
© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 1

SimFlex & ProtoFlex

• Fast and Accurate Full-System Simulation

• Tutorial & Hands-on Session

• Before we begin, please open:

– http://www.ece.cmu.edu/~protoflex/

– Ask Michael Papamichael for login information

1

SimFlex & ProtoFlex

Michael Ferdman

Computer Architecture Lab at

December 4, 2010

Michael Ferdman

Overview

– Simics full-system simulation environment (mini)

• Hands-on: Using Simics to bootstrap the simulation

– SimFlex: full-system simulation infrastructure

• Lecture: Flexus trace and cycle-accurate simulatorsy

– Hands-on: Simulating with Flexus

• Lecture: SMARTS simulation methodology

– Hands-on: Accelerating Flexus simulation with SMARTS

– ProtoFlex: FPGA architectural exploration

• Lecture: ProtoFlex concepts and implementation

– Hands-on: Using ProtoFlex for architectural exploration

3

Simics Full-System Simulator

Michael Ferdman

Computer Architecture Lab at

December 4, 2010

Michael Ferdman

Why We Use Simics

– Problem: Full-system simulation is hard

• I/O device handling is tricky

• Some instructions (especially privileged ones) are hard

• Lots of infrastructure (disk formats, CLI, checkpointing, etc…)

– Solution: Leverage someone else’s work (Simics)

• Implements network, disk, video, and all other I/O devices

• Faithfully models all gory CPU details to boot real OSes

• Well-designed CLI, full-system checkpoints, scripting API, etc…

5

Simics Basics

• Configuration file defines system components

– CPUs, motherboard, memory, disks, video card, …

• CLI provides interface to simulation

– read-configuration system-config.simics

• Read configuration file

– write-configuration system-config.simics

• Write out complete system checkpoint

– run 100

• Execute 100 instructions per CPU
6

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 2

Simics Hands-on

• Booting system

• Logging into simulated system

• Interrupting execution

– Examining the simulated system’s registers (pregs)

• Taking system checkpoints

• Importing “real-world” files into simulation

– via CD-ROM and via hostfs mounts

• Examining/Hacking Simics checkpoint file
7

Flexus Simulator Toolset

Michael Ferdman

Computer Architecture Lab at

December 4, 2010

Michael Ferdman

Software Simulation

• Fast and easy to implement

– Minimal cost, simulator runs on your desktop

– Reuse components, don’t implement everything

• Enables standard benchmarks (SPEC, TPC)

– Can execute real applications

– Can simulate thousands of disks

– Can simulate very fast networks

9

Main Idea

• Use existing system simulator (Simics)

– Handles BIOS (booting, I/O, interrupt routing, etc…)

• Build a “plugin” architectural model simulator

– Fast – read state of system from Simics

– Detailed – interact with and throttle Simics

10

Developing with Flexus

• Flexus philosophy

• Fundamental abstractions

11

• Important support libraries

• Components and what they model

Flexus philosophy

• Component-based design

– Compose simulators from encapsulated components

• Software-centric framework

Flexus abstractions are not tied to hardware

12

– Flexus abstractions are not tied to hardware

• Cycle-driven execution model

– Components receive “clock-tick” signal every cycle

• SimFlex methodology

– Designed-in fast-forwarding, checkpointing, statistics

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 3

Developing with Flexus

• Flexus philosophy

• Fundamental abstractions

13

• Important support libraries

• Components and what they model

Flexus organization

/components /simulators /core

CMP OoO

FLEXUS_ROOT

14

Cache

Interconnect

Feeder

CMP.OoO

UP.OoO

Debug

Simics
Interface

Stats

Fundamental abstractions

• Component
– Component interface

• Specifies data and control entry points

– Component parameters
C fi ti tti il bl i Si i f fil

15

• Configuration settings available in Simics or cfg file

• Simulator
– Wiring

• Specifies which components and how to connect
• Specifies default component parameter settings

Component interface

Component

Drive

Ports

16

• Component interface (terminology inspired by Asim [Emer 02])

