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Abstract

The ability to scale distributed optimization to large node counts has
been one of the main enablers of recent progress in machine learning. To
this end, several techniques have been explored, such as asynchronous and
decentralized execution–which significantly reduce the impact of communi-
cation and synchronization, and the ability for nodes to perform several
local model updates before communicating–which reduces the frequency
of communication.

In this paper, we show that these techniques, which have so far been
considered independently, can be jointly leveraged to obtain near-perfect
scalability for training neural network models via stochastic gradient
descent (SGD). We consider a setting with minimal coordination: we
have a large number of nodes on a communication graph, each with a
local subset of data, performing independent SGD updates onto their
local models. After some number of local updates, each node chooses an
interaction partner uniformly at random from its neighbors, and averages
its local model with the neighbor’s model.

Our first contribution is in proving that, even under such a relaxed
setting, SGD can still be guaranteed to converge to local minima under
standard assumptions. The proof improves existing techniques by jointly
handling decentralization, asynchrony, and local updates, and by bounding
their impact. On the practical side, we instantiate this algorithm onto a
supercomputing environment, and show that it can successfully converge
and scale for large-scale image classification models, matching or even
slightly improving the accuracy of the baseline parallel variants.

1 Introduction

Distributed machine learning has become commonplace, and it is not unusual to
encounter systems which distribute model training among tens or even hundreds
of nodes. In this paper, we take this trend to the extreme, and ask: would it be
possible to distribute basic optimization procedures such as stochastic gradient
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descent (SGD) to thousands of agents? How could the dynamics be implemented
in such a large-scale setting, and what would be with the resulting convergence
and speedup behavior?

For some intuition, let us consider the classical data-parallel distribution
strategy for SGD [8]. We are in the classical empirical risk minimization setting,
where we have a set of samples S from a distribution, and wish to minimize
the function f : Rd → R, which is the average of losses over samples from S by
finding x? = argmin x

∑
s∈S fs(x)/|S|. Assume that we have P compute nodes

which can process samples in parallel. Data-parallel SGD consists of parallel
iterations, in which each node computes the gradient for one sample, followed
by a gradient exchange. Globally, this leads to the iteration:

xt+1 = xt − ηt
P∑
i=1

g̃it(xt),

where ηt is the learning rate, xt is the value of the global parameter, initially 0d,
and g̃it(xt) is the stochastic gradient with respect to the parameter obtained by
node i at time t.

When extending this strategy to high node counts, two major bottlenecks
are communication and synchronization. In particular, to maintain a consistent
view of the parameter xt, the nodes would need to broadcast and receive all
gradients, and would need to synchronize with all other nodes, at the end of every
iteration. Significant work has been dedicated to removing these two barriers.
In particular, there has been progress on communication-reduced variants of
SGD (e.g. [31, 34, 4, 37, 3, 11, 15]), asynchronous variants (e.g. [28, 30, 12]), as
well as large-batch or periodic model averaging methods, which aim to reduce
the frequency of communication(e.g. [14, 39] and [10, 33]), or even decentralized
synchronous variants (e.g. [23, 35, 20]). Using such techniques, it is possible to
scale SGD to tens or even hundreds of nodes, even for complex objectives such
as the training of deep neural networks. However, in systems with an order of
magnitude more nodes, the communication and synchronization requirements of
these algorithms may become infeasible.

In this paper, we investigate removing these scalability barriers by considering
a drastically decoupled setting for parallel SGD: we are given a population of
n compute agents, located at vertices of a connected graph, each of which can
execute sequential SGD steps on its own local model, based on a fraction of the
data. Periodically, after performing some number of local optimization steps, a
node can initiate a pairwise interaction with a neighbor that is chosen uniformly at
random. While decentralized SGD variants [23, 35, 6, 20], and synchronous local
SGD variants with global periodic averaging [10, 33, 25] have been considered
in previous work, we are the first to consider these decentralization and local
updates in conjunction. The resulting algorithm allows the asynchrony afforded
by the pairwise interactions to be combined with the reduced communication
frequency given by multiple local SGD steps, leading to negligible overhead in
terms of communication and synchronization. The key question is whether this
extremely decentralized SGD variant could still possibly converge.
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More precisely, in our algorithm each node i is assigned a set of samples
Si, and maintains its own parameter estimate xi. Each node i performs local
SGD steps on its model xi based on its local data, and then picks a neighbor
uniformly at random to share information with, via averaging of the two models.
Effectively, if node i interacts with node j, node i’s updated model becomes

xiT+1 ←
xiT,Hi + xjT,Hj

2
, (1)

where j is the interaction partner, and the input models xiT,H and xjT,H have
been obtained by iterating the SGD Hi and Hj times, respectively, locally from
the previous interaction of either node. The update for node j is symmetric,
so that the two parameters match after the averaging step. In this paper, we
analyze the above protocol, which we call SwarmSGD.

We show that, perhaps surprisingly, this simple decentralized SGD averaging
dynamic with local updates provides strong convergence guarantees for non-
convex objectives, under standard assumptions. Specifically, we show a Θ(

√
n)

speedup in the non-convex case, matching results from previous work which
considered decentralized dynamics but which synchronize upon every SGD step,
e.g. [23, 24]. Our analysis also extends to regular graph topologies, and generally
shows that the impact of decentralization, asynchrony, and local updates can be
asymptotically negligible in some parameter regimes.

On the practical side, we show that this algorithm can be easily mapped to a
super-computing setting, where agents correspond to compute nodes, connected
by a dense interconnection topology. Specifically, we apply SwarmSGD to
train deep residual models [16] for CIFAR/ImageNet classification tasks [29,
21] deployed on the Piz Daint supercomputer [1]. Experiments confirm the
perfect scalability of SwarmSGD. In addition, we observe an improvement in the
convergence versus number of SGD iterations per model at higher node counts.
Specifically, using SwarmSGD deployed on 32 GPU nodes, we are able to train
the ResNet18 and ResNet50 [16] models to full accuracy on ImageNet using
approximately 10 passes over the entire dataset (“epochs”) per model, which
is a reduction of 9× versus the sequential baseline. Even though collectively
the nodes perform more dataset iterations than a classic sequential or data-
parallel algorithm, our technique can result in significant end-to-end training
time reduction compared to the data-parallel baseline, with perfect scalability.
Related Work. The study of decentralized optimization algorithms dates
back to [36], and is related to the study of gossip algorithms for information
dissemination [19, 38, 9]. Gossip is usually studied in one of two models [9]:
synchronous, structured in global rounds, where each node interacts with a
randomly chosen neighbor, and asynchronous, where each node wakes up at
times given by a local Poisson clock, and picks a random neighbor to interact
with. The model we consider can be seen as equivalent to the asynchronous
gossip model. The key differences between our work and averaging in the gossip
model, e.g. [9], are that that 1) we consider local SGD steps, which would not
make sense in the case of averaging fixed initial values; and 2) the gossip input
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model is static (node inputs are fixed, and node estimates must converge to the
true mean), whereas we study a dynamic setting, where models are continually
updated via SGD. Several optimization algorithms have been analyzed in this
setting [27, 18, 32]. [35, 20] analyze quantization in the synchronous gossip
model.

