Datacenter Sustainability: Measured, not Guessed!

Babak Falsafi

ecocloud.ch sdea.ch

OUR DIGITAL UNIVERSE

Fueled by:

- Data volume
- Data growth rate
- Monetization of data
- Data's impact on GDP
-now Al

DATACENTERS: THE BACKBONE OF OUR DIGITAL UNIVERSE

- 100s of thousands of commodity or home-brewed servers
 - Consuming 10s to 100s MW
- Centralized to exploit economies of scale
- Network fabric w/ µ-second connectivity
- Often limited by ingress
 - Electricity
 - Network
 - Cooling

Boydton DC, 300MW

CLOUDS AT VARIOUS SCALES

Temporal/Sensitive/Local Data

Persistent/Global Data ——

UNIVERSE MADE POSSIBLE BY MOORE'S LAW

1971 Intel 4004

92,000 ops/s 1 Watt

2021 Intel Ice Lake

1,200,000,000 ops/s 270 Watts

MOORE'S LAW: EXPONENTIAL DENSITY & EFFICIENCY

1971

2021

Intel 4004

Intel Ice Lake

In 50 years: 13 million times faster 48 thousand times more efficient

92,000 ops/s 1 Watt 1,200,000,000 ops/s 270 Watts

LONG LIVE MOORE'S LAW

BUILDING BIGGER & FASTER CHIPS

BUILDING BIGGER & FASTER CHIPS

LLMS' GROWTH

NVIDIA CHIP EFFICIENCY

CATCH ME IF YOU CAN!

GROWTH IN DATACENTER ENERGY

OPERATIONAL VS. EMBODIED EMISSIONS

The use stage GHG emissions in 2020 relating to electricity use account for the majority of total GHG emissions.

- Malmodin et al. (2020)

OPERATIONAL EMISSIONS

Scope 1 & Scope 2

95 million tons CO₂

76%

EMBODIED EMISSIONS

Scope 3

31 million tons CO₂

24%

ENERGY VS. CARBON

What is our output?

What is our environmental impact?

SUSTAINABILITY IN DATACENTERS

SUSTAINABILITY IN DATACENTERS

Today's efficiency metric

power usage efficiency

Total DC Power
PUE = IT Power

PUE has been around for two decades

INDUSTRY STANDARD: PUE

Global Average (2024): 1.56 (= 64% of the electricity flows into IT)

LIMITS OF PUE PUE IGNORES IT EFFICIENCY

INEFFICIENT OR UNDERUTILIZED SERVERS MAKE
THE PUE LOOK GOOD

PUE: 1.2

PUE: 1.5

LIMITS OF PUE PUE IGNORES IT EFFICIENCY

INEFFICIENT OR UNDERUTILIZED SERVERS MAKE THE PUE LOOK GOOD

PUE: 1.2

Av. Server Utilization: 15%

PUE: 1.5

LIMITS OF PUE PUE IGNORES IT EFFICIENCY

INEFFICIENT OR UNDERUTILIZED SERVERS MAKE THE PUE LOOK GOOD

PUE: 1.2

Av. Server Utilization: 15%

PUE: 1.5

Av. Server Utilization: 60%

PUE IGNORES END-TO-END ENERGY FLOW

PUE IGNORES END-TO-END ENERGY FLOW

PUE IGNORES HEAT RECYCLING OR ON-PREMISE RENEWABLE GENERATION

PUE IGNORES END-TO-END ENERGY FLOW

PUE IGNORES HEAT RECYCLING OR ON-PREMISE RENEWABLE GENERATION

PUE: 1.2
20 MW

PUE IGNORES END-TO-END ENERGY FLOW

PUE IGNORES HEAT RECYCLING OR ON-PREMISE RENEWABLE GENERATION

PUE IGNORES END-TO-END ENERGY FLOW

PUE IGNORES HEAT RECYCLING OR ON-PREMISE RENEWABLE GENERATION

LIMITS OF PUE PUE SAYS NOTHING ABOUT CO₂ EMISSIONS

PUE IGNORES THE SOURCE OF ELECTRICITY

PUE SAYS NOTHING ABOUT CO₂ EMISSIONS

PUE IGNORES THE SOURCE OF ELECTRICITY

PUE: 1.2

20 MW

PUE: 1.5

20 MW

PUE SAYS NOTHING ABOUT CO₂ EMISSIONS

PUE IGNORES THE SOURCE OF ELECTRICITY

PUE: 1.2

20 MW

100% Coal Power

PUE: 1.5

20 MW

PUE SAYS NOTHING ABOUT CO₂ EMISSIONS

PUE IGNORES THE SOURCE OF ELECTRICITY

PUE: 1.2

20 MW

100% Coal Power

PUE: 1.5

20 MW

PUE SAYS NOTHING ABOUT CO2 EMISSIONS

PUE IGNORES THE SOURCE OF ELECTRICITY

PUE: 1.2

20 MW

100% Coal Power

PUE: 1.5

20 MW

100% Renewables

PUE SAYS NOTHING ABOUT CO2 EMISSIONS

PUE IGNORES THE SOURCE OF ELECTRICITY

PUE: 1.2

20 MW

100% Coal Power

PUE: 1.5

20 MW

100% Renewables

IT SUSTAINABILITY METRICS

Need metrics to answer our 20 kW goes

- For a given output (e.g., LLM prediction)
 - How much electricity to we need?
 - How much silicon do we need?

