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ABSTRACT
Current simulation-sampling techniques construct accurate model
state for each measurement by continuously warming large
microarchitectural structures (e.g., caches and the branch predic-
tor) while functionally simulating the billions of instructions
between measurements. This approach, called functional warming,
is the main performance bottleneck of simulation sampling and
requires hours of runtime while the detailed simulation of the
sample requires only minutes. Existing simulators can avoid func-
tional simulation by jumping directly to particular instruction
stream locations with architectural state checkpoints. To replace
functional warming, these checkpoints must additionally provide
microarchitectural model state that is accurate and reusable
across experiments while meeting tight storage constraints.

In this paper, we present a simulation-sampling framework that
replaces functional warming with live-points without sacrificing
accuracy. A live-point stores the bare minimum of functionally-
warmed state for accurate simulation of a limited execution
window while placing minimal restrictions on microarchitectural
configuration. Live-points can be processed in random rather than
program order, allowing simulation results and their statistical
confidence to be reported while simulations are in progress. Our
framework matches the accuracy of prior simulation-sampling
techniques (i.e., ±3% error with 99.7% confidence), while estimat-
ing the performance of an 8-way out-of-order superscalar proces-
sor running SPEC CPU2000 in 91 seconds per benchmark, on
average, using a 12 GB live-point library.

1. INTRODUCTION
Computer architecture research routinely employs detailed cycle-
accurate simulation to explore and validate microarchitectural
innovations. Ideally, simulation studies should use the same bench-
marks used to assess real hardware. Unfortunately, benchmark
applications that are tuned to run for minutes on real hardware can
require over a month to execute on today’s high performance
microarchitecture simulators [3,12,27,30].

Past research advocates sampling [6,10,20,21,32,34,36]—that is,
measuring only a subset of benchmark execution—as a technique
to accelerate microarchitecture simulation. Many such studies
advocate uniform sampling using rigorous statistical theory
[6,10,21,34] to provide explicit validation that the measured
portions accurately represent the behavior of a benchmark.

A recent study of prevailing simulation-sampling approaches by Yi
et al. [36] concluded that the SMARTS simulation-sampling
approach [34] provides the highest estimation accuracy. The

SMARTS design minimizes instructions simulated by measuring a
large number (e.g., 10,000) of brief (e.g., 1000-instruction) simula-
tion windows. SMARTS avoids measurement error from cold state
by continuously warming large microarchitectural structures (e.g.,
caches and the branch predictor) while functionally simulating the
billions of instructions between measurements, a warming strategy
referred to as functional warming.

Although functional warming enables accurate performance esti-
mation, it limits SMARTS’s speed, occupying more than 99% of
simulation runtime. Functional warming dominates simulation
time because the entire benchmark’s execution must be function-
ally simulated, even though only a tiny fraction of the execution is
simulated using detailed microarchitecture timing models.

The second shortcoming of SMARTS is that functional warming
requires simulation time proportional to benchmark length rather
than sample size. As a result, the overall runtime of a SMARTS
experiment remains constant even when the measured sample size
is reduced by relaxing an experiment’s statistical confidence
requirements or through recently-proposed sampling optimizations
such as matched-pair comparison [10] and stratified sampling [35].
Moreover, functional warming time will increase with the advent
new benchmark suites, such as SPEC CPU2005, that lengthen
benchmarks to scale with hardware performance improvement
[33]. Optimizations that accelerate functional warming, such as
direct execution [5], do not improve SMARTS’s scaling behavior.

In this paper, we propose live-points as a replacement for func-
tional warming to provide reduced simulation turnaround time,
proportional to sample size, without sacrificing accuracy. A live-
point stores the necessary data to reconstruct warm state for a
simulation sampling execution window. Although modern
computer architecture simulators frequently provide checkpoint
creation and loading capabilities [3,24], current checkpoint imple-
mentations: (1) do not provide complete microarchitectural model
state, and (2) cannot scale to the required checkpoint library size
(~10,000 checkpoints per benchmark) because of multi-terabyte
storage requirements.

We address the first limitation of conventional checkpoints by
storing selected microarchitectural state in live-points, an approach
we call checkpointed warming. The key challenge of checkpointed
warming lies in storing microarchitectural state such that live-
points can still simulate the range of microarchitectural configura-
tions of interest. Fortunately, previous studies have shown that,
with the exception of the branch predictor and memory hierarchy,
the vast majority of microarchitectural state can be reconstructed
dynamically with minimal simulation (a few thousand instruc-
tions), and thus need not be stored [34]. For the exceptional struc-
† This tech report supersedes CALCM Tech. Report 2004-03.



tures, researchers can often place limits on the configurations of
interest (e.g., through trace-based studies). We design check-
pointed warming to reproduce these structures under user-specified
limits.

We reduce the size of conventional checkpoints by three orders of
magnitude through storing in live-points only the subset of state
necessary for limited execution windows, an approach we call live-
state. Live-state exploits the brevity of simulation sampling execu-
tion windows (thousands of instructions) to omit the vast majority
of state. The minimal state subset can be known a priori only for
the commit instruction stream, and is not known for wrong-path
(speculative) instructions. However, whereas wrong-path instruc-
tion latency affects scheduling through pipeline resource conten-
tion, wrong-path operand values rarely affect instruction
throughput. We exploit this observation by storing only the state
required for correct path execution and approximate wrong-path
scheduling.