[23, 24, 6] consider SGD-type algorithms in gossip-like models. Specifically,
they analyze the SGD averaging dynamic in the non-convex setting but do not
allow nodes to perform local updates. In particular, nodes perform joint averaging
upon every SGD step. Table 3 in the Appendix summarizes their assumptions,
results, and rates. Their results are phrased in the synchronous gossip model, in
which nodes interact in a sequence of perfect matchings, for which they provide
O(1/

√
Tn) convergence rates under analytical assumptions. [24] extends these

results to a variant of the gossip model where updates can be performed based
on stale information.

Upon careful examination, one can find that their results can be extended to
the asynchronous gossip setting we consider, as long as nodes are not allowed to
perform local SGD updates to their models (corresponding to H = 1). Extending
the analysis of distributed SGD to allow for local steps is challenging even in
centralized models, see for instance [33]. If we assume H = 1, our technique
yields similar or better bounds relative to previous work in the decentralized
model, as our potential analysis is specifically-tailored to this dynamic interaction
model. For instance, for [6], the speedup with respect to the number of nodes
depends on a parameter C, which in turn, depends on 1) the dimension of the
objective function domain, 2) the number iterations for the graph given by edge
sets of all matrices used in averaging to be connected, and the 3) diameter of the
aforementioned connected graph. In the dynamic interaction model we consider,
the parameter C will be at least linear in the number of nodes, which eliminates
any speedup from this upper bound.

In sum, relative to prior work on decentralized algorithms, our contributions
are as follows. We are the first to consider the impact of local updates in
conjunction with decentralized SGD. We show that the cost for the linear
reduction in communication in H given by this technique is at worst a squared
convergence decrease in the parameter H. Our analysis technique relies on a fine-
grained analysis of individual interactions, which is different than that of previous
work, and can yield improved bounds even in the case where H = 1. From the
implementation perspective, the performance of our algorithm is superior to that
of previous methods, notably D-PSGD [23], AD-PSGD [24] and SGP [6]. We
present a detailed comparison in the experimental section.

Other references which consider dynamic interaction models are Nedic et
al. [26], who present a gradient tracking algorithm in a different dynamic graph
model, and Hendrickx et al. [17], who achieve exponential convergence rates in a
gossip model where transmissions are synchronized across edges. The algorithm
they consider is a more complex instance of accelerated coordinate descent,
and is therefore quite different from the simple dynamics we consider. Neither
reference considers local updates, nor real-world scalability.
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2 Preliminaries

The Distributed System Model. We consider a model which consists of a
set of n ≥ 2 anonymous agents, or nodes, each of which is able to perform local
computation. We assume that communication network of nodes is a r-regular
graph G with a spectral gap λ2(second smallest eigenvalue of the Laplacian of
G). The execution proceeds in discrete steps, where in each step we sample an
edge of the graph G uniformly at random and we allow the agents corresponding
to the edge endpoints interact. Each of the two chosen agents updates its state
according to a state update function, specified by the algorithm. The basic unit
of time is a single pairwise interaction between two nodes. Notice however that in
a real system Θ(n) of these interactions could occur in parallel. Thus, a standard
global measure is parallel time, defined as the total number of interactions divided
by n, the number of nodes. Parallel time intuitively corresponds to the average
number of interactions per node to convergence. We note that our model is
virtually identical to the population model of distributed computing [5], or to
asynchronous gossip models [38].
Stochastic Optimization. We assume that the agents wish to minimize a
d-dimensional, differentiable function f : Rd → R. Specifically, we will assume
the empirical risk minimization setting, in which agents are given access to a set
of data samples S = {s1, . . . , sm} coming from some underlying distribution D,
to a function `i : Rd → R which encodes the loss of the argument at the sample
si. The goal of the agents is to converge on a model x∗ which minimizes the
empirical loss, that is

x∗ = argminxf(x) = argminx(1/m)

m∑
i=1

`i(x). (2)

In this paper, we assume that the agents employ these samples to run a
decentralized variant of SGD, described in detail in the next section. For this, we
will assume that each agent i has access to stochastic gradients g̃i of the function
f , which are functions such that E[g̃i(x)] = ∇f(x). Stochastic gradients can be
computed by each agent by sampling i.i.d. the distribution D, and computing
the gradient of f at θ with respect to that sample. (Our analysis can be extended
to the case where each agent is sampling from its own partition of data, see
Section F in the Appendix.) We will assume a subset of the following conditions
about the objective function:

(1) Smooth Gradients: The gradient ∇f(x) is L-Lipschitz continuous for some
L > 0, i.e. for all x, y ∈ Rd:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (3)

(2) Bounded Variance: The variance of the stochastic gradients is bounded
i.e. for all x ∈ Rd and agent i:

E
∥∥∥g̃i (x)−∇f(x)

∥∥∥2 ≤ σ2. (4)
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(3) Bounded Second Moment: The second moment of the stochastic gradients
is bounded by some M2 > 0, i.e. for all x ∈ Rd and agent i:

E
∥∥∥g̃i (x)

∥∥∥2 ≤M2. (5)

3 The SwarmSGD Algorithm

Algorithm Description. We now describe a decentralized variant of SGD,
designed to be executed by a population of n nodes, interacting over the edges
of r-regular graph G. We assume that each node i has access to local stochastic
gradients g̃i, and maintains a model estimate Xi. For simplicity, we will assume
that this initial estimate is 0d at each agent, although its value may be arbitrary.
We assume that each agent performs SGD steps on its local estimate Xi. At
random times given by a clock of Poisson rate, we pick two neighboring agents
i and j uniformly at random from G, and have them average their estimates.
More precisely, the interaction can be described as follows:

Algorithm 1 Sequential SwarmSGD pseudocode for each interaction between
arbitrary nodes i and j.

% Let G be r-regular graph.
% Sample an edge (i, j) of G uniformly at random.

Require: agents i and j chosen for interaction
% choose Hi and Hj

% agent i performs Hi local SGD steps
for q = 1 to Hi do
Xi ← Xi − ηg̃i(Xi)

end for
% agent j performs Hj local SGD steps
for q = 1 to Hj do
Xj ← Xj − ηg̃j(Xj)

end for
% agents average their estimates coordinate-wise
avg ← (Xi +Xj)/2
Xi ← avg
Xj ← avg

Note that, for simplicity, the pseudocode is expressed sequentially, although
in practice nodes perform their local SGD steps in parallel. Also, we have
assumed a constant learning rate; we will detail the precise update values of the
learning rate in the next section.

