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Latency-Sensitive Online Services

μs-scale RPCs exacerbate tail latency challenge
… … ……
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Sources of Tail Latency

Tail latency has many sources:
§ Software events: interrupts, context switches
§ Hardware-related events: cache/TLB misses, page faults, interference, …
§ Queuing

Queuing amplifies effect of ALL other sources

Incoming RPC requests

Queuing: prime tail latency optimization target
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Queuing Implications on Manycore Servers

à load imbalance that hurts tail latency
Load
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Single-queue: the best FCFS queuing system (in theory)
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From Theory to Practice

Sync required for single-queue comparable to runtime of μs-scale RPCs

Goal: load balancing without synchronization overhead
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✗Vulnerable to load imbalance
✓ Synchronization-free
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RPCValet in a Nutshell

§ Leverage integrated NI (   ) to monitor real-time per-core load
§ NI-core coordination in 10s of ns
§ Keep RPCs in single queue & dynamically push first RPC to first available core

…RPCs
RPC dispatch
Occupancy feedback

Single-queue & sync-free load balancing
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Single-Queue Load Distribution

Common load distribution implementation
§ E.g., Linux poll, libevent’s locked event queues

RPCs arrive in single queue
§ Cores pull RPCs in FIFO order

Queue is shared resource: need synchronization
§ Minor concern for typical RPCs (ms runtimes)
§ Significant overhead for μs-scale RPCs

Sync overhead hurts fine-grained RPCs

…
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Multi-Queue Load Distribution

Receive Side Scaling: Hardware support for multi-queue load distribution
§ Leveraged by dataplanes (e.g., IX [Belay’14], Arrakis [Peter’14])

Distribution based on static decisions ≠ Balancing
…

NRPCs …
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Static hash function
Private queue – no sync! 
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From Load Distribution to Load Balancing

Need dynamic load dispatch decisions
§ Rebalancing via work stealing helps, but still significant cost for μs-scale RPCs
§ E.g., ZygOS [Prekas’17] >30% perf. gap from single-queue system for Memcached

Insight: leverage integrated NI for rapid feedback

On-chip NI facilitates dynamic load-balancing decisions 10

…RPCs RPC dispatch

Occupancy feedback
(timescale: 10s of ns)
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Base Architecture: Scale-Out NUMA

Architecture for rapid remote memory access [Novakovic’14]

Lean user-level, hardware-terminated protocol & integrated NI

RDMA-like hardware-software interface
§ New requests in Work Queue (WQ)
§ Replies in Completion Queue (CQ)

Basic primitives: one-sided reads/writes
§ Messaging emulated over one-sided writes

Lack of native messaging roadblock for RPC balancing

poll
write

poll writeCQ

WQ
CPU NI
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CPU CPUCPU CPU

Limitation of Emulated Messaging

HERD [Kalia’14]: Fast RPCs over RDMA writes
§ Write RPCs in remote memory w/ one-sided writes
§ Cores poll on all possible RPC arrival locations
§ Sync-free

Problem: Message arrival location dictates RPC-to-core assignment
à multi-queue system by design

One-sided writes à multi-queue system à imbalance

RPCs
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…CPUCPU CPU

Enabling Single-Queue Load Balancing

Decouple RPC arrival from assignment to core
§ Order arrival metadata, not RPC payload

Dispatch RPCs to cores in order
§ Push instead of pull – no sync required
§ When? To which core?
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…CPUCPU CPU

Enabling Single-Queue Load Balancing

Dispatch to 1st available core à true single-queue
§ Cores self-signal availability via special msg in WQ

Integrated NI makes simple greedy dispatch viable
§ On-chip message propagation << RPC service time

à Execution bubbles sufficiently small
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10s of ns

RPCValet: sync-free, single-queue load balancing 14
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Balancing Policy vs. Throughput

NI dispatch stage has to sustain peak throughput
§ Need to sustain max service rate, not line rate
§ For 500ns RPCs & 64-core chip à 1 dispatch decision / 8ns

Trivial for RPCValet’s greedy dispatch policy
§ Read a 64-bit bitmap, pick available entry

Could implement more sophisticated dispatch policies
§ Constraint: perform decision in 8ns or pipeline logic

15RPCValet applicability not limited to greedy dispatch
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Methodology

Cycle-accurate simulation of 16-core chip

Poisson arrivals & emulated RPC service time distributions 
§ Service time: mean 1μs & increasing variance (fixed, uni, exp, GEV)
§ HERD and Masstree Key-Value stores (in the paper)

Metric: throughput under SLO (target: 10μs 99th pct latency)
§ Server-side latency measurements

Configurations: 
§ Single-queue system w/ software synchronization (MCS queue lock)
§ Hardware-dispatched multi-queue system (Receive Side Scaling – RSS)
§ Hardware-dispatched single-queue system (RPCValet) 17



Single-Queue: Hardware vs. Software
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Synchronization overhead severely hurts μs-scale RPCs 18
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Conclusion

μs-scale RPCs exacerbate queuing-related tail latency challenge 

Single-queue systems avoid load imbalance but require synchronization

RPCValet: sync-free single-queue load balancing
§ Leverage NI integration for rapid dynamic dispatch decisions
§ Up to 40% higher throughput under SLO vs. RSS
§ Up to 3.5x lower tail latency at medium load vs. RSS 

Thanks! Questions? 20


