Big Data & Dark Silicon
Taming Two IT Trends on a Collision Course

Babak Falsafi
Director, EcoCloud
ecocloud.ch
Information Technology (IT): Four Decades of Exponential Growth

IT is at the core of everything we do & has become an indispensable pillar for a modern day society!

Intel 4004, 1971
92,000 ops/sec

Intel Xeon, 2011
96,000,000,000 ops/sec

IT is at the core everything we do & has become an indispensable pillar for a modern day society!
A Brief History of IT

- From computing-centric to data-centric
- Consumer Era: interfacing, connectivity and access
Two IT Trends on a Collision Course

1. Big Data
 - Data grows at unprecedented rates
 - Silicon performance & capacity at 1.5x/year

2. Energy
 - Silicon density increase continues
 - But, Silicon efficiency has slowed down/will stop
 - IT energy not sustainable
Inflection Point #1: IT is all about Data

- Data growth (by 2015) = 100x in ten years [IDC 2012]
 - Population growth = 10% in ten years
- Monetizing data for commerce, health, science, services,
- Big Data is shaping IT & pretty much whatever we do!

[source: Economist]
Data Growing Faster than Technology

- Technology improvement (Moore's Law)
- Largest publically-reported data warehouse size

Petabytes of Data

0 5 10 15 20 25

Growing technology gap

WinterCorp Survey, www.wintercorp.com
Application/OS Datasets Scaling

![Graph showing the scaling factors of OS, Transistor, and TPC datasets over years.](Image)
Each day Amazon Web Services adds enough new capacity to support all of Amazon.com’s global infrastructure through the company’s first 5 years, when it was a $2.76B annual revenue enterprise.
Warning! Datacenters are not Supercomputers!

- Run heterogeneous data services at massive scale
- Driven for commercial use
- Fundamentally different design, operation, reliability, TCO
 - Density 10-25KW/rack as compared to 25-90KW/rack
 - Tier 3 (~2 hrs/downtime) vs. Tier 1 (upto 1 day/downtime)
 -and lots more

Datacenters are the IT utility plants of the future

Supercomputing ≠ Cloud Computing
Data Comes in Various Flavors

Satellite

Health

Entertainment

Life

Commerce

Search

Simulation
Data Shaping All Science & Technology

Science entering 4th paradigm

- Analytics using IT on
 - Instrument data
 - Simulation data
 - Sensor data
 - Human data
 - …

Complements theory, empirical science & simulation

Strategically vital for innovation & tech-based economies!
Big Data Analytics in Human Brain
(humanbrainproject.eu)

1 Billion Euros to Model the Brain
(a consortium of 150 scientists from around world)
Venice Time Machine (vtm.epfl.ch)

Big Data for Digital Humanities: Online view of millennia of city’s history
Inflection Point #2: Energy used to be “Free”

- Used to make transistors smaller
- Smaller transistors less electricity to operate
- Chip energy consumption remained ~ same
No More “Free” Energy

Now (2005-):

– Continue to make transistors smaller
– But, they use similar electricity to operate
– Chip energy consumption is shooting up
Where did “Free” Energy Go?

• \(P = C \ V^2 \ f \)
• More transistors
• Lower voltages
→ Constant power/chip
Leakage Killed Dennard Scaling

Leakage:
• Exponential in inverse of V_{th}
• Exponential in temperature
• Linear in transistor count

To switch well
• must keep $V_{dd}/V_{th} > 3$

→ V_{dd} can’t go down
The fundamental energy silver bullet is gone!

End of Dennard Scaling

Power Supply V_{dd}

[Graph showing data points and projections with slopes labeled as 0.053 and 0.014]

The fundamental energy silver bullet is gone!
The Rise of Parallelism to Save the Day

With voltages leveling:

• Parallelism has emerged as the only silver bullet
• Use simpler cores
 – Prius instead of Audi
• Restructure software
• Each core → fewer joules/op
The Rise of Dark Silicon: End of Multicore Scaling

But parallelism alone can not offset leveling voltages.

Even in servers with abundant parallelism.

Core complexity leveled off too!

Soon, cannot power all chip.

Higher Demand + Lower Efficiency: Datacenter Energy Not Sustainable!