We present results from a live-point-enabled simulator derived
from SimpleScalar 3.0 sim-outorder [3] simulating the execu-
tion of the SPEC CPU2000 (SPEC2K) benchmarks on two
microarchitectural configurations to show:

• Accelerated simulation with practical storage. Live-point
simulation sampling is over 250 times faster than existing
simulation sampling approaches (on average 91 seconds per
benchmark) for an 8-way out-of-order superscalar while main-
taining the estimated CPI error to ±3% with 99.7% confidence.
Although functional warming produces an aggregate of 36 TB
of state while sampling SPEC2K, a gzip-compressed SPEC2K
live-point library supporting 1 MB caches requires just 12 GB
of storage.

• Parallel simulation and online results. We construct inde-
pendent live-points that can be processed in parallel and in an
arbitrary order. By randomizing the processing order, we can
report unbiased results and their statistical confidence continu-
ously during simulation. As more live-points are processed,
results converge toward their final values and confidence
improves. In contrast, simulators that use functional warming
cannot report results until simulation is complete and require a
strict program-order simulation to allow for unbiased
sampling, preventing parallel simulation.

• Reusable live-point libraries. We ensure reusability of a
fixed-size live-point library across comparative performance
studies that have unpredictable sample size requirements using
matched-pair sample comparison. Individual live-points can
simulate a wide range of microarchitectural configurations
using our checkpointed warming approach. Our live-points
constrain only the configuration of the branch predictor (to a
user-selected set of alternatives) and the cache/TLB hierarchy
(through user-selected upper bounds on size and associativity).
Our results demonstrate that checkpointed warming is more
accurate (1.6% worst-case CPI bias) than currently-known
checkpoint-based alternatives that do not constrain microarchi-
tectural configuration (5.4% worst-case CPI bias).

This paper is organized as follows. Section 2 presents background
on functional warming. We present our methodology in Section 3.
In Section 4, we compare checkpointed warming to alternative

warming methods in terms of accuracy, flexibility, and speed. We
describe live-state, our storage approach for live-points, in
Section 5, and present the live-point experiment framework in
Section 6. Section 7 presents performance results and analysis.
Related work is described in Section 8. We conclude in Section 9.

2. BACKGROUND
Simulation sampling derives estimates of performance (CPI,
power, etc.) of benchmark applications on a simulated microarchi-
tecture from measurements of a sample of the benchmark’s
dynamic instruction stream. By choosing the measured sample
according to established statistical sampling methods [17], simula-
tion sampling can rely on statistical measures of confidence to
validate that estimated results represent the behavior of the full
benchmark.

Although statistics provides us with probabilistic guarantees that
estimated results are representative, these guarantees do not assure
us that estimated results are error-free. Errors introduced into the
individual measurements that make up a sample (e.g., by the
measurement methodology) are referred to as bias, and are not
accounted for by statistical confidence calculations. In simulation
sampling, the most common cause of bias is the cold-start effect of
unwarmed microarchitectural structures. For example, assuming
empty caches may results in incorrectly low performance esti-
mates.

The primary challenge in simulation sampling is to devise a strat-
egy to construct accurate initial state rapidly. For each measure-
ment, we must construct both architectural state (e.g., register and
memory values) and microarchitectural state (e.g., pipeline compo-
nents and the cache hierarchy) to avoid cold-start bias. A recent
survey of simulation sampling approaches [36] concluded that the
SMARTS simulation sampling approach [34] provides the highest
estimation accuracy.

SMARTS uses a two-tiered strategy to construct every measure-
ment’s initial state as depicted in Figure 1. Prior to each measure-
ment, microarchitectural structures for which current state reflects
the history of a small, bounded set of recent instructions—such as
the reorder buffer or issue queue—are warmed through detailed
warming: brief simulation (e.g., a few thousand instructions) of the
complete detailed performance model sufficient to warm such
small structures. We refer to adjacent detailed warming and
measurement intervals as a detailed window.

The second component of the SMARTS warming strategy, func-
tional warming, addresses state updates between two detailed
windows. Like other simulation sampling frameworks
[2,20,23,32], SMARTS functionally simulates each instruction to
update architectural state. To minimize and bound detailed
warming requirements, SMARTS continuously updates structures
with microarchitectural state that persists across detailed
windows—caches, TLBs, and branch predictors. These structures
cannot be warmed sufficiently by a brief detailed warming period.

Unfortunately, as proposed, functional warming is a performance
bottleneck in simulation sampling [13,34]. Given typical cycle-
accurate simulation models (e.g., SimpleScalar sim-outorder
[3]), the performance measurement of a wide-issue out-of-order
superscalar processor using the SMARTS strategy requires little
2



detailed simulation: typically about a minute on a modern host
machine. A SMARTS-based simulator’s total runtime, however, is
orders of magnitude longer because the functional warming
between detailed windows dominates runtime.

Unlike functional warming, live-point simulation time is directly
proportional to sample size. Sample size depends only on a proces-
sor’s performance variability across a benchmark’s execution
(which does not change drastically across benchmarks or microar-
chitectures), and the desired statistical confidence [23,34].

3. METHODOLOGY
We evaluate live-points in a sampling simulator based on the
SimpleScalar 3.0 sim-outorder simulator [3] for the Alpha
ISA. We modify sim-outorder’s memory subsystem to
include a store buffer and miss status holding registers (MSHRs),
and model interconnect bottlenecks in the memory hierarchy. We
encode live-points using ASN.1 DER format [16] and gzip
compression, which incur minimal storage and processing time
overhead. We use all 26 SPEC2K benchmarks [14] and evaluate all
reference inputs except vpr-place and three perlbmk inputs, as
these inputs fail to simulate correctly in sim-outorder. Over-
all, we include 41 benchmark/input set combinations in this study.

