RPCValet:
NI-Driven Tall-Aware Balancing
of us-Scale RPCs

Alexandros Daglis Mark Sutherland, Babak Falsafi
Georgia lech EcoCloud, EPFL

Georgia &
Tech




Latency-Sensitive Online Services

— [~
e —p
'_-.  —
u ]
u
n
[\ [\

\4

]
)
+ &

== Js-scale
service times

-------

ps-scale RPCs exacerbate tall latency challenge

2



Sources of Tail Latency

Tall latency has many sources:
= Software events: interrupts, context switches
* Hardware-related events: cache/TLB misses, page faults, interference, ...

= Queuing

Queuing amplifies effect of ALL other sources %

———————————————————————
Incoming RPC requests

Queuing: prime tail latency optimization target




Queuing Implications on Manycore Servers

= Single-queue

RPC e ’ ".Cores — Multi-queue
LMDL< - N .‘.*” R
| » > 312
. % 5 10 -
N cores Single-queue B Y- J
X 2 6-
oocccsa g,
—3 0000 O T X
HEEN RPCs
D00 N IN TS S S A
‘ N | oad
Multi-queue —> load imbalance that hurts tail latency

Single-queue: the best FCFS queuing system (in theory)




~From [heory to Practice

Single-queue Multi-queue
—>_< N ‘C{: NN
| — |
v Best load balancing X Vulnerable to load imbalance
X Synchronization overhead v’ Synchronization-free

Sync required for single-queue comparable to runtime of ps-scale RPCs

Goal: load balancing without synchronization overhead




RPCValet in a Nutshell

= | everage integrated NI (D) to monitor real-time per-core load
= Nl-core coordination in 10s of ns

= Keep RPCs in single queue & dynamically push first RPC to first available core

Occupancy feedback

RPCs _ D
— RPC dispatch

MW\
|
Single-queue & sync-free load balancing 6




Background

Outline

RPCValet Design & Implementation

Evaluation

Conclusion



Single-Queue Load Distribution

Common load distribution implementation CPU

|
= Eg,Linux poll, libevent's locked event queues RPCS_,% N
CPU

RPCs arrive in single queue
= Cores pull RPCs in FIFO order

Queue Is shared resource: need synchronization
" Minor concern for typical RPCs (ms runtimes)
= Significant overhead for ps-scale RPCs

Sync overhead hurts fine-grained RPCs 8



Multi-Queue Load Distribution

Recelve Side Scaling: Hardware support for multi-queue load distribution

= | everaged by dataplanes (e.g, X [Belay' [ 4], Arrakis [Peter’ [4])

—>CPU
RP9C< ‘N N

> 4 —
—(CPU

*
*
*
*
*
*
*
‘O
*

Static hash function

Private queue — no sync!

Distribution based on static decisions # Balancing




From LLoad

Distribution to Load Balancing

Need dynamic load dispatch decisions

= Rebalancing via work stealing helps, but still significant cost for ps-scale RPCs
" Eg,ZygOS [Prekas'| /] >30% pert. gap from single-queue system for Memcached

Insight: leverage integrated NI for rapid feedback

RPCs D

CPU — RPC dispatch

N Occupancy feedback
(timescale: 10s of ns)

CPU

On-chip NI facilitates dynamic load-balancing decisions




Base Architecture: Scale-Out NUMA

Architecture for rapid remote memory access [Novakovic'| 4]

Lean user-level, hardware-terminated protocol & integrated NI

| | On-chip coherence
RDMA-like hardware-software interface 7

= New reqguests in Work Queue (WQ) w? WQ \ L/pom
= Replies in Completion Queue (CQ) CPU /\r ' \/" NI
% 14 write

Basic primitives: one-sided reads/writes
= Messaging emulated over one-sided writes




Limitation of Emulated Messaging

HERD [Kalia' [ 4]: Fast RPCs over RDMA writes

" Write RPCs in remote memory w/ one-sided writes CPUC CPUC CPUC

= Cores poll on all possible RPC arrival locations NN NN N e

= Sync-free { ? j
RPCs \Memory

Problem: Message arrival location dictates RPC-to-core assignment

—> multi-queue system by design

One-sided writes = multi-queue system =» imbalance



Enabling Single-Queue Load Balancing

Decouple RPC arrival from assignment to core
= Order arrival metadata, not RPC payload

Dispatch RPCs to cores in order

" Push instead of pull — no sync required
* When! To which core!

Msg Queue




Enabling Single-Queue Load Balancing

L

Dispatch to |5t available core = true single-queue T
= Cores self-signal availability via special msg in WQ 4" Qs of M° ptr o payload

\Memory

Integrated NI makes simple greedy dispatch viable

" On-chip message propagation << RPC service time
—> Execution bubbles sufficiently small

RPCValet: sync-free, single-queue load balancing .

Msg Queue




Balancing Policy vs. Throughput

NI dispatch stage has to sustain peak throughput

= Need to sustain max service rate, not line rate
= For 500ns RPCs & 64-core chip = | dispatch decision / 8ns

Trivial for RPCValet's greedy dispatch policy
* Read a 64-bit bitmap, pick available entry

Could implement more sophisticated dispatch policies
= (Constraint: perform decision in 8ns or pipeline logic

RPCValet applicability not limrited to greedy dispatch



Outline

Evaluation

Conclusion



Methodology

Cycle-accurate simulation of | 6-core chip

Poisson arrivals & emulated RPC service time distributions
= Service time: mean | us & increasing variance (fixed, uni, exp, GEV)

Metric: throughput under SLO (target: 10us 99t pct latency)

= Server-side latency measurements

Configurations:
" Single-queue system w/ software synchronization (MCS queue lock)
* Hardware-dispatched multi-queue system (Recelve Side Scaling — RSS)
* Hardware-dispatched single-queue system (RPCValet)



Single-Queue: Hardware vs. Software

= fixed_hardware % GEV_hardware } RPCValet

-4 fixed_software GEV_software
2
o 8
O
B 6
g 4
= 2
o\
O | | | | | | |
0 P 4 6 8 |0 |2 | 4

Throughput (M regs/s)

Synchronization overhead severely hurts ps-scale RPCs ;



99th pct latency (us)

Hardware: Multi-Queue vs. Single-Queue

Fixed service time GEV service time

|2 - |2 -

-e-Multi-queue (RSS) SLO -e-Multi-queue 40%
| | = e e e e e e e ———— )= - ——
. -s-Single-queue (RPCValet)
6 _
4 |
2 _
O [ [ [ [ [ [ | O T T T T T I |

0 2 4 6 8 o 12 14 0 2 4 6 8 o 12 14




Conclusion

us-scale RPCs exacerbate queuing-related tall latency challenge
Single-queue systems avoid load imbalance but require synchronization

RPCValet: sync-free single-queue load balancing

" | everage NI integration for rapid dynamic dispatch decisions
= Up to 40% higher throughput under SLO vs. RSS
= Up to 3.5x lower tall latency at medium load vs. RSS

Thanks! Questions? y