– Drive: “clock-tick” control entry point to component

– Port: specifies data flow between components

Components w/ same ports are interchangeable

Abstractions: Drive

COMPONENT_INTERFACE(

…

DRIVE (Name)Cache

CacheDrive

17

…

);

• Control entry-point
• Function called once per cycle

Abstractions: Port

COMPONENT_INTERFACE(

…

PORT (Type, Payload, Name)
FrontSideOut

Cache

18

…

);

• Data exchange between components
• Ports connected together in simulator wiring

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 4

Types of ports and channels

push channel

Data Flow

push
input

pull
output

pull
input

push
outputCaller

Caller

Callee

Callee

19

• Type - direction of data and control flow
– Control flow: Push vs. Pull
– Data flow: Input vs. Output

• Payload - arbitrary C++ data type

• Type and payload must match to connect ports

• Availability - caller must check if callee is ready

pull channel

Port and component arrays

COMPONENT_INTERFACE(

…

DYNAMIC_PORT_ARRAY(…)

…

ToNode
Interconnect

20

• 1-to-n and n-to-n connections
– E.g., 1 interconnect -> n network interfaces

• Array dimensions can be dynamic

…

);

Example code using a port

SenderComponent.cpp
void someFunction() {

Message msg;
if (FLEXUS_CHANNEL(Out).available()) {

FLEXUS CHANNEL(Out) << msg;

21

FLEXUS_CHANNEL(Out) << msg;
}

}

ReceiverComponent.cpp
bool available(interface::In) { return true; }
void push(interface::In, Message & msg) { … }

Configuring components

• Configurable settings associated with component
– Declared in component specification

– Can be std::string, int, long, long long, float, double, enum

– Declaration: PARAMETER(BlockSize, int, “Cache block size", “bsize", 64)

– Use: cfg.BlockSize

22

g

• Each component instance associated with configuration
– Configuration declared, initialized in simulator wiring file

– Complete name is <configuration name>:<short name>

• Usage from Simics console
– flexus.print-configuration flexus.write-configuration “file”

– flexus.set “-L2:bsize” “64”

Simulator wiring

simulators/name/Makefile.name
• List components for link
• Indicate target support

i l t / / i i

Feeder

IFetch Execute

23

simulators/name/wiring.cpp
1. Include interfaces
2. Declare configurations
3. Instantiate components
4. Wire ports together
5. List order of drives

L1I L1D

Mux

L2

Developing with Flexus

• Flexus philosophy

• Fundamental abstractions

24

• Important support libraries

• Components and what they model

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 5

Critical support libraries in /core

• Statistics support library

– Record results for use with stat-manager

25

• Debug library

– Control and view Flexus debug messages

Statistics support library

• Implements all the statistics you need

– Histograms

– Unique counters

– Instance counters

26

– Instance counters

– etc…

• Example:

Stat::StatCounter myCounter(statName() + “-count”);

++ myCounter;

A typical debug statement

DBG_(Iface,

Comp(*this)

AddCategory(Cache)

(<< "Received on FrontSideIn[0](Request): "

Severity level

Associate with this component

Put this in the “Cache” category

27

([](q)

<< *(aMessage[MemoryMessageTag])

)

Addr(aMessage[MemoryMessageTag]->address())

);

Text of the debug message

Add an address field for filtering

Debug severity levels

1. Tmp temporary messages (cause warning)

2. Crit critical errors

3. Dev infrequent messages, e.g., progress

28

4. Trace component defined – typically tracing

5. Iface all inputs and outputs of a component

6. Verb verbose output from OoO core

7. VVerb very verbose output of internals

Controlling debug output

• Compile time

– make target-severity

– (e.g. make UP.Trace-iface)

• Run time

29

– flexus.debug-set-severity severity

• Hint – when you need a lot of detail…

– Set severity low

– Run until shortly before point of interest (or failure)

