Post-Moore Al Infrastructure

Babak Falsafi

Collaboration w/ Louis Coulon, Mario Drumond, Simla Harma, Martin Jaggi, Tao Lin, Yunho Oh, Canberk Sönmez and the EcoCloud Community

Modern Datacenters: The Backbone of Cloud

ecocloud
an EPFL research center

- A million home-brewed servers
- Centralized to exploit economies of scale
- Network fabric w/ µ-second connectivity
- At physical limits
- Need sources for
 - Electricity
 - Network
 - Cooling

250MW, Bedford

But, Silicon out of steam!

Silicon efficiency is dead (long live efficient silicon)

Moore's Law dying [David Brooks, SIGARCH' 18]

But, Silicon out of steam!

Silicon efficiency is dead (long live efficient silicon)

Moore's Law dying [David Brooks, CAT'18]

Conventional scaling 41%/year Recent years 15%/year!

[David Brooks, Computer Architecture Today]

EcoCloud - Copyright 2021

The future of Digital Platforms: Cross-Stack Optimization

THRIFT

ISA opportunities

- Integration
 - Move less frequently
 - Move less distance
- Specialization
 - Customize work
 - Less work/computation
- Approximation
 - Adjust precision

ifrastructure

Decarbonizing datacenters:

- Center at EPFL founded in 2011
- 21 faculty, 100+ researchers

Holistic datacenter design:

- Minimizing electricity in IT services
- Post-Moore server design
- Integrated cooling, renewables
- From algorithms to infrastructure

ecocloud.ch

DATACENTER EFFICIENCY LABEL

sdea.ch

IT INFRASTRUCTURE EFFICIENCY

compute, storage, network and workloads

DC INFRASTRUCTURE EFFICIENCY

electrical, cooling and heat recycling components

DC CARBON FOOTPRINT

energy efficiency and sustainability of the electricity sources

EFFICIENCY

Sign up for our newsletter

mlbench.github.io

ecocloud an EPFL research center

Benchmark Suite:

- distributed machine learning
- public & reproducible collection of reference implementations
- algorithms, frameworks and systems
- PowerSGD is now integrated to FB's PyTorch

Enhanced Fuzzing Using AI [CCS'21]

- Fuzzing produces thousands of crashes for tens of bugs
- Grouping reduces developer cost but risks missing bugs
- Our two-phased approach minimizes test cases and groups them using CFG-based clustering

facebook

Training for Recommendation Models

1. Memory optimization

- Dataset reading
- Data Loader
- CPU-GPU interactions

Up to 29.5x and **23x** speedup for Terabyte datasets!

2. Automatic neural architecture search

Reinforcement Learning (RL)

Cerebros: RPC Processor @ Line Rate

- Orchestration is I0x-I00x slower than network line rate
- NebuLa: Hardware-terminated network protocol [ISCA'20]
- Cerebros: NIC-integrated RPC Processor [ASPLOS'20, MICRO'21]

Rebooting Virtual Memory with Midgard

- Decouple VMA's from pages
- Unique namespace for cache hierarchy
- Eliminates POSIX overhead
- Create/revoke access control instantly

Source: Midgard [ISCA'21]

Outline

- Overview of EcoCloud
- DNN Accelerators
 - Inference/Training Divergence
 - Encoding
 - Inference Accelerator
- Summary

DNN's Platform Divergence

Inference platforms:

- Tight latency constraints
- Ubiquitous deployment
- Relies on fixed-point arithmetic

Training platforms:

- Throughput optimized
- Server deployment
- Requires floating-point arithmetic

EcoCloud - Copyright 202 I

Inference Services Idle

Can idle cycles be used otherwise (e.g., for training)?

Contributions

Answer to questions, can we

- •train with fixed-point w/o loss of accuracy?
 - •how low can we push precision?
- •build an inference accelerator that can also train?
 - •how much latency do we sacrifice?

Sneak peek answers, yes! (visit ColTraln @ parsa.epfl.ch/coltrain/)

Floating vs. Fixed Point: Representable Range

Floating point

- Mantissa + exponent
- Wide representable range
- Value has independent range

Fixed point

- Narrow representable range
- Values range pre-determined

١7

Floating vs. Fixed Point: Area and Power

- Floating point
- Mantissa + exponent
- Complex exponent management

- Fixed point
- Mantissa
- No exponent management

18

Hybrid BFP-FP (HBFP) [NeurlPS'18]

Block floating point (BFP) shares exponents in blocks

- Proposed for DSP's to reduce silicon footprint
- > 90% of arithmetic with one exponent/tensor

Use FP32 for all activations and other arithmetic

Co-Located Training & Inference (ColTraIn)

- ✓ Uses fixed point logic (hbfp) for both training & inference
- ✓ Piggyback training on a custom inference accelerator