- Modern datacenters ➔ 20 MW!
- In modern world, 6% of all electricity, growing at >20%!
Big Data

IT’s Future

Bridging Technologies

Big Energy
Center to bring efficiency to data

- 15 faculty, 50 researchers
- Around $6M/year budget

Mission:

- Energy-efficient data-centric IT
- From algorithms to machine infrastructure
 - E.g., Big Data analytics, integrated computing/cooling,…
- Maximizing Performance/TCO for Big Data

ecocloud.ch
Today’s Server Ecosystem

Conventional IT:
- Product based
- Per-vendor layer
- Well-defined interfaces
- Near-neighbor optimization at best

Big vendors (e.g., Amazon, Google)
- Can do cross-layer optimizations
- But,
 - Only limited to services of interest
 - Maybe limited in extent (e.g., software)
 - Proprietary technologies
 - Host all data
Our Vision: Holistic Optimization of IT Infrastructure

Holistic optimization

- From Algorithms to Infrastructure
- Novel energy-centric IT paradigms
- Strategic interfaces to monitor, manage & reduce energy as a first class resource
Our Vision:
The ISA Triangle of Efficiency

Approximation
(Trade off Accuracy for Energy)

Holistic Optimization for Energy

Specialization
(Fewer Joules/Work)

Integration
(Make Energy Transparent)
Integrated Thermal & Load Balancing

Project PMSM

- Synergistic IT load/thermal control
- Real-time monitoring of 5K servers
- Fine-grain power/thermal sensors

50% energy savings!
Integrated Cooling: CMOSAIC

3D server chip

Two-phase liquid cooling
 – Enables higher thermals
 – Dramatically better heat removal

Prototyped by IBM
Integrated Power Subsystem: GreenDataNet

Towards Energy-Neutral Datacenters

- Power generation + power storage + server resource provisioning
- Federated sites
- Grid load management
Scale-Out Datacenters

Vast data sharded across servers

Memory-resident workloads
 – Necessary for performance
 – Major TCO burden

Processors access data in memory
 – Abundant request-level parallelism
 – Performance scales with core count

Design servers around memory!
How efficient are servers for in-memory apps?

CloudSuite 2.0 (parsa.epfl.ch/cloudsuite)

- Data Analytics
 - Machine learning
 - Wikipedia
 - Mahout
- Data Caching
 - Memcached
- Data Serving
 - Cassandra
 - NoSQL
- Graph Analytics
 - TunkRank
 - GraphLab
- Media Streaming
 - Apple Quicktime Server
- SW Testing as a Service
 - Symbolic constraint solver
- Web Search
 - Apache Nutch
- Web Serving
 - Nginx
 - PHP server

In Use by AMD, Huawei, HP, Intel, Google....
Big Data Workloads Stuck in Memory!

Execute ~1 instruction per cycle
Core Inefficiencies

- Underutilized complexity
- Scale-out requirements low
 - couple parallel memory ops.
 - one execution unit

![Diagram of memory hierarchy with cycle times and cache sizes]
Instruction-Fetch Misses

Suffer severe i-cache miss penalties
Instruction-Fetch Inefficiencies

- Large instruction working set
 - Larger than L1 & L2 capacity
 - Instructions read from LLC
- Core stalled during i-fetch

![Diagram showing memory hierarchy with cache levels and access times](image)
Minimal performance from large LLC
Off-chip Memory Bandwidth

Off-chip BW severely underutilized

85%
LLC and Bandwidth Inefficiencies

• Scale-out needs modest LLC
 – Beyond 3-4MB useless
 – Area & latency w/o payoff

• Low per-core BW needs
 – <15% utilization
 – Too many channels
 – Too high frequency
CloudSuite on Modern Servers [ASPLOS’12, best paper]

Workload/Server Mismatch

- Too few cores!
- Cores too fat!
- B/W unused!
- 8 MB (60%) waste of space (no reuse)!
What do Existing Processors Offer?

Intel Xeon (~100 W)

- Few fat cores
- Large LLC

Calxeda (~5W)

- Few lean cores
- Compact LLC

Tilera (~30W)

- Many lean cores
- Large LLC
- Large distance

Mismatch with workload demands!
Specialized Processors for In-Memory Services: Scale-Out Processors [ISCA’12, IEEE Micro’12]

One or more stand-alone (physical) servers
- Runs a full software stack

No inter-pod connectivity or coherence
- Scalability and optimality across generations

Pods can share chip I/O (e.g., memory, network, etc.)