The main intuition behind the algorithm is that the independent SGD steps
will allow nodes to explore local improvements to the objective function on their
subset of the data, while the averaging steps provide a decentralized way for the
models to remain in sync. In the next section, we will show that, as long as the
maximum number of local steps is bounded, this procedure still converges, in
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the sense that gradients calculated at average value of models are vanishing as
we increase the number of interactions.

4 The Convergence of SwarmSGD

In this section, we analyze the convergence of SwarmSGD algorithm. We consider
two versions of Algorithm 1, which differ in the way we choose the number of
local SGD steps performed by agents i and j upon interaction.

4.1 Analysis under random interaction times

Fix an integer H ≥ 1. First, we will consider a version where Hi and Hj are
independent geometrically distributed random variables of mean H. Notice that
this corresponds to interaction times being chosen by a Poisson clock of constant
rate. To handle the fact that the number of local steps upon an interaction
is a random variable, in this first case we will require stochastic gradients to
satisfy the bounded second moment assumption, specified above. Intuitively, this
is required since otherwise the “distance travelled” by a node could be virtually
unbounded. In this setting, we are able to prove the following theorem:

Theorem 1. Let f be an non-convex, L-smooth function, whose stochastic
gradients satisfy the bounded second moment assumption above. Let the number
of local stochastic gradient steps performed by each agent upon interaction be
a geometric random variable with mean H. Let the learning rate we use be
η = n/

√
T . Define µt =

∑n
i=1X

i
t/n, where Xi

t is a value of model i after t
interactions, be the average of the local parameters. Then, for learning rate
η = n/

√
T and any number of interactions T ≥ n4:

1

T

T−1∑
t=0

E‖∇f(µt)‖2 ≤
(f(µ0)− f(x∗))√

TH

+
11H2 max(1, L2)M2

√
T

max(1, 2r/λ2 + 4r2/λ22).

Discussion. We briefly pause to comment on this bound. Notice that each of
the upper bound terms has a clear intuitive interpretation: the first represents
the reduction in loss relative to the initialization, and gets divided by the number
of local steps H, since progress is made in this term in every local step; the second
represents the influence of the variance of each individual local step multiplied
by a term which bounds the impact of the graph topology on the convergence.
In particular, this term negatively impacts convergence fo large values of H, L,
and M , but gets dampened if the graph is well-connected (corresponding to a
large value of λ2).

Second, importantly, notice that time T in this bound counts the total
number of interactions. However, in practice Θ(n) pairwise interactions will
occur in parallel. Therefore, it is natural to replace T by nT to obtain speedup
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with respect to wall-clock time. At the same time, notice that this speedup is
dampened in the second term by the non-trivial additional variance due to noisy
local gradient steps, a fact which we will revisit in the experimental section.
Proof Overview. At a high level, the argument rests on two technical ideas.
The first idea is to show that, due to the pairwise averaging process, and in spite
of the local steps, the nodes’ parameters will have to remain concentrated around
their mean µt. The second is to show that, even though stochastic gradients are
taken at perturbed, noisy estimates of this mean, the impact of this noise on
convergence can be bounded. We note that neither idea is straightforward to
implement.

In particular, the main technical difficulty in the proof is to correctly “encode”
the fact that parameters are well concentrated around the mean. For this, we
define the potential Γt, which denotes the variance of models after t interactions.
More formally,

Γt =

n∑
i=1

‖Xi
t − µt‖2, (6)

where µt =
∑n
i=1X

i
t/n. We bound the expected evolution of Γt in terms of

r, the degree of nodes in interaction the graph G, and λ2, the second smallest
eigenvalue of the Laplacian of G. For both algorithm variants we consider,
our bound depends on the learning rate, number of local steps, and the bound
provided by the assumption on the stochastic gradients (the bound M2 and σ2).
The critical point is that the upper bound on the expectation of Γt does not
depend on the number of interactions t.

The second part of the proof is to use an upper bound on the potential in
order to show that

∑T−1
i=0 E[∇f(µt)]/T is decreasing as we increase the number

of interactions. It is well known how to upper bound
∑T−1
i=0 E‖∇f(µt)‖2/T , in

the case when update rule is µt+1 = µt − η∇f(µt),
∑T−1
i=0 E[∇f(µt)]/T . In our

setting we are able to derive similar bound, by leveraging the fact that deviation
of ∇f(µt) from the update we are actually applying can be upper bounded by
variance of the local model values.
Bound on Potential. First we show how to derive an upper bounded on a
potential Γt =

∑n
i=1 ‖Xi

t − µt‖2, if upon interaction between nodes i and j we
perform the following steps:

– increase the values of the local models Xi
t and Xj

t by random variables
Rit(X

i
t) and Rjt (X

j
t ) correspondingly.

– average the values of Xi
t and Xj

t .

The following lemma shows the martingale type bound on the potential:

Lemma 2. For any time step t , we have:

E[Γt+1] ≤ (1− λ2
rn

)E[Γt] + (2 +
4r

λ2
)

1

n

n∑
i=1

E‖Rit(Xi
t)‖2.
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Here, the (1 − λ2

rn ) factor in front of E[Γt] comes from the fact that we
average values of local models after updating them. A roughly similar approach
is sometimes used in the analysis of static load balancing schemes, in which each
node in a graph starts with a fixed weight value, which they try to balance as
well as possible through averaging, see e.g. [7]. Two key elements of novelty in
our case are that (1) for us the load balancing process is dynamic, in the sense
that loads (gradients) get continually added; (2) the load-balancing process we
consider is multi-dimensional, whereas usually the literature considers simple
scalar weights.
Proof Sketch for Theorem 1. In the case of bounded second moment of
stochastic gradients (also random number of local steps), we can unroll the
recursion given by Lemma 2. We use the fact that Rit(X

i
t) is the sum of Hi

t

stochastic gradients multiplied by the learning rate, that E[Hi
t ] = H and that

the second moment of each gradient is upper bounded by M2 in expectation.
We get the following time-invariant bound on Γt, essentially showing that node
models will have bounded variance:

Lemma 3.
E[Γt] ≤ 2nη2H2M2(2r/λ2 + 4r2/λ22). (7)

With this in place, we apply the L-smoothness of the function f to get:

E[f(µt+1)] ≤ E[f(µt)] + E〈∇f(µt), µt+1 − µt〉

+
L

2
E‖µt+1 − µt‖2.

Further, we use the fact that n
η (µt+1−µt) is sum of H stochastic gradients in

expectation (up to some constant factor). To upper bound L
2E‖µt+1 − µt‖2 we

use the second moment bound again. Notice that in the case where the number of
local gradient steps is equal to 1, in order to upper bound E〈∇f(µt), µt+1 − µt〉,
we can apply the following simple derivation:

