‘Computer Architecture Laboratory at Carnegie Mellon

Flexus CMP Coherence Protocol

e Notation

Message_received, transition_guard_conditions/
Messages_sent, state _update actions

e State maintained per cache line at CMP directory

a
d
d

a

Protocol state: tracks stable and transition states in CMP
Sharers bit vector: tracks on-chip sharers

Owner field: specifies who is responsible for the last copy of the line within
the CMP (L2 if owned by shared cache)

Additional temporary data for handling transient states

e As in Piranha CMP protocol, blocks allocated directly in L1s

a
d

Shared cache acts as a large victim cache for L1 replacements
Both clean and dirty blocks written back to L2 by owner

e References

a

© 2006 Jared Smolens — Document Version 1.2 — Release Date 10/5/06

Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing, ISCA’00



puter Architecture Laboratory at Carnegie Mellon

Flexus CMP Coherence Protocol

5) WriteReq(i)&owner=L2/
WriteAck(i)

Owner=|

sharers=i

6) UpgradeReq(i)&Sharers=0/
UpgradeAck(i)

Sharers=i,

Owner=i

{InvalidateAck(j),EvictCleanAck(j)}/

Acount-- ‘
Acount==0/

UpgradeAck(i)
Sharers=i,
Owner=i

7) UpgradeReq(i)/
Invalidate(all sharers but i)
Acount=#Sharers-1

{InvalidateAck(i),
WritebackReq(i)}/
UpgradeAck(j)
Sharers=j, Owner=j

with sharers/
| sharers but i)
t=#sharers-1

21) UpgradeReq(i)
Invalidate!

3.2) ReadReq(i)&Owner=L2/

19) EvictClean(i)&
#shares>1/
Sharers-=|,
If Owner, Owner=L2 (19.2)
Else (19.1)

22) UpgradeReq(i), no sharers/
UpgradeAck(i)

12) Owner !=1.2 &
UpgradeReq(j)/

20) EvictClean(i) & #Sharers=1/

Invalidate(i) Sharers-=I, Owner=L2 ReadAck(i)
18) ReadReq(i)/ Sharers+=i,
ReadAck(i) Owner=i

Sharers+=i

3.1) EvictClean(i)/

. Sharers-=i,
if Owner, Owner=L2

8) WriteReq(i)&owner!=L 2) ReadReq(i)&
Invalidate(all sharers) Owner!=L2/
Acount=#Sharers ReturnReq(j)

{InvalidateAck(i),
WritebackReq(i)}/
WriteAck(j)
Sharers=j, Owner=j

WriteAck(i)
Sharers=i
Owner=i

11) Owner =12 &

WriteReq(j)/
Invalidate(i) e
Read/Ack() 2) ReturnReply(j)/
g';fn':rri" ReadAck(i)
Sharers+=|
Owner=L2

13) EvictDirty(i)/

Sharer_s-=l Sharers=i
owner=L2 Owner—i
Owner=L2 & Transitions labeled “Aux” and (transactions which require
{19.1 WateReall), 192 UparadeReq(ll}{ — off-chip memory accesses and on-chip evictions) appear on
{WriteAck(i), UpgraQeReqU)} 14) EvictDirty(i)/ a separate diagram
Sesl P Sharers=0, Owner=0 P 9 ) 2

© 2006 Jared Smolens — Document Version 1.2 — Release Date 10/5/06



ar Architecture Laboratory at Carnegie Mellon

Flexus CMP Coherence Protocol — Responses to External Messages (from off-chip)

ExtDowngrade&
Sharers>0/
Downgrade(All sharers)
acount=#sharers

ExtDowngrade&
Sharers=0/
ExtDowngradeAck

Sharers>0/

Extinvalidation&
Sharers=0/
ExtlnvalidationAck
Owner = Null

acount=0/
ExtinvalidationAck

© 2006 Jared Smolens — Document Version 1.2 — Release Date 10/5/06

Extinvalidation&

Invalidate(All sharers)
acount=#sharers

Extinvalidation&
Sharers>0/
Invalidate(All sharers)
acount=#sharers

ExtDowngrade&
Sharers>0/

Downgrade(All sharers)
acount=#sharers

ExtInvalidation&
Sharers=0/
ExtDowngradeAck

{EvictCleanReq(i),

{EvictCleanReq(i),
WritebackReq(i),
InvalidationAck(i)}/
acount--

acount=0/
ExtDowngradeAck




1 CAKEM

uter Architecture Laboratory at Carnegie Mellon
Flexus CMP Coherence Protocol — Aux Requests and Evictions

Aux requests handle off-chip misses

acount=0/
EvictDirty

acount=0/

{EvictDirtyAction(i),
EvictClean (silent)

EvictModifiableAction(i)}&&Sharers=0/
EvictDirty

InvAck(i)/
acount--

{EvictDirtyAction(i),
EvictModifiableAction(i)}
{InvalidateAck(j), &&Sharers>0
EvictCleanAck(j)}/ Invalidate(all sharers)
Acount-- acount =#sharers
InvAck(i)/
acount--
ReadReq(i)/ WriteReq(i)/ ExtInvalidationReq& gcount=g/
ExtReadReq ExtWriteReq #sharers>0/ ExtInvalidationAck
Invalidate(all sharers)
acount=#sharers (Came from WriteReq and Invalid)
ExtWriteAck/
WriteAck(i)
{ExtInvalidationReq&#sharers=0,
ExtDowngradeReq}/
{ExtInvalidationAck,
ExtDowngradeAck}
(Came from UpgradeReq)
ExtWriteAck/
Invalidate(sharers but i )
{ExtInvalidationReq, acount=#sharers-1
ExtDowngradeReq}/
{ExtInvalidationAck,
ExtDowngradeAck} (Came from WriteReq and Shared)
ExtWriteAck/
Invalidate(sharers but i )
acount=#sharers
Evnc?CIeanActlon/ ExtReadAck/
Invalidate(all sharers) )
= ReadAck(i)
acount =#sharers _
Sharers=|
Owner=i eAck/
MissReplyWritable(i)
Sharers=|
WriteReq(i)/ Qumerst
ExtWriteReq

© 2006 Jared Smolens — Document Version 1.2 — Release Date 10/5/06