– Set severity high

– Continue running

Developing with Flexus

• Flexus philosophy

• Fundamental abstractions

30

• Important support libraries

• Components and what they model

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 6

Simulators in Flexus 4.0

• UP.Trace fast memory system

• CMP.L2Shared.Trace fast CMP memory system

• UP.OoO 1 CPU 2-level hierarchy

CMP L2Sh dNUCA O O i t L1 / h d L2

31

• CMP.L2SharedNUCA.OoO private L1 / shared L2

• CMP.L2Private.OoO private L1 / private L2

Memory hierarchy

• “top”, “front” = closer to CPU

• Optimized for high MLP

– Non-blocking, pipelined accesses

– Hit-under-miss within set

32

• Coherence protocol support

– Valid, modifiable, dirty states

– Explicit “dirty” token tracks newest value

– Non-inclusive

– Supports “Downgrade” and “Invalidate” messages

– Request and snoop virtual channels for progress guarantees

Out-of-order execution

• Timing-first simulation approach [Mauer 2002]

– OoO components interpret SPARC ISA

– Flexus validates its results with Simics

• Idealized OoO to maximize memory pressure

33

y p

– Decoupled front end

– Precise squash & re-execution

– Configurable ROB, LSQ capacity; dispatch, retire rates

• Memory order speculation (similar to [Wenisch 07])

Hands-on

• Setting up .run_job.rc.tcl file

• Launch Simics using the run_job script

• Build Flexus simulators

– Examine Flexus directory structure and source files

• Launch trace-based simulation

• Launch cycle-accurate (OoO) simulation

– Examine debug output and statistics

34How fast is cycle-accurate timing simulation?

SimFlex:
Fast, Accurate, and Flexible

Simulation of Computer Systems
Pejman Lotfi-Kamran

Computer Architecture Lab at

December 4, 2010

Anastassia Ailamaki
Babak Falsafi
James Hoe

Kun Gao
Brian Gold

Nikos Hardavellas
Jangwoo Kim

Ippokratis Pandis

Minglong Shao
Jared Smolens

Stephen Somogyi
Thomas Wenisch

Roland Wunderlich

Simulation speed challenges

• Longer benchmarks

– SPEC 2006: Trillions of instructions per benchmark

• Slower simulators

36

– Full-system simulation: 1000× slower than SimpleScalar

1,000,000× slowdown vs. HW years per experiment

• Multiprocessor systems

– CMP: 2× cores every processor generation

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 7

The measurement challenge:
Slow full-system simulation

• Simulation slowdown per cpu

– Real HW: ~ 500 MIPS 1 s

– Simics: ~ 15 MIPS 33 s

37

– Flexus, no timing: ~ 1.5 MIPS 5.5 m

– Flexus, in-order: ~ 10 kIPS 13.8 h

– Flexus, OoO: ~ 3 kIPS 46 h

150 years for 1-CPU audited TPC-C run in OoO simulation

Current simulation practices

• Subset or scaled version of benchmark suite

• Single unit of ~1 billion instructions

• Selected measurements via profiling

38

Performance: gcc input 1/5

0.0

1.0

2.0

3.0

4.0

0 5 10 15 20 25 30 35 40 45
Billions of instructions

IP
C

Results not representative of workload performance

Our Solution: Statistical sampling

• Measure uniform or random locations

• Impact
Sampling: ~10 000× reduction in turnaround time

measurements

39

– Sampling: ~10,000× reduction in turnaround time

– Independent measurements: 100- to 1000-way parallelism

– Confidence intervals: quantified result reliability

Sampling theory

Estimate the mean of a population property X
— to a desired confidence — by measuring X
over a sample whose size n is minimized.

40

X

population

• Arbitrary distribution

• Confidence

– e.g., 99.7% probability
of ±3% error

• n = f(C.V., confidence)

unit of U instructions

Sampling for simulation

1 instruction

Defining the sampling population

• CPI difficult to measure
1 i t ti

41

units of instructions

CPI

instructions

over 1 instruction

• Instead, define as
units of U instructions

• As U changes, so does:

– Observed C.V. of CPI

– Required sample size n

Minimizing total instructions

Coefficient of variation
VCPI

Required sample size

42

A large sample of small units minimizes total instr.