E〈∇f(µt), µt+1 − µt〉 =

n∑
i=1

2η

n2
E〈∇f(µt),−∇f(Xi

t)〉

=

n∑
i=1

2η

n2
E〈∇f(µt),∇f(µt)−∇f(Xi

t)〉

− 2
η

n
E‖∇f(µt)‖2

≤
n∑
i=1

2η

n2
E‖∇f(µt)−∇f(Xi

t)‖2 −
η

n
E‖∇f(µt)‖2

We then use L-smoothness one final time to get:

n∑
i=1

E‖∇f(µt)−∇f(Xi
t)‖2 ≤ L2E[Γt]. (8)

The proof of Theorem 1 then follows by carefully re-arranging these terms. The
complete argument is presented in the Appendix.
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4.2 Analysis under fixed interaction times

In the second variant of the algorithm, we assume that the number of local steps
performed by each model when is fixed and is equal to H. In this case we are
able to remove the bounded second moment assumption, and are able to prove
convergence by just assuming that stochastic gradients have bounded variance:

Theorem 4. Let f be a non-convex, L-smooth function satisfying the bounded
variance assumption in Equation 4. Let H be the number of local stochastic
gradient steps performed by each agent before each interaction. Define µt =∑n

i=1X
i
t/n, where Xi

t is a value of model i after t interactions. For learning
rate η = n√

T
and

T ≥ 225n4H2 max(1, (2r/λ2 + 4r2/λ22)2) max(1, L2) we have that SwarmSGD
ensures:

∑T−1
i=0 E‖∇f(µt)‖2

T
≤ 1√

TH
E[f(µ0)− f(µt)]

+
28H2 max(1, L2)σ2

√
T

max(1, 2r/λ2 + 4r2/λ22).

Discussion. Notice that, relative to Theorem 1, we have the same quadratic
dependency on the number of local steps H and on L, but now the second
moment bound is replaced by the variance term. Further, this our analysis can
be extended to the case where each agent is sampling from its own partition of
data, matching the setting assumed by [23], and our implementation. Please see
Section F in the Appendix for details.
Proof Sketch for Theorem 4. While the intuitive interpretation of the result
is similar, its proof is in fact more subtle, due to the lack of a second-moment
bound. Here, our approach is similar to [23], but we are able to handle multiple
number of local steps, and handle dynamic pairwise interactions differently.
Without the bound in Equation 5, we can only bound the expected sum of
potentials up to step T (since we are no longer able to get the bound per step).
In particular, we can obtain the following bound on the “average” Γt:

Lemma 5. For η ≤ 1

7HL
√

2r/λ2+4r2/λ2
2

, we have that :

T∑
t=0

E[Γt] ≤
4nrη2σ2H2T

λ2
(2 +

4r

λ2
)

+
12nrη2H

λ2
(2 +

4r

λ2
)

T∑
t=1

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2.

Here, we define the auxiliary variable hqi (X
i
t) as

hqi (X
i
t) = E[h̃qi (X

i
t)] = ∇f(Xi

t −
q−1∑
s=0

ηh̃si (X
i
t)),
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which is the gradient computed after we apply q − 1 local stochastic gradient
steps to the model Xi

t and h̃qi (X
i
t) is stochastic gradient used at local step q. We

can use the L-smoothness of function f as in the proof of the Theorem 1 and
after some careful manipulations we get that:

E[f(µt+1)] ≤ E[f(µt)]

+

H∑
q=1

(
η

n2

n∑
i=1

E‖∇f(µt)− hqi (X
i
t)‖2

− η

n
E‖∇f(µt)‖2 − E‖

n∑
i=1

hqi (X
i
t)/n‖2

+

n∑
i=1

2LH

n
E‖ η
n
h̃qi (X

i
t)‖2

)
(9)

Next, we prove some technical lemmas which upper bound each term in the
inequality above.

To complete the proof, we sum the inequality 9 from t = 0 to t = T − 1 and
apply Lemma 5 together with the bounds on the individual terms of the previous
inequality. The crucial point is that in the resulting inequality all positive terms
with multiplicative factor E‖

∑n
i=1 h

q
i (X

i
t)/n‖2 have an η2 multiplicative factor

as well. Hence, we are able to set η small enough and cancel those terms with
− η
nE‖

∑n
i=1 h

q
i (X

i
t)/n‖2. This allows us to complete the proof of Theorem 4 after

some careful additional calculation. We refer the reader to the supplementary
material for the full argument.

5 Experimental Results

In this section, we validate our analytical results numerically, by applying the
algorithm to the computationally-intensive task of training deep neural networks
for image classification. For this we map the execution pattern of the algorithm
onto a super-computing setting, in which we have a large number of powerful
computing nodes, connected by fast communication links. The key overhead in
this setting is synchronization: at large node counts, the cost of synchronizing
all nodes so they execute in lock-step can be very high, see e.g. [22] for numerical
results on different workloads. SwarmSGD removes this overhead, since nodes
synchronize only sporadically and in pairs.
Target System and Implementation. We run SwarmSGD on the CSCS Piz
Daint supercomputer, which is composed of Cray XC50 nodes, each with a Xeon
E5-2690v3 CPU and an NVIDIA Tesla P100 GPU, using a state-of-the-art Aries
interconnect. Please see [1] for hardware details. We implemented SwarmSGD in
Pytorch using MPI one-sided primitives [2], which allow nodes to read eachothers’
models for averaging without blocking synchronization. We used SwarmSGD
to train ResNets on the classic CIFAR-10 and ImageNet datasets. The code is
available as additional material, and can also be executed on standard multi-GPU
computing clusters with MPI support.
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Model / Dataset SGD Top-1 SwarmSGD Parameters

ResNet20 / CIFAR-10 91.5% 91.79% 4 local steps, 35 epochs/model

ResNet18 / ImageNet 69.17% 69.79% 3 local steps, 10 epochs / model

ResNet50 / ImageNet 75.43% 75.68% 2 local steps, 12 epochs / model

Table 1: Parameters for full Top-1 validation accuracy on CIFAR-10 and
ImageNet. The step count represents local SGD steps per model between two
averaging steps, while the number of epochs are counted in terms of data passes
per individual model.

Training Process. Our training methodology follows data-parallel training,
with some differences due to decentralization, and is identical to previous work
on decentralized and local SGD, e.g. [23, 6, 25]. Training proceeds in epochs,
each of which corresponds to processes collectively performing a full pass over
the dataset. At the beginning of each epoch, we shuffle the dataset and partition
it among processes.