Without loss of generality, we use CPI (cycles-per-instruction) as
our target metric for estimation. Simulation sampling, however,
has been shown to be applicable to other performance metrics of
choice [34, 36]. We measure CPI bias by averaging actual error
(relative to full sim-outorder simulations) over five different
samples, according to the methodology described in [34].

We evaluate live-points with two microarchitectural configura-
tions. Our baseline 8-way out-of-order superscalar model repre-
sents a processor in the current technology generation. The 16-way
out-of-order superscalar configuration is included to reflect an
aggressive future design point. This configuration has a wider
datapath, larger out-of-order window, and larger caches, to exer-
cise the effects of enlarged microarchitectural state. The details of
the 8-way and 16-way configurations are summarized in Table 1.

We use the sampling approach from [34], periodic 1000-instruc-
tion measurement intervals, to identify measurement locations for
all experiments. We choose this sample design because it mini-
mizes the total number of instructions in detailed windows, and
thus, detailed simulation time. We choose the sample size to
achieve precisely 99.7% confidence of ±3% error for each result.

We report simulation runtimes for systems with 2.80 GHz Intel
Xeon (512 KB L2) processors.

4. WHY CHECKPOINTED WARMING?
Functional warming repeats architectural state updates across
different simulations of the same benchmark. (Simulating work-

loads for which architectural state varies across repeated runs—
i.e., because of interrupt timing or different interleaving of multi-
processor instruction streams—is beyond the scope of this work.)
Frequently, microarchitectural state updates are also identical
across runs. Checkpoints can memoize the redundant calculation
across runs, amortizing the one-time cost of computing warmed
state. We are interested in finding the best way to take advantage of
checkpoints to accelerate warming.

Although some microarchitecture studies have suggested or used
checkpoints to accelerate simulation [1,10,11,29], none have
explored the space of microarchitecture warming solutions in the
context of checkpointing. For each portion of model state gener-
ated by functional warming, we may choose either to construct the
state dynamically, or store it in checkpoints. This choice impacts
simulation sampling along three dimensions: the accuracy of the
warmed state, the reusability of checkpoints across microarchitec-
tural configurations, and the speed of simulation. In this section,
we explore the warming method design space with respect to these
three dimensions and justify our choice of checkpointed warming
to implement live-points.

4.1 Simulation sampling warming methods
There is a rich design space of possible warming strategies that
combine checkpoints and dynamic warming for various portions of
architectural and microarchitectural model state. We restrict our
exploration to strategies that use detailed warming to initialize

SMARTS warming strategy …
Functional warming
(~50x faster than detailed sim.)

Measurement
(~1000 instructions of detailed simulation)

Detailed warming (~2000 instructions of detailed simulation)
Detailed
window

Figure 1. SMARTS two-tier warming strategy. Functional warming dominates runtime because it must cover billions of instructions.

Table 1. Microarchitectural configurations.

Parameter 8-way (baseline) 16-way

RUU/LSQ size 128/64 256/128
Memory system 32KB 2-way L1I/D

2 ports, 8 MSHRs
1MB 4-way L2

16-entry store buffer

64KB 2-way L1I/D
4 ports, 16 MSHRs

4MB 8-way L2
32-entry store buffer

L1/L2 line size 32/128 bytes 32/128 bytes 
L1/L2/mem latency 1/12/100 cycles 2/16/100 cycles 

ITLB/DTLB 4-way 128 entries/
4-way 256 entries

200 cycle miss

4-way 128 entries/
4-way 256 entries

200 cycle miss
Functional units 4 I-ALU

2 I-MUL/DIV
2 FP-ALU

1 FP-MUL/DIV

16 I-ALU
8 I-MUL/DIV

8 FP-ALU
4 FP-MUL/DIV

Branch predictor Combined 2K tables
7 cycle mispred.

1 prediction/cycle

Combined 8K tables
10 cycle mispred.

2 predictions/cycle
Detailed warming 2000 instructions 4000 instructions
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queue and pipeline state. Detailed warming can reconstruct state
for the vast majority of microarchitectural structures rapidly, and
the amount of required warming can be determined via worst-case
analysis [34]. By warming most structures dynamically, we avoid
storing any state for these structures, and do not constrain model
parameters that affect this state.

Evaluation criteria. We focus our design exploration on warming
alternatives for long-history structures, such as caches and branch
predictors, for which detailed warming is prohibitively slow. We
evaluate alternatives based on their accuracy, checkpoint reusabil-
ity, and speed.

With respect to accuracy, we consider only the bias introduced by
the warming strategy. SMARTS demonstrated low bias—0.6% on
average, 1.6% worst case [34]—using functional warming. It is
essential to maintain this high accuracy when accelerating
warming because we cannot detect bias through statistical confi-
dence calculations.

We evaluate the reusability of a warming methodology in terms of
the restrictions it places on simulator configuration. When we store
the warmed state of microarchitectural structures in a checkpoint,
we may be forced to limit some of the configuration parameters for
that structure.

Finally, we evaluate the speed of warming alternatives in two
ways. First, we consider how fast measurements can be processed.
For all alternatives, time to simulate the detailed window is the
same, while functional warming and checkpoint decompression/
loading time varies. Second, we consider whether detailed
windows are independent, or must be simulated in program order.
Independent windows can be simulated in parallel, and enable
online reporting of measurement results.

Warming methods. Figure 2 depicts alternatives in the warming
strategy design space. At one extreme, functional warming is used
for the entire duration between measurements, without checkpoints
(as in SMARTS). We refer to this method as full warming. The
opposite extreme, checkpointed warming, eliminates all functional
warming and stores long-history state in checkpoints. This
approach requires limiting some design parameters of the check-
pointed structures.

