optimized for random accesses to cached data

Partition Probe

42



Access patterns in hash Join

43

L: Random access (local or remote)

Phases Hash

1. Partitioning L
2. Build hash table L
3. Probe hash table L



Join operation on Mondrian

44

Trade algorithm complexity for streaming memory accesses

Revisiting Sort join [ASBD’14]:
§ Sort join (O(nlogn)) vs. Hash Join (O(n))
§ Sort tables and then merge join

Perform more work
But, sort and merge use streaming access



Comparing access patterns
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L: Random access (local or remote)

K: Streaming access (remote)

J: Streaming access (local)

Phases Hash Sort

1. Partitioning L L/K
2. Build / Sort L J
3. Probe / Merge L J



Performance
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• Algorithm alone gets ~10x [ASBD’15]
• Algorithm/hardware co-design gets 50x



Summary

Trends for data & online services:
§Data growing fast
§Online services are in-memory
§Memory is a big fraction of TCO

Post-Moore server designs:
§Opportunities abound
§Processors, accelerators, memory, network, system

Integration + Specialization + Approximation
47



Thank You!

For more information please visit us at 
ecocloud.ch