Unit Size U (log scale)

n

Total instructions
n • U

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 8

Small units in practice: Bias

• Inexact simulator state

– Empty pipeline

– Approximate caches, etc.

• Results in biasBias

43

– Non-random error

• Larger effect as U shrinks
Warmup W

• Solution: Warmup before
each unit to correct state

Unit Size U

Handling Bias

• For fast results, must measure short pieces

– If starting from cold state, introduces bias

• Perform “wamup” prior to measurement

– Functional warming during fast-forwarding

– Detailed warmup before each simulation window

44

SMARTS

MeasurementDetailed warmupFunctional warming

What is SMARTS runtime problem?

• 99% of runtime spent functional warming
– Average SPEC CPU2000 ref. input: 170 billion instructions

– Average SMARTS detailed simulation: 25 million instructions

45

• Longer benchmarks
– Similar sample size because similar VCPI

– More functional warming

Replace functional warming with checkpoints

What needs to be checkpointed?

• Functional warming for multiple configurations

configuration A

configuration B

46

– Same architectural state

– Different microarchitectural state

• If checkpoints replace functional warming
– SMARTS accuracy & confidence in results

– Huge speedup & parallelism

– Online results & matched-pair comparison

Checkpoint requirements

1. Reusable warm microarchitecture state
– Cache hierarchy

– Branch predictor

2 I d d t ti l d d

47

2. Independent - no sequential dependency
– Parallelism

– Sampling optimizations

Warm microarchitecture state
Checkpoint arch.,

cache & bpred state

checkpoint library

Experiments using
checkpoints

48

• Store warm cache & branch predictor state
– Same sample design, accuracy, confidence

– No warming length prediction needed

Works for any microarchitecture if
reusable cache & branch predictor state

c ec po b a y

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 9

SMARTS & TurboSMARTS

• SMARTS: Sampling Microarchitecture Simulation

– SMARTSim extends SimpleScalar with sampling

– SPEC CPU2000 avg. benchmark in 7 hrs vs. 5.5 days

49

• TurboSMARTS: Live-point support

– Checkpointed warming enables
parallel simulation & online results

– SPEC CPU2000 avg. benchmark in 91 seconds

...

The simplified SimFlex procedure

1. Prepare workload for simulation
– port workload into Simics

2. Measure baseline variance
– determine required library size

50

3. Collect checkpoints
– via functional warming

4. Detailed simulation
– estimate performance results

...

checkpoint

1. Preparing a workload for simulation

• Bring application up in Simics

– Install OS, application

– Construct workload (e.g., load DB)

P di k i

51

– Prepare disk images

– Tune workload parameters

2. Determining sampling parameters

• Can’t switch modes during simulation

– Simics runs in different modes for each timing model

• Instead, construct preliminary flex-point library

52

– 30-50 flex-points to estimate C.V., detailed warming

– Good initial guess: C.V. for user IPC 0.5

Typical sampling parameters

SMARTSim
(8-way OoO)

Flexus
(16-CPU CMP.OoO)

Warming 2000 inst. 100k cycles

Measurement 1000 inst. 50k cycles

53

Target confidence 99.7% ± 3% 95% ± 5%

Sample size 8000 200-400

Sim. time per checkpoint 10 ms ~ 5 min

Experiment turnaround time 91 CPU-sec ~ 5 CPU-hours

3. Collect checkpoints

• Single run too slow

• Need multi-tier approach optimized to:

– Leverage speed of Simics “fast” mode

54

– Parallelize flex-point creation across CPUs

– Minimize storage

– Manage dependence between flex-point files

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 10

Constructing flex-points

• Use UP.Trace or CMP.Trace

– High speed (1.5 MIPS)

• 100 insn / CPU Simics simulation quantum

55

• Minimal code paths to collect cache, bpred state

– Fully deterministic

• No timing feedback into Simics

• i.e., execution in Simics as if Flexus not present

Simics checkpoints

• Simics requires complete arch. state

– Full checkpoints
• Proportional to system RAM, ~2GB

• Independent

56

p

– Delta checkpoints
• Size proportional to memory updates; 50-300MB

• Dependant – requires all files in chain

• Unix file descriptors limit delta chain length (~25)