Functionally-warming microarchitectural state for the entire dura-
tion between measurements is usually not necessary. In adaptive
warming, we store architectural state in checkpoints, and recon-
struct long-history state with a reduced functional warming period.
Adaptive warming requires a mechanism to determine precisely
how little functional warming each detailed window requires.

Trade-offs. Figure 3 illustrates the relationship between each
warming alternative and our three evaluation criteria. Each alterna-

tive optimizes for two of the design criteria (the two depicted
nearest it), at the expense of the third.

Full warming maximizes accuracy and flexibility, but its need for
long periods of functional warming makes it slow, and its turn-
around time scales with benchmark length. As full warming
requires no checkpoints, no configuration parameters are fixed.

Adaptive warming maintains the reusability of full warming and
improves speed, but we show that it sacrifices accuracy. The accu-
racy and speed of adaptive warming depend on a rigorous determi-
nation of the minimal functional warming period for each detailed
window. Unfortunately, determining the correct amount of
warming remains a difficult and unsolved problem [19].

Checkpointed warming matches the accuracy of full warming and
maximizes speed, at the expense of checkpoint reusability. Check-
pointed warming achieves this accuracy because it uses full
warming simulation to generate the checkpointed state.

Because checkpointed warming spends no time performing func-
tional warming, it is the fastest alternative. The drawback of
checkpointed warming is that it imposes limits on some aspects of
the simulated microarchitectural parameters (e.g., the maximum
size or associativity of a cache), which constrains checkpoint reus-
ability. Reusability is important because we must amortize the one-
time cost of checkpoint creation (roughly the cost of a full-
warming simulation) over a series of experiments.

Each of the three warming approaches suffers from a different key
weakness. The speed of full warming has been quantified in [34].
We evaluate the accuracy of adaptive warming in Section 4.2. We
then explore the reusability of checkpointed warming in
Section 4.3.

Full warming
(e.g., S )MARTS

Checkpointed warming

Adaptive warming
Functional warming
Detailed warming

Checkpoint load

Measurement

...

...

...

Figure 2. Simulation sampling warming methods. All methods use the same sample design and confidence intervals, only bias differs.

Accuracy

SpeedCheckpoint
reusability

Full warming

Adaptive warming

Checkpointed warming

Figure 3. Relative merits of warming methods.
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4.2 Adaptive warming
The key challenge of achieving accuracy with adaptive warming
lies in determining the functional warming period length. If the
warming period is underestimated, simulation results will be
biased. If the warming period is overestimated, we sacrifice simu-
lation speed.

A recently-proposed technique for determining cache warming
requirements is Memory Reference Reuse Latency (MRRL) [13].
MRRL collects a histogram of memory access reuse distances
between each pair of detailed windows during a functional simula-
tion of a benchmark. The warming length reported by MRRL is the
length sufficient to cover 99.9% of the observed reuse distances.
This probabilistic bound on cache warming requirements is config-
uration independent, because reuse latency is measured by instruc-
tion count in a functional simulator. The MRRL analysis outputs
specific warming lengths (in instructions) for each detailed
window, and must be run once per benchmark and sample design.
The offline analysis pass takes roughly the same time as a full-
warming simulation.

MRRL has demonstrated low bias on large detailed windows
(worst-case error of 2% for 50-million-instruction windows). This
paper evaluates MRRL on the small detailed windows required by
the optimal sample design. Small windows are more susceptible to
bias because warming errors are not amortized over a large
measurement interval.

We evaluate MRRL with a reuse probability of 99.9% as recom-
mended in [13]. This reuse probability results in an average of 4.1
million instructions of warming prior to each detailed window,
which is 20% of the average full warming interval (20.5 million
instructions). Thus, an approximation for the runtime of the adap-
tive warming strategy is 20% of the functional warming time of
SMARTS, plus detailed simulation time, or about 1.5 hours on
average per benchmark (8-way).

We present the results of our accuracy evaluation of adaptive
warming with MRRL for small windows in Figure 4. Both average
(1.1%) and worst-case error (5.4%) are considerably worse than
full warming (0.6% on average; 1.6% worst-case). Error is high
because short detailed windows are sensitive to accurate cache
state.

MRRL does not allow detailed windows to be simulated indepen-
dently because cache state must be stitched [19] between consecu-

tive windows. To obtain low bias, detailed windows must be
simulated in program order, precluding parallelization and online
result reporting (see Section 6). If MRRL is used without stitched
state (thereby assuming an empty cache at the start of each func-
tional warming period) we observe a considerably higher CPI bias
of 1.9% on average, with a worst case of 11%.

Because of the high worst-case error and relatively modest
speedup of adaptive warming, we do not choose adaptive warming
to implement live-points. Increasing warming over MRRL (or
increasing the MRRL reuse probability threshold) will improve
accuracy, but further reduces the speed of adaptive warming.

4.3 Checkpointed warming
The key concern in evaluating checkpointed warming is the reus-
ability of a set of checkpoints across a series of experiments.
Because checkpointed warming uses a full-warming simulation to
generate microarchitectural state for large structures, its accuracy
is identical to full warming. When the generated live-points can be
used for at least two experiments, checkpointed warming provides
a net speed gain over full warming.

To maximize the reusability of live-points, we wish to place as few
constraints as possible on microarchitectural configuration. Check-
pointed warming dynamically reconstructs the vast majority of
microarchitectural structures (e.g., queues, ROB, etc.) through
detailed warming. As such, the configurations of these dynami-
cally-warmed structures are not constrained. For the remaining few
structures, for which detailed warming requirements are large or
cannot be determined (e.g., caches and branch predictors), we store
a representation of the structure in each live-point. The reusability
of a live-point library is limited by the flexibility of these represen-
tations.

