
© 2006 Jared Smolens – Document Version 1.2 – Release Date 10/5/06 1

Flexus CMP Coherence Protocol

• Notation

• State maintained per cache line at CMP directory
Protocol state: tracks stable and transition states in CMP
Sharers bit vector: tracks on-chip sharers
Owner field: specifies who is responsible for the last copy of the line within
the CMP (L2 if owned by shared cache)
Additional temporary data for handling transient states

• As in Piranha CMP protocol, blocks allocated directly in L1s
Shared cache acts as a large victim cache for L1 replacements
Both clean and dirty blocks written back to L2 by owner

• References
Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing, ISCA’00

Message_received, transition_guard_conditions/
Messages_sent, state_update_actions

© 2006 Jared Smolens – Document Version 1.2 – Release Date 10/5/06 2

I

S

S2MW

S2MU

MMW

Flexus CMP Coherence Protocol

O

MMU

M2O

M

Aux

Aux

Aux

Aux

Aux

Transitions labeled “Aux” and (transactions which require
off-chip memory accesses and on-chip evictions) appear on
a separate diagram.

Aux

SFWD
1) ReadReq(i)/
ReadAck(i)
Sharers=i,
Owner=i

3.2) ReadReq(i)&Owner=L2/
ReadAck(i)
Sharers+=i,
Owner=i

7) UpgradeReq(i)/
Invalidate(all sharers but i)
Acount=#Sharers-1

{InvalidateAck(j),EvictCleanAck(j)}/
Acount--

Acount==0/
UpgradeAck(i)
Sharers=i,
Owner=i

11) Owner != L2 &
WriteReq(j)/
Invalidate(i)

{InvalidateAck(i),
WritebackReq(i)}/
WriteAck(j)
Sharers=j, Owner=j

9) {WriteReq(i),
UpgradeReq(i)}/
{WriteAck(i),
UpgradeReq(i)}
Sharers=i
Owner=i

Acount==0/
WriteAck(i)
Sharers=i
Owner=i

8) WriteReq(i)&owner!=L2/
Invalidate(all sharers)
Acount=#Sharers

{InvalidateAck(j),
EvictCleanReq(j)}/
Acount--

3.1) EvictClean(i)/
Sharers-=i,
if Owner, Owner=L2

20) EvictClean(i) & #Sharers=1/
Sharers-=I, Owner=L2

16) Owner=L2 & ReadReq(i)/
ReadAck(i), Sharers+=i

18) ReadReq(i)/
ReadAck(i)
Sharers+=i

19) EvictClean(i)&
#shares>1/
Sharers-=I,
If Owner, Owner=L2 (19.2)
Else (19.1)

17) WriteReq(i)/
Invalidate(all sharers)
Acount=#Sharers

21) UpgradeReq(i) with sharers/
Invalidate(all sharers but i)

Acount=#sharers-1

12) Owner != L2 &
UpgradeReq(j)/
Invalidate(i)

{InvalidateAck(i),
WritebackReq(i)}/
UpgradeAck(j)
Sharers=j, Owner=j

Owner=L2 &
{10.1 WriteReq(i), 10.2 UpgradeReq(i)}/
{WriteAck(i), UpgradeReq(i)}
Sharers=I, Owner=i

22) UpgradeReq(i), no sharers/
UpgradeAck(i)

15) Owner!=L2 &
ReadReq(i)/
DowngradeReq(j)

{InvalidateAck(j),
WritebackAck(j),
DowngradeAck(i)}/
ReadAck(i)

6) UpgradeReq(i)&Sharers=0/
UpgradeAck(i)
Sharers=i,
Owner=i

5) WriteReq(i)&owner=L2/
WriteAck(i)
Owner=I
sharers=i

2) ReadReq(i)&
Owner!=L2/
ReturnReq(j)

2) ReturnReply(j)/
ReadAck(i)
Sharers+=I
Owner=L213) EvictDirty(i)/

Sharers-=I
owner=L2

14) EvictDirty(i)/
Sharers=0, Owner=0

© 2006 Jared Smolens – Document Version 1.2 – Release Date 10/5/06 3

OM

SI

TExtInv TExtDgd

ExtInvalidation&
Sharers>0/
Invalidate(All sharers)
acount=#sharersExtInvalidation&

Sharers=0/
ExtInvalidationAck
Owner = Null

ExtDowngrade&
Sharers=0/
ExtDowngradeAck

ExtDowngrade&
Sharers>0/
Downgrade(All sharers)
acount=#sharers

acount=0/
ExtDowngradeAck

ExtInvalidation&
Sharers>0/
Invalidate(All sharers)
acount=#sharers

ExtInvalidation&
Sharers=0/
ExtDowngradeAck

ExtDowngrade&
Sharers>0/
Downgrade(All sharers)
acount=#sharers

acount=0/
ExtInvalidationAck

{EvictCleanReq(i),
WritebackReq(i),
InvalidationAck(i)}/
acount--

{EvictCleanReq(i),
WritebackReq(i),
InvalidationAck(i)}/
acount--

Flexus CMP Coherence Protocol – Responses to External Messages (from off-chip)

© 2006 Jared Smolens – Document Version 1.2 – Release Date 10/5/06 4

I M

S

S2MW

S2MU

GetMGetS

GetMInv

WriteReq(i)/
ExtWriteReq

ReadReq(i)/
ExtReadReq

{ExtInvalidationReq,
ExtDowngradeReq}/
{ExtInvalidationAck,
ExtDowngradeAck}

ExtReadAck/
ReadAck(i)
Sharers=I
Owner=i

ExtInvalidationReq&
#sharers>0/
Invalidate(all sharers)
acount=#sharers

{InvalidateAck(j),
EvictCleanAck(j)}/
Acount--

acount=0/
ExtInvalidationAck

(Came from WriteReq and Invalid)
ExtWriteAck/
WriteAck(i)

(Came from UpgradeReq)
ExtWriteAck/
Invalidate(sharers but i)
acount=#sharers-1

{ExtInvalidationReq&#sharers=0,
ExtDowngradeReq}/
{ExtInvalidationAck,
ExtDowngradeAck}

(Came from WriteReq and Shared)
ExtWriteAck/
Invalidate(sharers but i)
acount=#sharers

Evict
Wait

{EvictDirtyAction(i),
EvictModifiableAction(i)}
&&Sharers>0/
Invalidate(all sharers)
acount =#sharers

{EvictDirtyAction(i),
EvictModifiableAction(i)}&&Sharers=0/
EvictDirty

InvAck(i)/
acount--

acount=0/
EvictDirty

Evict
Wait

InvAck(i)/
acount--

acount=0/
EvictClean (silent)

EvictCleanAction/
Invalidate(all sharers)
acount =#sharers

Flexus CMP Coherence Protocol – Aux Requests and Evictions
Aux requests handle off-chip misses

ExtWriteAck/
MissReplyWritable(i)
Sharers=I
Owner=iWriteReq(i)/

ExtWriteReq