Open-source emulator github.com/parsa-epfl/HBFPEmulator

HBFP vs. FP32

Emulated HBFP dot products with PyTorch

- Saturated and rounded inputs/outputs of dot products
- Covered forward and backward passes
- Weight updates in fp32 but weights kept in BFP

Models & datasets:

- ImageNet, CIFAR-100, SVHN, Penn Tree Bank and English Wikipedia
- ResNet, WideResNet, Densenet, LSTM and BERT

HBFP parameters:

- I0-bit exponent (we vary the mantissas from 4 to 8 bits)
- Baseline block size: 24x24 tiles (576 mantissas sharing an exponent)
- All hyperparameters tuned using fp32

ResNet50 on ImageNet

ResNet50 on CIFAR100

hbfp8 tracks fp32 with an 8-bit fixed encoding

EcoCloud - Copyright 2021

LSTM on Penn Tree Bank

BERT on English Wikipedia

fp32 accuracy with an 8-bit logic

EcoCloud - Copyright 202 I

Equinox: Our Baseline Inference Accelerator

EcoCloud - Copyright 2021

Datapath with FP32 Logic

FP32 vs. HBFP Datapath Logic

Logic Area Comparison

ResNet20 on CIFAR10

Encoding (w/ block size)	Validation Error (%)
fp32	7.9
hbfp8_576	8.4
hbfp8_256	8.3
hbfp6_256	26.7
hbfp6_225	8.8
hbfp4_1 (fp14)	11.4

hbfp6 w/ smaller blocks over 1.6x better than hbfp8!

EcoCloud - Copyright 2021

Outline

- Overview of EcoCloud
- DNN Accelerators
 - Inference/Training Divergence
 - Encoding
 - Inference Accelerator
- Summary

Fixed point is Bound by Movement

■ Lower precision → more power for data movement

Fixed-point DNN accelerators must exploit reuse for efficiency

Exploiting Reuse in DNNs

Vector-matrix multiplication has input reuse but no weight reuse

EcoCloud - Copyright 2021

Exploiting Reuse in DNNs

Matrix(-matrix) multiplication has both weight and input reuse

Reuse vs. Latency Tradeoff w/ Batching

- Many models (MLPs, LSTMs) are vector-matrix multiplication based
- Batching converts vector-matrix to matrix multip.
 - Execute inputs in groups, reuse weights across inputs
 - Recovers power lost in data movement
- But, forces requests to wait for batch formation
 - Online inference services have tight latency requirements
 - From tens of microseconds to few milliseconds

Exploit slack in latency & power to maximize accelerator throughput!

3 I

Single-Row Array: Latency vs. Throughput vs. Power

Assume SRAM access consume IOx more power than a MAC

$2x Rows \rightarrow 2x Throughput, \sim 1x power$

Moderate batching increases throughput with little effect on latency

EcoCloud - Copyright 202 I

$0.5 \times \text{Columns} \rightarrow 2 \times \text{Latency}, \sim 0.5 \times \text{power}$

Weight Power	0.5×	5n
Act. Power	2×	40
PE Power	2×	2n
Total Power	~0.5×	7n
Throughput	2×	2n
Latency	2×	2

Small factor in µs increase in latency, iso-throughput halves power!

EcoCloud - Copyright 202 I

Give the Power Back to PEs

Power = 7n Throughput = 2x Latency = 2

Power = 11n Throughput ~3x Latency = 2

Equinox Evaluation Methodology

- Analytical model
 - ID array of systolic arrays
 - 75MB of SRAM
 - Vary array height and operating frequency
- Calculate optimal ALU array dimensions for max area & power
 - 300 m² @ 75 Watts
- Calculate inference throughput and latency for each design
 - 15-step, 2048-wide LSTM DNN as a reference workload
- Modeled both hbfp8 (HBFP with 8-bit mantissas) and bfloat I 6 arrays

HBFP8 Design Space [MICRO'21]

Canonical Systolic Array Based Inference Accelerator

Pareto Optimal Frontier

EcoCloud - Copyright 202 I

Equinox: Piggybacking Training on Inference

Prioritized inference/training request dispatch

- Runs requests in units of batches
- Runs requests to completion
- Guarantees tail latency on inference requests
- Dispatch similar to Microsoft Brainwave

EcoCloud - Copyright 202 I

Equinox with Various Latency Constraints

Equinox with Various Latency Constraints

With 50µs latency constraint, Equinox can achieve a throughput of 320 TOp/sec

EcoCloud - Copyright 202 I

Summary

There is a divergence in AI infrastructure

Can we bridge the gap?

- hbfp enables training with fixed point
- Batching presents a trade-off between latency and power, throughput in custom inference accelerators
- Can prioritize request dispatch to honor latency constraints while training (for free) on an inference accelerator
- For results on piggybacked training see the MICRO'21 paper

See

- parsa.epfl.ch/coltrain
- github.com/parsa-epfl/HBFPEmulator

Thank You!

For more information please visit us at ecocloud.ch