There are two basic approaches to increasing live-point reusability.
First, we can collect state snapshots for multiple component
configurations in a single creation pass. The second, preferable
approach is to modify the saved representation such that a range of
organizations can be reconstructed when a live-point is loaded.
However, we cannot easily apply this adaptable approach to some
structures, such as modern branch predictors, and so we must store
multiple warmed configurations. Cache-like structures, including
the TLB, can typically be stored using adaptable data structures.

Storing multiple configurations. The first approach is straight-
forward and effective if the number of configurations of interest is
relatively small. The major cost of live-point creation is the
traversal of the entire benchmark instruction stream. Warming
additional copies of a microarchitectural structure incurs a rela-
tively small overhead. If the slowdown is less than a factor of two,
it is a net win to collect state for both configurations in a single
pass. We recommend this approach for storing branch predictor
state.

Storing adaptable warmed state. With cache-like structures, it is
possible to exploit the properties of cache replacement algorithms
to create a representation of cache state from which one can accu-
rately reconstruct a range of configurations [15]. Barr et al.
propose a data structure, called the Memory Timestamp Record
(MTR), that records the timestamp of the last access to each cache
block during functional warming [1]. The MTR allows a simulator
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to reconstruct a cache hierarchy of arbitrary sizes and associativi-
ties assuming least-recently-used replacement and a lower bound
on cache block size.

Storing an MTR in each live-point enables reusability across
nearly arbitrary cache hierarchy organizations, but incurs a storage
cost proportional to the application’s memory footprint. However,
researchers can often place an upper bound on the maximum cache
size of interest. For a given maximum size and associativity, we
can instead store a timestamp-sorted list of the most recent
accesses mapping to each set, referred to as a Cache Set Record
(CSR) by Barr et al. [1]. A CSR requires the same storage as the
tag array for the selected maximum cache size, and allows recon-
struction of all smaller and less associative caches.

Our analysis of simulation sampling warming methods demon-
strates that checkpointed warming is both fast and accurate. The
reusability weakness of checkpointed warming can be mitigated
through careful planning of microarchitectural state representation.
Thus, we choose to use checkpointed warming to implement live-
points.

5. LIVE-POINTS WITH LIVE-STATE
Current publicly-available computer architecture simulators
already provide a checkpoint creation and loading capability that
allows the simulator to move to a particular program trace location
in constant time [3,24]. These checkpoint implementations store
only architecturally-visible system state (i.e., memory, architec-
tural register and peripheral device state). A straightforward
approach to implement checkpointed warming is to extend these
existing checkpoints with functionally-warmed microarchitectural
state as described in Section 4.3.

Unfortunately, this straightforward approach is not practical
because conventional checkpoints require prohibitive storage,
proportional to the total memory footprint of an application (up to
200MB for SPEC2K [14]). We measured an average SPEC2K
memory footprint of 105 MB. Thus, for SMARTS-like samples
(~10,000 measurements), conventional checkpoints for all of
SPEC2K require 33 TB of storage (7.2 TB with gzip compres-
sion). Sampling optimizations [10,29,35] reduce this cost by an
order of magnitude at best. With these checkpoint sizes, simula-
tions are I/O bound, and checkpointed warming can provide little,
if any, speedup over functional warming. It may be possible to
save space by storing only changes to memory between check-
points, but this approach introduces dependence among check-
points, precluding parallel simulation and other sampling
optimizations (see Section 6). 

Reducing storage with live-state. We can drastically reduce
checkpoint storage cost for live-points by storing only the state that
will be accessed during the brief simulation window, an approach
we call live-state. Because the detailed windows are just a few
thousand instructions, only a tiny subset of state is accessed. Simu-
lation state that is never referenced during measurement or detailed
warming can be omitted from the checkpoint without affecting the
simulation.

The live-state approach stores the minimal set of accessed state for
each live-point’s specified simulation window. Live-points can
accurately simulate only the instructions within this pre-selected

window. The restriction to a pre-selected window does not impact
simulation sampling because the window locations and measure-
ment/detailed warming periods are specified in advance by the
sample design.

We can identify precisely which instructions will commit during
the selected window when we construct a live-point. Thus, it is
straightforward to identify all the memory and microarchitectural
state these instructions will access—generally less than 32 KB per
live-point (uncompressed, including ASN.1 encoding overhead).

However, we cannot identify the state that is accessed on non-
committed speculative paths (wrong-path instructions). It is not
possible to identify a priori the set of wrong-path instructions that
will execute in all future simulations at live-point creation time. To
do so requires either fixing all simulation parameters (queue sizes
and latencies), or exploring all possible speculative paths to the
depth they might be followed (as bounded by, for example, ROB
size). The former eliminates checkpoint reusability, while the latter
requires analysis that grows exponentially with speculation depth.

Effects of wrong-path instructions. Although the effects of
wrong-path instructions on the commit instruction stream are
generally small [4], they cannot be ignored given our tight bias
goals. Errors in wrong-path modeling cause the schedule of wrong-
path execution to differ from a simulation where all state is avail-
able, which in turn perturbs the execution schedule of the commit
instruction stream.

We measure the bias introduced if we restrict live-state to contain
only state accessed by correct path instructions. With restricted
live-state, we omit all architectural state (memory values) and
microarchitectural state (cache tags and branch predictor entries)
that are not accessed in the simulation window during live-point
creation, leaving this state uninitialized (effectively random). A
live-point with restricted live-state contains the smallest possible
subset of state that can still simulate correct-path instructions (but
will not accurately simulate wrong-path). Although the average
bias increase for CPI is only 0.1%, the worst case is 3.3%. Figure 5
shows the bias results for the benchmarks with the most error.