Ideally, if the algorithm had perfect speedup with respect to the number
of iterations per model, each process would need to iterate over the dataset
just Eseq/n times, where Eseq is the number of epochs for sequential SGD.
However, as noted in previous work [23, 24, 6] this process is not always able to
recover sequential model accuracy within Eseq/n epochs. This shortcoming of
decentralized methods is justified by Theorems 1 and 4, which say that pairwise
averaging and local steps can slow down convergence. Thus, we will allow
processes to execute for more epochs, by a constant multiplier factor, usually
in the interval [2, 4]. [6] employ the same procedure, but scale up the total
number of epochs by the speedup of their parallel algorithm versus data-parallel
SGD. (This usually leads to accurate models, but unfortunately nullifies any
speedup gains, since the end-to-end training time will match data-parallel SGD.)
References [23, 24] only execute for Eseq/n epochs, but lose accuracy relative to
the SGD baseline on ImageNet-scale tasks.

Once we have fixed the number of epochs, we do not alter the other training
hyperparameters: in particular, the learning rate schedule, momentum and
weight decay terms are identical to sequential SGD, for each individual model.
Practically, if sequential SGD trains ResNet50 in 90 epochs, decreasing the
learning rate at 30 and 60 epochs, then SwarmSGD with 32 nodes and multiplier
4 uses 90 ∗ 4/32 ' 12 epochs per node, decreasing the learning rate at 4 and 8
epochs. (We recover full accuracy at this setting.) Since the synchronization
overhead of SwarmSGD is negligible, this ensures non-trivial end-to-end speedup
for SwarmSGD.

We now explore the accuracy-scalability trade-off of SwarmSGD, examining
the following questions.
Q1: Can SwarmSGD Recover Full Accuracy? This is the first threshold
for any distributed training method. In Table 1 provide an overview of parameter
values to recover or exceed full accuracy using SwarmSGD. We execute on for
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Model / Dataset 1 step 2 steps 3 steps 4 steps

ResNet20 / CIFAR-10 90.84% 91.39% 91.55% 91.79%

ResNet18 / ImageNet 69.71% 69.79% 69.17% 68.99%

Table 2: Validation accuracy on CIFAR-10 and ImageNet versus number of
local steps, for n = 32. The step count represents local SGD steps per model
between two pairwise averaging steps. Other parameter values are the same as
in the previous experiment.

(a) Convergence of ResNet18/ImageNet ver-
sus Local Steps.

(b) Scalability (average time per batch) for
SwarmSGD versus previous work. Lower is
better.

Figure 1: Convergence and Scalability of SwarmSGD on ImageNet Models.

32 nodes on ImageNet, and 12 nodes on CIFAR-10, with (local) batch size 256.
We have investigated local step values between 1 and 5, since we obtain no
additional cost savings for higher values. We conclude that SwarmSGD is able
to recover full accuracy on these accuracy-sensitive models in spite of local steps
and asynchronous averaging, using a relatively small number of updates per
model. (On ImageNet, it uses approximately 9x less updates per model relative
to the sequential algorithm.) However, its iteration complexity is inferior to
centralized methods, since e.g. for ResNet18 the 32 processes collectively execute
a total of 32× 10 epochs in parallel, relative to only 90 for the sequential model
(multiplier value 320/90 ' 3.6).
Q2: Do Local Steps Impact Convergence and Scaling? Next, we focus
on the impact of the number of local steps on convergence. Table 2 presents
the progression of top-1 validation accuracy versus the number of local steps,
under the same parameter values as above, while Figure ?? outlines convergence
versus number of epochs relative to a fixed model. We notice that the accuracy is
relatively stable when increasing local steps, although the ImageNet experiment
confirms the analytical insight that lower number of local steps leads to better
convergence. (We note that accuracy on CIFAR-10 decreases slightly at 5 local
steps, to 91.44%.) We also investigated the accuracy of the average of all
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models throughout training. We find that it is usually more accurate than an
arbitrary model, but not by significant amounts. This corroborates the claim
that individual models tend to stay close to the mean.

In addition, we investigated the impact of the number of local steps on
performance. For large models, we find a significant difference between 1 and 2
steps, but the performance benefits trail off for higher values (see also discussion
below). We hence do not attempt to optimize for accuracy at high local step
values.
Q3: Does SwarmSGD Scale? Yes. The fact that the method should have
low synchronization cost relative to node count is not surprising, since it reduces
both the frequency and the cost of communication. Figure 1(b) illustrates the
communication cost of the algorithm relative to previously proposed decentralized
algorithms, in particular D-PSGD [23], AD-PSGD [24], and SGP [6]. The
experiment is performed on ResNet50/ImageNet, for local batch size 256, and
local step count 2 for SwarmSGD (this setting was used to recover accuracy for
the model). The algorithms are fairly implemented and compared in the common
framework of SGP [6]. We observe that its scalability behavior of SwarmSGD is
superior to that of previous methods. In particular, its cost per batch appears
to be almost independent of the number of nodes, which is ideal. Reducing the
number of intermediate steps (not shown) reveals that the advantage relative
to AD-PSGD comes mainly from the reduction in communication frequency, as
expected.
Q4: What are the End-to-end Training Times? Finally, we look at the
end-to-end training times are for SwarmSGD relative to the baselines. On 32
nodes, we can use SwarmSGD to train ResNet18 on ImageNet to full accuracy
in less than 11 hours, and ResNet50 in less than 22 hours. The data-parallel
baseline with global batch size 256 (strong scaling) requires 25.7 hours and
30.2 hours in this setting, respectively. This speedup is quite significant, given
that the Aries supercomputing network and the MPI implementation are both
state-of-the-art. If we consider weak scaling, that is, large-batch execution
with a maximum per-node batch size of 8192 and 4096 respectively, we can
reduce the cost of the baseline to 18.23 and 29.7 hours, respectively, at the
price of significant additional tuning. Interestingly, SwarmSGD significantly
surpasses the performance of both small- and large-batch baselines, with the
only hyperparameter being the number of epochs to execute for. Relative to
other decentralized methods, SwarmSGD has the advantage of perfect scalability
(Figure 1(b)) and accuracy recovery (Table 1). We conclude that SwarmSGD is
highly competitive with previous solutions in this setting.

6 Discussion and Future Work
We have analyzed the convergence of SGD in an extremely decoupled model
of distributed computing, in which nodes mostly perform independent SGD
updates, interspersed with intermittent pairwise averaging steps. We have shown
that SGD is able to still converge in this restrictive setting, and moreover can
even achieve speedup in the number of nodes in terms of iteration time. The
empirical results in a supercomputing environment complement and confirm our
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analysis, showing that this method can be competitive with standard solutions.
SwarmSGD provides good analytic and empirical properties, even though each
model only directly observes a small fraction of the data. Our work opens
several avenues for extensions. One natural but non-trivial direction is to study
compressed communication; another is to further generalize the bounds in terms
of their the assumptions on the objective and on the system setting considered.
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A Summary of the Appendix sections

Appendix contains the following sections:

– In Section B we compare SwarmSGD with some of the existing algorithms.
We list convergence bounds and the assumptions needed to achieve them.