- In practice
 - Hyperscalars build w/ commodity parts
 - Maximize utilization
 - Other) IT operators don't know

RACK-LEVEL OPERATIONAL ENERGY

DC Efficiency Metrics Workstream, Open Compute Project (OCP) EMEA Summit, April 29, 2025

COMPUTE EFFICIENCY METRICS

- Throughput/W (operational energy)
 - Logic dominates power
 - Air-cooled chips are power-bound (e.g., 0.4 W/mm²)
 - We pack chips with (not useful) dark silicon (mostly SRAM)

- Throughput/mm² (embodied energy)
 - Liquid-cooled chips become area-bound (e.g., 1.2 W/mm²)
 - What are the metrics to provision SRAM for area-bound chips?

- What other computational metrics?
 - Compute, memory, network, storage

OTHER METRICS

- Recycled heat
- Renewable energy
- Input/output water
- Carbon metrics

....

POST-MOORE CLOUD RACKS

Rack as an SKU with "ISA"

- Integration
 - reduce data movement
- Specialization
 - cut resources to analyze data
- Approximation
 - compress data & computation

From algorithms to infrastructure

CENTER @ EPFL SINCE

Mission

- Sustainable computing
- •IT for s us tain a bility
- Best practices, metrics & methodologies

Impact

- Server-grade ARM CPU
- Cloud-native network/database stacks
- Liquid-cooling from chip to rack

ecocloud.ch

Hewlett Packard Enterprise

TODAY'S SERVER = 90'S DESKTOP PC

90's Desktop PC

TODAY'S SERVER = 90'S DESKTOP PC

Today's Server

TODAY'S SERVER = 90'S DESKTOP PC

- Focused on minimizing cost (Google c.a. 2000)
- CPU, memory = nanosecond timescale, OS, I/O = millisecond timescale
- OS follows legacy interfaces (PCle) and abstractions (POSIX)
- Silicon fragmented across legacy interfaces

EFFICIENCY PROBLEMS IN IT STACKS

Hardware/workload mismatch (EPFL, Meta, Google)

Datacenter tax ~ 20% (Google)

- 20,000 threads running per CPU
- Virtualization/containerization/FaaS using POSIX
- RPC

Memory wasted (Microsoft)

- 50% of containers do not use their memory
- 20% of memory is stranded

GPU utilization for deep learning < 50% (Microsoft)

AIR-COOLED POST-MOORE CPUS

[ISCA'12, ISCA50 Retrospective, IEEE Micro'24]

Today's server CPUs

X Designed for single-core performance

X Power-bound → ½ big cores + ½ memory

X Run at high frequency (power cubic with $f \sim cv^2f$)

AMD Zen 3 4.0 mm² 3.7W @ 3 GHz

Cloud-native CPUs

- ✓ Low-width cores
- ✓ Recover power cubically w/ lower frequency
- ✓ Maximize throughput/W & number of cores
- ✓ Need only memory for per-core working set

ARM N1 1.4 mm² 0.7W @ 2 GHz

10X higher throughput with SLO!

ADVERTISED VS. MEASURED

- Uptime reports [Feb. 2024]
 - Hyperscalars at PUE = 1.2
 - Average DC worldwide at PUE ~ 1.6
 - Reducing PUE from 1.5 to 1.3 is much easier than 1.3 to 1.1

Need proper measurement:

- PUE highly varies over 12 months
- Most builders/operators report "design" PUE

MEASURE FULL-STACK EFFICIENCY

DC EFFICIENCY

electricity w/ renewables, cooling, heat recycling

EFFICIENCY

IT EFFICIENCY

compute, storage, network and workloads

CARBON FOOTPRINT

emissions from input electricity sources

sdea.ch

SDEA NAVIGATOR

navigator.sdea.ch

PUE⁺

ITIE

CO₂

DC INFRASTRUC.

IT INFRASTRUC.

CO₂ FOOTPRINT

Digital Realty

100 MW Zurich DC

awarded

AI SUSTAINABILITY CLASSIFICATION

^{*}Tests conducted on 20 popular open-source models. Each dot represents one model;
1 Watt-hour represents power consumption of 1 W extended over 1 hour.

©nature

SUMMARY

DC energy consumption is growing at 16%/year

Moore's Law of silicon is dead

Need metrics & methodologies for efficiency

Need post-Moore DC design w/ "ISA":

Integration + Specialization + Approximation

THANK YOU!

For more information, please visit us at

ecocloud.ch sdea.ch