Wrong-path instructions interact with the commit stream through
resource contention and in the cache tag arrays. In the vast major-
ity of cases, we can use branch predictor outcomes to identify the
wrong-path instruction sequence, and cache tag arrays to identify
wrong-path load latency. This information is sufficient to identify
contention and cache tag array updates arising from speculative
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execution, without the need for the values accessed by wrong-path
loads.

In our live-state approach, we include the microarchitectural state
necessary to reflect wrong-path effects (branch predictor, cache tag
arrays, TLBs), but omit memory values unless they are accessed
on the correct-path. By omitting the vast majority of memory
values, the live-state approach reduces storage requirements from
over 100 MB to 142 KB per live-point (uncompressed; assuming
cache hierarchy and branch predictor of our 8-way baseline).
Under this approach, unavailable memory values enter the
microarchitecture (via a wrong-path load) on average less
frequently than once per detailed window. We measured no appre-
ciable increase, < 0.1% difference, in CPI bias over full warming.

6. SAMPLING FRAMEWORK
One of the benefits of the live-point design is that each live-point is
independent of all other live-points, and can thus be processed in
isolation. As others have noted [11,20,22], window independence
allows a simulation to be parallelized across hosts (with parallel-
ism degree up to the sample size). However, we can also leverage
live-point independence to minimize the runtime of absolute and
comparative experiments, and provide results from simulations
that are still in progress. The following subsections present a
sampling methodology for absolute and comparative performance
studies.

6.1 Absolute performance estimates
To report meaningful estimated results, a sampled simulation must
complete processing of an unbiased sample of the complete bench-
mark. With functional warming, where the measurements must be
processed in strict program order, the measured sample represents
the entire benchmark only after the entire simulation is complete.

With independent live-points, we are not forced to process detailed
windows in program order. We can exploit this property to rear-
range the live-point processing order so that we can report unbi-
ased performance estimates (with lower statistical confidence than
final results) at any time.

A complete live-point library forms an unbiased random (or
systematic) sample of a benchmark. If we select a random sub-
sample from the live-point library, we arrive at a smaller, but still
unbiased, random sample of the benchmark. Based on this princi-
ple, if we shuffle a live-point library into random order, after each
live-point is simulated, the live-points processed thus far form an
unbiased random sample of the benchmark.

We exploit random-order live-point processing to allow a simula-
tion to report results at any time. As live-points are processed, we
calculate the confidence achieved in the sample observed thus far.
As the sample size grows, the confidence improves, and the esti-
mated results converge to their true values. As soon as we are satis-
fied with the current confidence, we can terminate the simulation.
We impose a minimum sample size of 30 live-points to ensure that
the central limit theorem holds and our confidence calculations are
valid [17].

Online monitoring of simulation results and their current confi-
dence has proven valuable during simulator development to get
quick-and-dirty performance estimates and detect simulator bugs.

Even after processing a small sample (100’s of live-points), confi-
dence intervals will be tight enough to identify gross performance
bugs reliably.

To maximize simulation processing speed, we recommend shuf-
fling live-points on disk, prior to simulation. Live-points should be
stored in a single compressed file to maximize I/O performance
(which is the performance-limiting bottleneck in our environment).

6.2 Comparative performance estimates
When a live-point library is created, we set an upper bound on the
sample size that can be measured with that library (i.e., the number
of live-points in the library). The upper bound is typically based on
the sample size required to meet a desired statistical confidence for
a benchmark and baseline microarchitecture combination. Because
the required sample size will increase when a new microarchitec-
ture has higher target metric variability (e.g., CPI variance), a live-
point library sized for the baseline configuration may fall short of
the sample required for an experimental case.

In such comparative studies, researchers are often more interested
in the relative performance of two designs than absolute perfor-
mance. We can take advantage of this observation through a
sampling procedure called matched-pair comparison, first
proposed for computer architecture simulation sampling by Ekman
and Stenström [10]. Matched-pair comparison exploits the
phenomenon that the change in performance from design x to
design y tends to vary less than the absolute performance of either
design. As a result, the change in performance can be assessed to a
given confidence with a smaller sample than absolute perfor-
mance.

Under matched-pair comparison, we build a confidence interval
directly on the change in performance. Unlike an unpaired compar-
ison of two different samples, in matched-pair comparison, we
measure the same sample (i.e., same live-points) in each of two
designs and compute the performance delta on each measurement
interval. In the common case, the design change has a similar
effect in all measurement intervals (e.g., a larger cache tends to
improve performance uniformly by a small increment). Thus, the
variance of the performance deltas, and required sample size, is
small. The calculations and procedure for applying matched-pair
comparison are detailed fully in [10].

Ekman and Stenström report that matched-pair comparison typi-
cally reduces sample size by an order of magnitude compared to
absolute performance estimates over a range of microarchitectural
design changes. We performed a similar set of sensitivity studies
(e.g., varying latencies, queue sizes, functional unit mix, etc.). Our
results corroborate [10], indicating that matched-pair comparison
reduces sample size by a factor of 3.5 to 150. We note that
matched-pair comparison is particularly effective for detecting that
a design change has no appreciable impact (i.e., less than 3% CPI
change). When a design change has little effect, nearly all
measurement intervals behave identically under the base and
experimental cases, resulting in low CPI-delta variance.

Matched-pair comparison addresses the risk that a comparative
performance study will exhaust the available live-point library
without achieving the desired confidence. If we size a live-point
library such that it can achieve a particular confidence in an abso-
7



lute estimate of the base case, we will typically require only a frac-
tion of this library for comparative studies.

