
RPCValet:
NI-Driven Tail-Aware Balancing

of μs-Scale RPCs

Alexandros Daglis
Georgia Tech

Mark Sutherland, Babak Falsafi
EcoCloud, EPFL

Latency-Sensitive Online Services

μs-scale RPCs exacerbate tail latency challenge
… … ……

RPCs

2

μs-scale
service times

Sources of Tail Latency

Tail latency has many sources:
§ Software events: interrupts, context switches
§ Hardware-related events: cache/TLB misses, page faults, interference, …
§ Queuing

Queuing amplifies effect of ALL other sources

Incoming RPC requests

Queuing: prime tail latency optimization target
3

Queuing Implications on Manycore Servers

à load imbalance that hurts tail latency
Load

99
%

 la
te

nc
y

(x
 se

rv
ice

 ti
m

e)

Single-queue: the best FCFS queuing system (in theory)
4

RPCs

N cores

Cores

…

NRPCs

Single-queue
1

…

NRPCs

Multi-queue

…

N

Single-queue: the best FCFS queuing system (in theory)

Single-queue
Multi-queue

From Theory to Practice

Sync required for single-queue comparable to runtime of μs-scale RPCs

Goal: load balancing without synchronization overhead
5

✗Vulnerable to load imbalance
✓ Synchronization-free

……

Multi-queue

…

✓ Best load balancing
✗ Synchronization overhead

Single-queue

N
1

N N

RPCValet in a Nutshell

§ Leverage integrated NI () to monitor real-time per-core load
§ NI-core coordination in 10s of ns
§ Keep RPCs in single queue & dynamically push first RPC to first available core

…RPCs
RPC dispatch
Occupancy feedback

Single-queue & sync-free load balancing
6

Free!
CPU

CPU

N
1

Outline

Overview

Background

RPCValet Design & Implementation

Evaluation

Conclusion
7

Single-Queue Load Distribution

Common load distribution implementation
§ E.g., Linux poll, libevent’s locked event queues

RPCs arrive in single queue
§ Cores pull RPCs in FIFO order

Queue is shared resource: need synchronization
§ Minor concern for typical RPCs (ms runtimes)
§ Significant overhead for μs-scale RPCs

Sync overhead hurts fine-grained RPCs

…

NRPCs 1

8

CPU

CPU

Multi-Queue Load Distribution

Receive Side Scaling: Hardware support for multi-queue load distribution
§ Leveraged by dataplanes (e.g., IX [Belay’14], Arrakis [Peter’14])

Distribution based on static decisions ≠ Balancing
…

NRPCs …

N

Static hash function
Private queue – no sync!

9

CPU

CPU

From Load Distribution to Load Balancing

Need dynamic load dispatch decisions
§ Rebalancing via work stealing helps, but still significant cost for μs-scale RPCs
§ E.g., ZygOS [Prekas’17] >30% perf. gap from single-queue system for Memcached

Insight: leverage integrated NI for rapid feedback

On-chip NI facilitates dynamic load-balancing decisions 10

…RPCs RPC dispatch

Occupancy feedback
(timescale: 10s of ns)

CPU

CPU

N
1

Base Architecture: Scale-Out NUMA

Architecture for rapid remote memory access [Novakovic’14]

Lean user-level, hardware-terminated protocol & integrated NI

RDMA-like hardware-software interface
§ New requests in Work Queue (WQ)
§ Replies in Completion Queue (CQ)

Basic primitives: one-sided reads/writes
§ Messaging emulated over one-sided writes

Lack of native messaging roadblock for RPC balancing

poll
write

poll writeCQ

WQ
CPU NI

11

On-chip coherence

CPU CPUCPU CPU

Limitation of Emulated Messaging

HERD [Kalia’14]: Fast RPCs over RDMA writes
§ Write RPCs in remote memory w/ one-sided writes
§ Cores poll on all possible RPC arrival locations
§ Sync-free

Problem: Message arrival location dictates RPC-to-core assignment
à multi-queue system by design

One-sided writes à multi-queue system à imbalance

RPCs

12

CPU

Memory

…

…

CPU

…CPUCPU CPU

Enabling Single-Queue Load Balancing

Decouple RPC arrival from assignment to core
§ Order arrival metadata, not RPC payload

Dispatch RPCs to cores in order
§ Push instead of pull – no sync required
§ When? To which core?

CQ
W

Q CQ
W

Q

CQ
W

Q

M
sg

Q
ue

ue

RPCs ? ? ?

13

ptr to payload Memory

…CPUCPU CPU

Enabling Single-Queue Load Balancing

Dispatch to 1st available core à true single-queue
§ Cores self-signal availability via special msg in WQ

Integrated NI makes simple greedy dispatch viable
§ On-chip message propagation << RPC service time

à Execution bubbles sufficiently small

CQ
W

Q CQ
W

Q

CQ
W

Q

Free!

M
sg

Q
ue

ue

10s of ns

RPCValet: sync-free, single-queue load balancing 14

ptr to payload

Memory

Free!

Balancing Policy vs. Throughput

NI dispatch stage has to sustain peak throughput
§ Need to sustain max service rate, not line rate
§ For 500ns RPCs & 64-core chip à 1 dispatch decision / 8ns

Trivial for RPCValet’s greedy dispatch policy
§ Read a 64-bit bitmap, pick available entry

Could implement more sophisticated dispatch policies
§ Constraint: perform decision in 8ns or pipeline logic

15RPCValet applicability not limited to greedy dispatch

Outline

Overview

Background

RPCValet Design & Implementation

Evaluation

Conclusion
16

Methodology

Cycle-accurate simulation of 16-core chip

Poisson arrivals & emulated RPC service time distributions
§ Service time: mean 1μs & increasing variance (fixed, uni, exp, GEV)
§ HERD and Masstree Key-Value stores (in the paper)

Metric: throughput under SLO (target: 10μs 99th pct latency)
§ Server-side latency measurements

Configurations:
§ Single-queue system w/ software synchronization (MCS queue lock)
§ Hardware-dispatched multi-queue system (Receive Side Scaling – RSS)
§ Hardware-dispatched single-queue system (RPCValet) 17

Single-Queue: Hardware vs. Software

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

99
th

 p
ct

 la
te

nc
y

(μ
s)

Throughput (M reqs/s)

fixed_hw gev_hw
fixed_sw gev_sw

SLO
~2.5x

Synchronization overhead severely hurts μs-scale RPCs 18

RPCValetfixed_hardware
fixed_software

GEV_hardware
GEV_software

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

99
th

 p
ct

 la
te

nc
y

(μ
s)

Throughput (M reqs/s)

Multi-queue (RSS)
Single-queue (RPCValet)

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14
Throughput (M reqs/s)

Multi-queue

Single-queue

Hardware: Multi-Queue vs. Single-Queue

Fixed service time

SLO

GEV service time

Up to 3.5x lower tail latency & 1.4x throughput under SLO 19

20% 40%

3.5x 3.2x

Conclusion

μs-scale RPCs exacerbate queuing-related tail latency challenge

Single-queue systems avoid load imbalance but require synchronization

RPCValet: sync-free single-queue load balancing
§ Leverage NI integration for rapid dynamic dispatch decisions
§ Up to 40% higher throughput under SLO vs. RSS
§ Up to 3.5x lower tail latency at medium load vs. RSS

Thanks! Questions? 20