– In Section C we prove the crucial lemma which derives martingale type
bound on the potential Γ (See Lemma 2), in the case when increment of
model i with value Xi

t at step t, is a random variable Rit(X
i
t).

– In Section D we provide the full proof of the Theorem 1, which shows
the convergence of SwarmSGD assuming the second moment bound on the
gradients. Recall that the number of local steps in this case is a geometric
random variable with mean H.

– In Section E we prove the Theorem 4. In this case we do not assume the
second moment bound and the number of the local steps performed by
each agent is a fixed number H.

– In Section F we show that SwarmSGD analysis can be extended to the
case where each agent is sampling from its own partition of data.

– In Section G we provide additional experimental results for SwarmSGD.

B Comparison of results

In this section we compare convergence rates of existing algorithms, while
specifying the bounds they require for convergence. In the tables T -corresponds
to the parallel time and n is a number of processes. We use the following
notations for needed bounds(or assumptions):

(1) σ2 - bound on the variance of gradient.

(2) M2 - bound on the second moment of gradient.

(3) PL - Polyak-ojasiewicz assumption.

(4) d - bounded dimension.

(5) λ2 - bounded spectral gap of the averaging matrix(interaction graph in
case of SwarmSGD).

(6) τ - bounded message delay.

(7) r - interaction graph is r-regular.

(8) ∆ - bounded diameter of interaction graph.
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Global synchroniza-
tion

Assumptions Convergance Rate

SwarmSGD NO σ2, λ2, r O(1/
√
Tn)

SwarmSGD NO M2, λ2, r O(1/
√
Tn)

AD-PSGD [24] NO σ2, λ2, τ O(1/
√
Tn)

SGP [6] NO σ2, d,∆, τ O(1/
√
Tn)

Table 3: non-convex case

C Potential Bound

We are given a simple undirected graph G, with n nodes(for convenience we
number them from 1 to n) and edge set E. Each node is adjacent to exactly r
nodes. Let L be the Laplacian matrix of G and let let λ2 be a second smallest
eigenvalue of L.

First we state the following lemma from [13]

Lemma 6.

λ2 = min
v=(v1,v2,...,vn)

{vTLv
vT v

|
n∑
i=1

vi = 0
}

(10)

Next, we define a process on the graph G. Each node i of graph G keeps
the vector model Xi

t ∈ Rd, where t is the number of interactions. Interaction
is defined as follows: we pick edge e = (u, v) of G uniformly at random and
update the vector models correspondingly. We set Xu

t+1 = Xv
t+1 = (Xu

t +Xv
t +

Rut (Xu
t ) + Rvt (X

v
t ))/2 and Xw

t+1 = Xw
t for w 6= u, v. Here, for time step t and

node u, Rut is a random function from Rd to Rd. Lastly, let µt =
∑n
i=1X

i
t/n be

the average of models at step t and let Γt =
∑n
i=1 ‖Xi

t − µt‖2 be a potential at
time step t.

Now, we show that Lemma 6 can be used to lower bound
∑

(i,j)∈E ‖Xi
t−X

j
t ‖2:

Lemma 7. ∑
(i,j)∈E

‖Xi
t −X

j
t ‖2 ≥ λ2

n∑
i=1

‖Xi
t − µt‖2 = λ2Γt. (11)

Proof. Observe that∑
(i,j)∈E

‖Xi
t −X

j
t ‖2 =

∑
(i,j)∈E

‖(Xi
t − µt)− (Xj

t − µt)‖2. (12)

Also, notice that Lemma 6 means that for every vector v = (v!, v2, ..., vn)
such that

∑n
i=1 vi = 0, we have :∑

(i,j)∈E

(vi − vj)2 ≥ λ2
n∑
i=1

v2i . (13)
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Since
∑n
i=1(Xi

t − µt) is a 0 vector, we can apply the above inequality to the
each of d components of the vectors
X1
t − µt, X2

t − µt, ..., Xn
t − µt separately and by properties of two norm we get

the proof of the lemma.
We proceed by proving the following lemma which upper bounds the expected

change in potential:

Lemma 2. For any time step t , we have:

E[Γt+1] ≤ (1− λ2
rn

)E[Γt] + (2 +
4r

λ2
)

1

n

n∑
i=1

E‖Rit(Xi
t)‖2.

Proof. First we bound change in potential ∆t = Γt+1 − Γt for some time step
t > 0. Let ∆i,j

t be a change in potential when we choose agents i and j for
interaction. We get that

E
[
∆t|Xt

]
=

∑
(i,j)∈E

1

rn/2
E
[
∆i,j
t |Xt

]
. (14)

For (i, j) ∈ E we have that:

Xi
t+1 − µt+1 = Xj

t+1 − µt+1 = (Xi
t +Xj

t )/2 +
n− 2

2n
(Rit(X

i
t) +Rjt (X

j
t ))− µt.

For k 6= i, j we get that

Xk
t+1 − µt+1 = Xk

t −
1

n
(Rit(X

i
t) +Rjt (X

j
t ))− µt.

This gives us that

E
[
∆i,j
t |Xt

]
= E

∥∥∥(Xi
t +Xj

t )/2 +
n− 2

2n
(Rit(X

i
t) +Rjt (X

j
t ))− µt‖2 − ‖Xi

t − µt
∥∥∥2

+ E
∥∥∥(Xi

t +Xj
t )/2 +

n− 2

2n
(Rit(X

i
t) +Rjt (X

j
t ))− µt‖2 − ‖Xj

t − µt
∥∥∥2

+
∑
k 6=i,j

(
E
∥∥∥Xk

t −
1

n
(Rit(X

i
t) +Rjt (X

j
t ))− µt

∥∥∥2 − ‖Xk
t − µt‖2

)
= 2‖(Xi

t − µt)/2 + (Xj
t − µt)/2‖2 − ‖Xi

t − µt‖2 − ‖X
j
t − µt‖2

+
n− 2

n
E〈Rit(Xi

t) +Rjt (X
j
t ), (Xi

t − µt) + (Xj
t − µt)〉

+ 2
(n− 2

2n

)2
E‖Rit(Xi

t) +Rjt (X
j
t )‖2

+
∑
k 6=i,j

(
− 2

n
E〈Rit(Xi

t) +Rjt (X
j
t ), Xk

t − µt〉+
1

n2
E‖Rit(Xi

t) +Rjt (X
j
t )‖2

)
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Observe that
n∑
k=1

E〈Rit(Xi
t) +Rjt (X

j
t ), Xk

t − µt〉 = 0.

