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OUR DIGITAL UNIVERSE

Fueled by:

▪Data volume

▪Data growth rate

▪Monetization of data

▪Data’s impact on GDP

▪….now AI 
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DATACENTERS:
THE BACKBONE OF OUR DIGITAL UNIVERSE

▪100s  of thous ands  of commodity or 

   home-brewed s ervers
▪Consuming  10s  to 100s  MW

▪Centra lized to exploit economies  of 
s ca le

▪Network fa bric w/ µ-s econd 
connectivity

▪Often limited by ing res s
▪ E lectric ity

▪ Network

▪ Cooling
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Edge Cloud Enterprise Cloud Public Cloud

Temporal/Sensitive/Local Data Persistent/Global Data

CLOUDS AT VARIOUS SCALES
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UNIVE R S E  MADE  P OS S IBLE   B Y 
MOOR E ’S  LAW
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92,000  ops/s
1 Watt

1971
Intel 4004

2021
Intel Ice Lake

1,200,000,000,000 ops/s
270 Watts



MOOR E ’S  LAW:
E XP ONE NTIAL DE NS ITY & E F F ICIE NCY 
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92,000 ops/s
1 Watt

1971
Intel 4004

2021
Intel Ice Lake

1,200,000,000,000 ops/s
270 Watts

In 50 years:

13 million times faster
48 thousand times more efficient 



LONG LIVE MOORE’S LAW
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NVIDIA CHIP EFFICIENCY
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CATCH ME IF YOU CAN!

8X

1200X



GROWTH IN DATACENTER ENERGY
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DATACENTERS ARE
HIGH CO2 EMITTERS

OPERATIONAL 
EMISSIONS

Scope 1 & Scope 2

95 million tons CO2

EMBODIED 
EMISSIONS

Scope 3

31 million tons CO2

The use stage GHG 

emissions in 2020 relating 

to electricity use account 

for the majority of total 

GHG emissions.

76% 24%

“

- Malmodin et al.  (2020)

OPERATIONAL VS. EMBODIED EMISSIONS

“
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POST-MOORE DATACENTERS

Design for “ISA”

▪ Integration
▪ reduce data movement

▪Specialization
▪ cut resources to analyze data

▪Approximation
▪ compress data & computation

From algorithms to infrastructure
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CE NTE R  @ E P F L S INCE  
2011

Mis s ion
▪S us ta ina ble computing

▪ IT for s us ta ina bility

▪B es t pra ctices ,  metrics  & methodolog ies

Impact
▪Server-grade ARM CPU

▪Cloud-native network/database stacks

▪Liquid-cooling from chip to rack

ecocloud.ch



OUTLINE

▪Overview

▪Post-Moore Computing
▪Compute infrastructure

▪AI runtime stack

▪Metrics & methodologies

▪Summary
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TODAY’S SERVER = 90’S DESKTOP PC

I/O Bus

NIC

OS Zone
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90’s Desktop PC
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TODAY’S SERVER = 90’S DESKTOP PC
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TODAY’S SERVER = 90’S DESKTOP PC

▪ Focused on minimizing cost (Google c.a. 2000)

▪CPU, memory = nanosecond timescale, OS, I/O = millisecond timescale

▪OS follows legacy interfaces (PCIe) and abstractions (POSIX)

▪ Silicon fragmented across legacy interfaces
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EFFICIENCY PROBLEMS IN 
COMPUTING

Hardware/workload mismatch (EPFL, Meta, Google)

Datacenter tax ~ 20% (Google)
▪ 20,000 threads running per CPU
▪ Virtualization/containerization
▪ RPC

Memory wasted (Microsoft)
▪ 50% of containers do not use their memory
▪ 20% of memory is stranded

GPU utilization for deep learning < 50% (Microsoft)
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POST-MOORE SERVERS [IEEE 

Micro’24]

Server-centric CPU design
▪ Exploit massive request-level parallelism per service

▪ Maximize efficiency: throughput/area, throughput/Watt

Tight integration of CPU, GPU, memory, NIC
▪ Emerging chip-to-chip standards (UCIe)

▪ High-bandwidth memory for AI

Rack-level fabrics
▪ NVLink, CXL

Liquid cooling at chip level
▪2x higher power density
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POST-MOORE CPUS [ISCA’12]

Today’s server CPUs

✗Designed for single-core performance

✗Power-bound → ½ big cores + ½ memory

✗Run at high frequency

   (power ~ superlinear w/ performance)

Cloud-native CPUs

✓Custom cores for max area density

✓Higher throughput/Watt at lower frequency

✓Need only memory for per-core working set
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AI ACCELERATORS

Inference workloads:

• Online

• Tight latency constraints

• Rely on low-precision arithmetic

Training workloads:

• Offline

• Throughput optimized

• Need high-precision arithmetic



INFERENCE UTILIZATION
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UNIVERSAL AI ACCELERATORS

▪Scaled numeric formats (HBFP [NeurIPS’18], MX)
▪Quantize while maintaining accuracy
▪Use for both for inference and training

▪ Inference → helps with outliers
▪ Training → don’t need FP precision for dot products

▪Work well with sparsification [Harma, ICLR’25]
▪ 4-Bit training for transformers [Harma, arXiv’24]

▪Accelerators with prioritized schedulers [Drumond, MICRO’21]

▪ Piggy-back fine-tuning jobs on an inference accelerator
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parsa.epfl.ch/coltrain



AI RUNTIME

▪Enhance utilization [Gao, ICSE’24]
▪ Proper batching

▪Overlap CPU-centric tasks

▪Hide data transfer between CPU/GPU

▪Minimize or overlap communication

▪Need elasticity (Ana’s talk)
▪ Today’s runtimes are too static (container-based deployment)

▪Allow software to scale up/down GPU, memory, network resources
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METRICS & METHODOLOGIES

▪Design metrics
▪ Post-Moore means more accelerators

▪ Take into account both operational & embodied emissions

▪Operational metrics
▪How much energy do we need for training/inference?

▪Operational methodologies
▪How do we measure/monitor our efficiency?



AI SUSTAINABILITY CLASSIFICATION
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CARBON FOOTPRINT

• emissions from input electricity sources

IT EFFICIENCY

• compute, storage, network and workloads

DC EFFICIENCY

• electricity w/ renewables, cooling, heat recycling

MEASURE FULL-STACK EFFICIENCY

sdea.ch 



SUMMARY

AI’s energy requirements grow exponentially

Moore’s Law of silicon is dead

Need post-Moore technologies, metrics, best practices

Post-Moore computing:
▪ Integration + Specialization + Approximation
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THANK YOU!

For more information, please visit us at 

parsa.epfl.ch
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