We can combine matched-pair comparison with random-order
processing to report results online for comparative studies. The
combined optimizations are particularly effective for rapidly
searching a design space to eliminate designs that do not differ
significantly from the base case. A 50-measurement sample can
rapidly distinguish design changes with no impact from those that
require further simulation.

6.3 Experiment procedure
We now summarize our complete procedure for experimentation
with live-points. Figure 6 illustrates the steps in the procedure.

First, we must measure the target metric variance for the baseline
configuration to determine an appropriate live-point library size.
We can measure variance using prior simulation sampling
approaches, or estimate it from published results [34]. In our
implementation, these simulations require seven hours on average
for SPEC2K.

Second, we must generate a live-point library. We choose the
maximum cache hierarchy and set of branch predictors of interest,
and run a full-warming simulation that outputs compressed live-
points. Live-point generation requires on average 8.5 hours per
benchmark.

Third, we shuffle these live-points into a random order and store
them in a single compressed stream. Optionally, the live-point
library can be split into multiple compressed streams for parallel
processing. Shuffling is compression-speed bound, and requires
several minutes per benchmark.

Fourth, we measure the baseline configuration with our live-point
library. We record metrics of interest (e.g., CPI) for each live-
point. This simulation can be parallelized and can employ the
random-order processing optimization. For our 8-way microarchi-
tecture, this simulation reaches 99.7% confidence of ±3% error in
an average of 91 seconds per benchmark (without parallelization).

Finally, we can perform comparative studies relative to the base-
line microarchitecture using the live-point library. These simula-
tions can employ parallelization, random-order processing, and
matched-pair comparison optimizations. Furthermore, we can
monitor simulation results online, and terminate simulations at any
time to report results with reduced confidence. If we assess our 16-
way microarchitecture relative to our 8-way baseline, the simula-
tion reaches target confidence in an average of 2.4 minutes per

benchmark, while an absolute measurement of the 16-way
microarchitecture requires 7.6 minutes per benchmark.

7. RESULTS
In this section, we report results on the effectiveness of the live-
state approach in reducing storage cost and compare the perfor-
mance of live-points to other simulation sampling approaches.

7.1 Live-state results
The live-state approach is highly effective at reducing the storage
cost of live-points. Because the simulation window covered by
each live-point is short (a few thousand instructions), only ~16 KB
of memory state must be stored.

Live-state can also be used in conjunction with adaptive warming.
However, because the simulation window required for cache
warming is large (on average 4.1 million instructions per window),
the required memory state is much larger, on average 360 KB.
Figure 7 compares the uncompressed size of live-points (assumes
cache/branch predictor of the 8-way microarchitecture) and live-
state for adaptive warming using MRRL (AW-MRRL; microarchi-
tecture independent). We typically obtain 5:1 compression with
gzip. 

The storage cost (and thus decompression/load time) of live-points
grows as the size of the stored microarchitectural structures
increases. With adaptive warming, no microarchitecture-specific
state is stored, and thus storage cost is fixed. As a result, there is a
break-even point where the storage cost of live-points and adaptive
warming become equal. Figure 8 (left) shows that this break-even
threshold occurs around a 4 MB maximum cache size. However,
for microarchitecture state larger than this threshold, live-points
remain an order of magnitude faster (Figure 8 right) because
generating cache state dynamically is much slower than loading it
from disk.

Collect live-points

Measure baseline variance

Baseline experiment

Matched-pair experiments

Shuffle live-point library
Functional warming
Detailed warming

Live-point

Measurement

...

...

...

...

2.

1.

4.

5.

3.

Figure 6. Live-point experiment procedure. Matched-pair experiments produce estimates of performance deltas from the baseline.

Register files, TLBs,
system call updates Branch predictor

L1-D cache tags

L2 cache tags

Memory dataL1-I cache tags

3 KB 363 KB

142 KB3 KB 46 KB4 KB 8 KB 16 KB64 KB

AW-MRRL

Live-point

360 KB

Figure 7. Breakdown of a typical live-point (uncompressed).
For comparison, a conventional checkpoint is 105 MB on average.
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7.2 Live-points performance
We use live-points to estimate the absolute CPI of our benchmark
suite to the same accuracy and confidence as previous simulation
sampling techniques as described in Section 3. Table 2 presents
measured run-time results for live-points. Runtime results were
collected with serial live-point processing and only a single simu-
lation running per system. We compare live-points to non-sampled
runs of the complete benchmark with SimpleScalar’s sim-
outorder, full warming using SMARTSim [34], and adaptive
warming using MRRL (AW-MRRL). We show the best, average,
and worst runtimes for the two microarchitectural configurations
introduced in Section 3.

Live-points eliminate the functional warming bottleneck in
SMARTSim, reducing average simulation time for SPEC2K bench-
marks from 7 hours to just 1.5 minutes (8-way baseline microar-
chitecture). Live-points are 50 times faster than AW-MRRL. Live-
point simulations often complete faster than native execution of
benchmarks on our host platform, which typically requires several
minutes per benchmark.

For both SMARTSim and sim-outorder, simulation time varies
linearly with benchmark length. Thus, we can expect simulation
times to grow with longer benchmarks. In contrast, runtime with
live-points and AW-MRRL depends on sample size, and thus CPI
variability. We do not observe any relationship between CPI vari-

ability and benchmark length; therefore, we do not expect live-
points’ runtimes to increase for longer benchmarks.

Table 3 summarizes the characteristics of the warming approaches
evaluated in this paper. The table shows the live-point library sizes,
run times, and bias measured for each technique.