Hence:

E
[
∆i,j
t |Xt

]
≤ 2‖(Xi

t − µt)/2 + (Xj
t − µt)/2‖2 − ‖Xi

t − µt‖2 − ‖X
j
t − µt‖2

+ E〈Rit(Xi
t) +Rjt (X

j
t ), (Xi

t − µt) + (Xj
t − µt)〉

+ 4
(n− 2

2n

)2
(E‖Rit(Xi

t)‖2 + E‖Rjt (X
j
t )‖2) +

∑
k 6=i,j

2

n2
(E‖Rit(Xi

t)‖2 + E‖Rjt (X
j
t )‖2)

≤ − ‖Xi
t −X

j
t ‖2/2

+ E〈Rit(Xi
t) +Rjt (X

j
t ), (Xi

t − µt) + (Xj
t − µt)〉

+ (E‖Rit(Xi
t)‖2 + E‖Rjt (X

j
t )‖2)

This gives us :

E[∆t|Xt] ≤
∑

(i,j)∈E

1

rn/2

(
− ‖Xi

t −X
j
t ‖2/2 + E〈Rit(Xi

t) +Rjt (X
j
t ), (Xi

t − µt) + (Xj
t − µt)〉

+ E‖Rit(Xi
t)‖2 + E‖Rjt (X

j
t )‖2

)
Lemma7
≤ − λ2

rn/2
Γt +

2

n

n∑
i=1

E‖Rit(Xi
t)‖2

+
∑

(i,j)∈E

1

rn/2
E〈Rit(Xi

t) +Rjt (X
j
t ), (Xi

t − µt) + (Xj
t − µt)〉.

Further, we have that∑
(i,j)∈E

1

rn/2
E〈Rit(Xi

t) +Rjt (X
j
t ), (Xi

t − µt) + (Xj
t − µt)〉

≤
∑

(i,j)∈E

1

rn

(2r

λ2
E‖Rit(Xi

t) +Rjt (X
j
t )‖2 +

λ2
2r

E‖(Xi
t − µt) + (Xj

t − µt)‖2
)

≤
∑

(i,j)∈E

1

rn

(4r

λ2
(E‖Rit(Xi

t)‖2 + E‖Rjt (X
j
t )‖2) +

λ2
r

(E‖Xi
t − µt‖2 + E‖Xj

t − µt‖2)
)

=
λ2
rn

Γt +
4r

λ2n

n∑
i=1

E‖Rit(Xi
t)‖2

By combining the above two inequalities we get that

E[∆t|Xt] ≤ −
λ2
rn

Γt + (2 +
4r

λ2
)

1

n

n∑
i=1

E‖Rit(Xi
t)‖2.

Hence, considering the definition of ∆t and the fact that E[Γt+1] = E[E[Γt+1|Xt]]
we get the proof of the Lemma.
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D Analysis with second Moment Bound

In this section we address the case when function we want to optimize is non-
convex by using constant learning rate over all iterations and process. We start
by inductively defining the decrements we apply to the model with the value Xi

t

locally, without taking the multiplicative learning rate factor into the account.
Let Hi

t be a geometric random variable with a mean H. Hi
t is the expected

number of local steps agent i performs if it interacts at step t+ 1.

h̃0i (X
i
t) = 0.

and for 1 ≤ q ≤ Hi
t let:

h̃qi (X
i
t) = g̃i(X

i
t −

q−1∑
s=0

ηh̃si (X
i
t)).

Also , for 1 ≤ q ≤ Hi
t , let

hqi (X
i
t) = ∇f(Xi

t −
q−1∑
s=0

ηh̃si (X
i
t)).

be the expected value of h̃qi (X
i
t) taken over the randomness of the stochastic gra-

dient g̃i. Let h̃i(X
i
t) be the total amount by which we decrement the model(again

without the learning rate factor):

h̃i(X
i
t) =

Hit∑
q=1

h̃qi (X
i
t).

The new value of the model Xi
t after local update is(before it gets averaged with

the other model)

Xi
t − ηh̃i(Xi

t) = Xi
t − η

Hit∑
q=1

h̃qi (X
i
t) = Xi

t − η
Hit∑
q=1

g̃i(X
i
t −

q−1∑
s=0

ηh̃si (X
i
t))

Lemma 8.
n∑
i=1

E‖ηh̃i(Xi
t)‖2 ≤ 2nH2M2.

Proof.

n∑
i=1

E‖ηh̃i(Xi
t)‖2 =

∞∑
u=1

Pr[Hi
t = u]

n∑
i=1

E‖
u∑
q=1

h̃qi (X
i
t)‖2

≤
∞∑
u=1

Pr[Hi
t = u]

n∑
i=1

u

u∑
q=1

E‖h̃qi (X
i
t)‖2

≤
∞∑
u=1

Pr[Hi
t = u]u2

n∑
i=1

M2 ≤ 2nH2M2.

23



Where in the last step we used

∞∑
u=1

Pr[Hi
t = u]u2 = E[(Hi

t)
2] = 2H2 −H ≤ 2H2.

By applying Lemma 2 with Rit(X
i
t) = −ηh̃i(Xi

t), we get the following lemma

Lemma 9.

E[Γt+1] ≤ (1− λ2
rn

)E[Γt] + 2η2(2 +
4r

λ2
)H2M2.

Proof.

E[Γt+1]
Lemma2
≤ (1− λ2

rn
)E[Γt] + (2 +

4r

λ2
)

1

n

n∑
i=1

E‖ − ηh̃i(Xi
t)‖2

Lemma8
≤ (1− λ2

rn
)E[Γt] + 2η2(2 +

4r

λ2
)H2M2.

The lemma above allows us to bound the expected potential at step t:

Lemma 3.
E[Γt] ≤ 2nη2H2M2(2r/λ2 + 4r2/λ22). (17)

Proof. We prove by using induction. Base case t = 0 trivially holds. For an
induction step step we assume that
E[Γt] ≤ nη2H2M2(2r/λ2 + 4r2/λ22). We get that :

E[Γt+1] ≤ (1− λ2
rn

)E[Γt] + 2η2(2 +
4r

λ2
)H2M2

≤ (1− λ2
rn

)2nη2H2M2(2r/λ2 + 4r2/λ22) + 2η2(2 +
4r

λ2
)H2M2

= 2nη2H2M2(2r/λ2 + 4r2/λ22).