Storage constraints limit sample sizes to 100’s

Flex-point creation timeline

1. Spread Simics checkpoints
– via Simics -fast

– rapidly cover 30s

Simics checkpoint, “Phase”

57

2. Collect flex-points in parallel
– via UP.Trace

– From each Simics checkpoint

Simics + Flexus checkpoint, “Flexpoint”

4. Detailed simulation

• Process all flexpoints, aggregate offline

• Manipulate results & stats with stat-manager

– Each run creates binary stats_db.out database

Offli t l t l t b t t

58

– Offline tools to select subsets; aggregate

– Generate text reports from simple templates

– Compute confidence intervals for mean estimates

Matched-pair comparison [Ekman 05]

• Often interested in relative performance

• Change in performance across designs
varies less than absolute change

59

varies less than absolute change

• Matched pair comparison

– Allows smaller sample size

– Reports confidence in performance change

Matched-pair example

16

20

5

10

ru
ct

io
n

Performance results for two microarchitecture designs
checkpoints processed in random order

60

0

4

8

12

Processed checkpoints

-10

-5

0

Processed checkpoints

C
yc

le
s

p
er

in
st

Performance deltaDesign-A Design-B

Lower variability in performance deltas
reduces sample size by 3.5 to 150×

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 11

Matched-pair with Flexus

• Simple Arch changes (e.g., changing latencies)
– use same flex-points

• Complex changes (e.g., adding components)
– use aligned flex-points

61

g p

– .Trace simulators are fully deterministic

• Produces identical insn. stream across simulations

• Flex-points can share Simics state

Simics checkpoints

Flex-points for design A

Flex-points for design B

Hands-on

• Generate Flexpoints

• Launch timing simulation for all Flexpoints

• Aggregate stats with stat-collapse

• Examine aggregated statistics

– Compute confidence

– Plot timing breakdowns

62

SimFlex:
Conducting Research with Flexus

Michael Ferdman

Computer Architecture Lab at

Conducting Research with Flexus

• Workload statistics collection

• Design implementation and tuning

• Flexpoint generation

• Timing evaluation

64

Simple Example: Victim Cache
Workload statistics collection

• Instrument cache to count Conflict Misses

– components/FastCache/FastCacheImpl.cpp

• Collect baseline statistics
run_job –cfg victim –run trace UP.Trace oracle

• Review results

stat-manager format victim.rpt

victim.rpt contents:
L2 D-cache misses: <EXPR:sum{.*L2-Misses:User:D:Read}>

L2 D-cache conflict misses: <EXPR:sum{.*L2-Misses:User:D:Read:Conflicts}>

65

Simple Example: Victim Cache
Design implementation and tuning
• Model victim cache in trace simulation

– components/FastCache/FastCacheImpl.cpp

• Tune the design (sizes, replacement policy)
run_job –cfg victim-8-lru –run trace UP.Trace oracle

run_job –cfg victim-16-rnd –run trace UP.Trace oracle

• Confirm intuition and select design

– Can reuse victim.rpt for stat-manager

66

© 2006-2010 T. F. Wenisch, R. E. Wunderlich, M. Ferdman, P. Lotfi-Kamran 12

Simple Example: Victim Cache
FlexState generation

• Implement checkpoint save/restore in UP.Trace

– components/FastCache/FastCacheImpl.cpp

• Implement checkpoint restore in timing

– components/Cache/CacheControllerImpl.cpp

• Generate FlexState for design with victim cache
run_job \

–postprocess “postprocess_ckptgen.sh flexpoint 10 vict-8-lru” \
–cfg vic-8-lru –run flexpoint –local UP.Trace oracle

67

Simple Example: Victim Cache
Timing Evaluation

• Run timing jobs
run_job –cfg victim –run timing UP.OoO oracle

• Use stat-collapse to select measurements

• Use stat-sample to compute speedup

– generate sets of UIPC numbers (baseline and victim)

– matched-pair comparison on UIPCs

68