Live-points match the bias of SMARTSim. AW-MRRL with a reuse
distance threshold of 99.9% does not match this tight error. Adap-
tive warming accuracy may improve with a higher reuse threshold,
at the cost of further slowdown relative to live-points. Sampling
error can be made arbitrarily small with all three warming
approaches by increasing sample size.

Table 3 also indicates the scaling behavior of live-point size and
processing time with respect to microarchitectural model and
benchmark characteristics, and indicates what microarchitecture
model parameters must be fixed when live-points are created. A
live-point library restricts maximum cache and TLB sizes and
must include state for each branch predictor used in subsequent
simulations. However, other microarchitectural configuration
parameters are not fixed. Live-points are independent of one-
another, enabling parallel simulation and online results reporting.

8. RELATED WORK
Many previous studies of simulation methodology present tech-
niques orthogonal to our work. A variety of programming tech-
niques can accelerate simulators by up to an order of magnitude
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However, even for large caches, live-points are much faster than adaptive warming using MRRL because no functional warming is needed.

8-way

Table 2. Runtimes of SPEC2K benchmarks. We include the fastest and slowest runtimes to show the variability of each technique.

8-way (1MB L2) 16-way (4MB L2)

Minimum Average Maximum Minimum Average Maximum

sim-outorder 2.2 h
perlbmk

13 h
gcc-2

5.5 d 15 d
mgrid

24 d
parser

3.8 h
perlbmk

22 h
gcc-2

9.6 d 27 d
mgrid

42 d
parser

SMARTSim 4.4 m
perlbmk

29 m
gcc-2

7.0 h 17 h
mgrid

25 h
parser

4.6 m
perlbmk

31 m
gcc-2

7.3 h 18 h
mgrid

26 h
parser

AW-MRRL 61 s
perlbmk

88 s
eon-2

1.5 h 7.1 h
ammp

9.5 h
parser

65 s
perlbmk

92 s
eon-2

1.6 h 7.5 h
ammp

9.9 h
parser

Live-points 1 s
swim

2 s
eon-2

91 s 5.0 m
vpr

12 m
ammp

13 s
swim

14 s
eon-2

7.6 m 25 m
vpr

1.3 h
ammp

Times are specified in days (d), hours (h), minutes (m), and seconds (s).
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without affecting simulation results [7,8,31]. However, simulation
of complete benchmarks remains expensive. Construction and
evaluation of short synthetic benchmarks with statistical properties
similar to target workloads, commonly referred to as statistical
simulation [25,26], can reduce simulation time to seconds.
However, increasing the applicability, robustness and accuracy of
these techniques remains an active research topic [9,18].

Our work builds upon previous work on simulation sampling.
Uniform simulation sampling was first proposed in the context of
trace-based cache simulation [21]. Conte et al. proposed using
sampling theory to calculate confidence of performance estimates
explicitly [6]. SMARTS [34] and similar recent work [23] minimize
total instructions simulated in detail, and form the basis for our
sampling methodology.

Other recent sampling proposals employ representative sampling
[20,29,32], where program phases are identified and a representa-
tive portion of each phase is measured. The most prevalent repre-
sentative sampling approach, SimPoint [29,32], identifies phases
based on microarchitecture-independent analysis of the relative
frequency of static basic blocks. Checkpointed warming and the
live-state approach can be used in conjunction with SimPoint to
eliminate the cost of fast-forwarding to SimPoint starting loca-
tions. Live-state checkpoints for SimPoint are similar in size to
adaptive warming checkpoints. However, representative sampling
techniques do not provide quantitative measures of confidence
with each result [35]. With uniform sampling, we can trade off
confidence in results for reduced simulation turnaround time.
Moreover, even for high target confidence (i.e., 99.7% confidence
of ±3% error), live-points simulate fewer instructions in detail per
benchmark (~30 million instructions) than the 10 M-instruction
Early SimPoint approach [29] (~300 million instructions).

Live-points have been successfully integrated into the Liberty
Simulation Environment (LSE) by researchers at Princeton
University [28]. LSE is a computer architecture simulation infra-
structure, which models microarchitecture at a structural, rather
than behavioral, level of abstraction. As such, LSE models match
hardware closely, but simulation is an order of magnitude slower
than sim-outorder. Integration of live-points into LSE
reduced typical simulation times by up to 20x over SMARTS. More-

over, the online results reporting possible with live-points reduced
the typical implement-debug-test cycle of model development to
less than an hour, greatly accelerating the model development
process.

9. CONCLUSION
Live-points reduce microarchitecture simulation time to the limit
imposed by detailed simulation. We leverage state-of-the-art simu-
lation sampling techniques to simulate a minimum of instructions
in detail by using large sample sizes with small measurement inter-
vals of 1000 instructions each. Unlike previous simulation
sampling approaches, turnaround time with live-points is indepen-
dent of benchmark length, depending only on the target metric’s
variance. Therefore, live-points enable simulation of benchmarks
far longer than those used currently, with no increase in simulation
time. The live-state approach enables checkpointed warming with
reasonable storage requirements by storing only necessary func-
tionally-warmed state for several thousand instructions of accurate
performance simulation. A reusable live-point library for SPEC2K
requires only 12 GB. By processing live-points in a random order,
our sampling framework allows simulations to report results while
simulation is still in progress.

The vast increase in simulation speed possible with live-points
translates into a much higher experimental throughput. Parametric
studies that cover a wide range of microarchitectural options can
now be evaluated accurately on entire benchmark suites with
reasonable computational requirements. In addition, live-points
enable interactive performance estimates for individual bench-
marks in minutes, enabling quick evaluations of design decisions
with immediate performance feedback.
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