Inherently Software Scalable!
Exactly the **opposite** of current NoCs
- Cache coherent
- But, designed for core-to-cache communication
- Not core-to-core!

LLC network:
- Flattened Butterfly (FB) topology

Request & Reply networks:
- Tree topology
- Limited connectivity for efficiency

FB’s performance at 1/10th cost
Footprint Cache: [ISCA’13]

Effective Die-Stacked Caching for Pods

Die-Stacked Caching:
- Rich connectivity ➔ High on-chip BW
- High capacity ➔ Low off-chip BW

Footprint Cache:
- Allocate tags for pages
- Predict & fetch page’s footprint
EuroCloud Server: (eurocloudserver.com)
3D Scale-Out Chip for In-Memory Computing

Mobile efficiency in servers
- Swarms of ARM cores
- 3D memory
- 10x performance/TCO
- Runs Linux LAMP stack

Planned prototype:
- ARM/ST/cea + Chalmers/FORTH in EuroServer FP7
- Data Processing Unit by Huawei
Flashback 2004:
Shekhar Borkar’s (Intel Fellow) Keynote @ Micro

Intel’s TCP/IP Processor

2.23 mm X 3.54 mm, 260K transistors

An idea too early for its time?
Specialization: An idea whose time has come

Microsoft Unveils Catapult to Accelerate Bing!
[EcoCloud Annual Event, June 5th, 2014]

- One FPGA per blade
- All FPGAS connected in half rack
- 6x8 2-D torus topology
- High-end Stratix V FPGAs
- Running Bing Kernels for feature extraction and machine learning
Specialized Database Stack: DBToaster

Compiling offline analytics into online/incremental engines
Aggressive code specialization

Data Stream

Low-latency in-memory stream processing
Up to 6 OOM faster than commercial systems

dbtoaster.org
Specialized Network Stack:
The IX kernel [Belay’14, OSDI best paper]

- Data plane principles: zero-copy, run-to-completion, coherence free
- Protected operating system with clean-slate API
- Specialized for in-memory event-driven applications

3.6x throughput with <50% latency @ 99th percentile
Today’s Network Fabrics Bottleneck!

In-Memory Latency critical services
- Graphs, KV, DB

Vast datasets \rightarrow distribute
- Often within rack

Today’s networks:
- Latency 20x-1000x of DRAM

Remote access latency $>>$ local access latency
Big Data on ccNUMA: Expensive

✔️ Ultra-low latency
❌ Cost and complexity of scaling up
❌ Fault-containment

Ultra low-latency but ultra expensive
Big Data on Commodity Fabrics: Slow

✅ Cost-effective rack-scale fabrics of SoCs
❌ High remote latency (~ >10 us)

AMD’s SeaMicro
HP’s Moonshot

Need low-latency rack-scale fabric!
Scale-Out NUMA (soNUMA): Rack-scale In-memory Computing \cite{ASPLOS'14}

- Global virtual address space w/o global coherence
- RDMA-inspired programming model
 - Integrated Network Interface (NI)
 - Software Accessible Remote Memory Controller (RMC)
- Lean NUMA fabric
 - Reliable user-level messaging over a minimal protocol
A few words on Approximation

Data services are probabilistic ➔ Yet digital platforms are precise!

Much opportunity at the algorithmic/software level
– Learning algorithms (Cevher et. al.)
– Approximate querying (Koch et. al.)
– Programming (Rinard et. al.)

Architecture?
– Bad: von Neumann not best suited for approximation
 • Control path dominates energy
 • Dual datapath shown (Ceze et. al.) not useful
– Good: support for neural processing
 • Analog (Temam et. al.) or Digital (Esmailizadeh et. al.)
Summary

Two IT trends on a collision course:

– Data growing at ~10x/year
– Nearing end of Dennard & Multicore Scaling
– Need technologies to bring efficiency to data

Moving away from products to services

– Future opportunities are in cross-layer design

Long term:

Integrate + Specialize + Approximate (ISA for Big Data)
Thank You!

For more information please visit us at ecocloud.ch