Lemma 10.

n∑
i=1

E〈∇f(µt),−h̃i(Xi
t)〉 ≤ HL2E[Γt]−

Hn

2
E‖∇f(µt)‖2 + 6H3nL2M2η2. (18)
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Proof.

n∑
i=1

E〈∇f(µt),−h̃i(Xi
t)〉 =

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]E〈∇f(µt),−

u∑
q=1

h̃qi (X
i
t)〉

=

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]

u∑
q=1

(
E〈∇f(µt),∇f(µt)− hqi (X

i
t)〉 − E‖∇f(µt)‖2

)

=

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]

u∑
q=1

(
E〈∇f(µt),∇f(µt)−∇f(Xi

t −
q−1∑
s=0

ηh̃si (X
i
t))〉 − E‖∇f(µt)‖2

)

=

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]

u∑
q=1

(
E‖∇f(µt)−∇f(Xi

t −
q−1∑
s=0

ηh̃si (X
i
t))‖2/2− E‖∇f(µt)‖2/2

)
L−smoothness

≤
n∑
i=1

∞∑
u=1

Pr[Hi
t = u]

u∑
q=1

(
L2E‖µt −Xi

t +

q−1∑
s=0

ηh̃si (X
i
t))‖2/2− E‖∇f(µt)‖2/2

)

≤
n∑
i=1

∞∑
u=1

Pr[Hi
t = u]

u∑
q=1

(
L2E‖µt −Xi

t‖2 + L2E‖
q−1∑
s=0

ηh̃si (X
i
t))‖2 − E‖∇f(µt)‖2/2

)

≤
n∑
i=1

∞∑
u=1

Pr[Hi
t = u]

u∑
q=1

(
L2E‖µt −Xi

t‖2 + L2η2q

q−1∑
s=0

E‖h̃si (Xi
t))‖2 − E‖∇f(µt)‖2/2

)
≤

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]

u∑
q=1

(
L2E‖µt −Xi

t‖2 + L2η2q2M2 − E‖∇f(µt)‖2/2
)

=

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]u

(
L2E‖µt −Xi

t‖2 − E‖∇f(µt)‖2/2
)

+

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]u(u+ 1)(2u+ 1)L2M2η2/6

= HL2E[Γt]−
Hn

2
E‖∇f(µt)‖2 +

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]u(u+ 1)(2u+ 1)L2M2η2/6

≤ HL2E[Γt]−
Hn

2
E‖∇f(µt)‖2 +

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]u3L2M2η2

≤
n∑
i=1

∞∑
u=1

Pr[Hi
t = u]u(u+ 1)(2u+ 1)L2M2η2/6

≤ HL2E[Γt]−
Hn

2
E‖∇f(µt)‖2 +

n∑
i=1

∞∑
u=1

Pr[Hi
t = u]u3L2M2η2

≤ HL2E[Γt]−
Hn

2
E‖∇f(µt)‖2 + 6H3nL2M2η2.
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Where in the last step we used:

∞∑
u=1

Pr[Hi
t = u]u3 = E[(Hi

t)
3] = 6H3 − 6H2 +H ≤ 6H3.

Theorem 1. Let f be an non-convex, L-smooth, function satisfying assumption
5, whose minimum x? we are trying to find via the SwarmSGD procedure given
in Algorithm 1. Let the number of local stochastic gradient steps performed by
each agent upon interaction be a geometric random variable with mean H. Let
the learning rate we use be η = n/

√
T . Define µt =

∑n
i=1X

i
t/n, where Xi

t is a

value of model i after t interactions. Then, for learning rate η = n/
√
T and any

T ≥ n4:

1

T

T−1∑
t=0

E‖∇f(µt)‖2 ≤
(f(µ0)− f(x∗))√

TH
+

11H2 max(1, L2)M2

√
T

max(1, 2r/λ2 + 4r2/λ22).
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Proof.

E[f(µt+1)]
L−smoothness

≤ E[f(µt)] + E〈∇f(µt), µt+1 − µt〉+
L

2
E‖µt+1 − µt‖2

(19)

= E[f(µt)] +

n∑
(i,j)∈E

1

rn/2
E〈∇f(µt),−

η

n
h̃i(X

i
t)−

η

n
h̃j(X

j
t )〉 (20)

+
∑

(i,j)∈E

L

rn
E‖ η
n
h̃i(X

i
t) +

η

n
h̃j(X

j
t )‖2 (21)

≤ E[f(µt)] +
∑

(i,j)∈E

1

rn/2
E〈∇f(µt),−

η

n
h̃i(X

i
t)−

η

n
h̃j(X

j
t )〉

+
∑

(i,j)∈E

2L

rn
E
[
‖ η
n
h̃i(X

i
t)‖2 + ‖ η

n
h̃j(X

j
t )‖2

]
(22)

= E[f(µt)] +

n∑
i=1

2

n
E〈∇f(µt),−

η

n
h̃i(X

i
t)〉+

n∑
i=1

2L

n
E‖ η
n
h̃i(X

i
t)‖2 (23)

Lemma10
≤ E[f(µt)] +

2η

n2

(
HL2E[Γt]−

Hn

2
E‖∇f(µt)‖2 + 6H3nL2M2η2

)
(24)

+

n∑
i=1

2Lη2

n3
E‖h̃i(Xi

t)‖2 (25)

Lemma8
≤ E[f(µt)] +

2η

n2

(
HL2E[Γt]−

Hn

2
E‖∇f(µt)‖2 + 6H3nL2M2η2

)
(26)

+
4Lη2H2M2

n2
(27)

recall that by Lemma 3 we have that E[Γt] ≤ 2nη2H2M2(2r/λ2 +4r2/λ22), hence
the above inequality becomes:

E[f(µt+1)]− E[f(µt)] ≤
4L2η3M2H3

n
(2r/λ2 + 4r2/λ22)− ηH

n
E‖∇f(µt)‖2

(28)

+
4Lη2H2M2

n2
+

6H3L2M2η3

n
. (29)

by summing the above inequality for t = 0 to t = T − 1, we get that

E[f(µT )]− f(µ0) ≤
T−1∑
t=0

(4L2η3M2H3

n
(2r/λ2 + 4r2/λ22)− ηH

n
E‖∇f(µt)‖2

+
4Lη2H2M2

n2
+

6H3L2M2η3

n

)
.
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From this we get that :

T−1∑
t=0

ηH

n
E‖∇f(µt)‖2 ≤ f(µ0)− E[f(µT )] +

4TL2η3M2H3

n
(2r/λ2 + 4r2/λ22) +

4TLη2H2M2

n2
+

6TH3L2M2η3

n
.

(30)

Note that E[f(µT )] ≥ f(x∗), hence after multiplying the above inequality by
n

ηHT we get that

1

T

T−1∑
t=0

E‖∇f(µt)‖2 ≤
n(f(µ0)− f(x∗))

THη
+ L2η2M2H2(2r/λ2 + 4r2/λ22) +

4LηHM2

n
+ 6H2L2M2η2.

Observe that η = n/
√
T ≤ 1/n, since T ≥ n4. This allows us to finish the proof:

1

T

T−1∑
t=0

E‖∇f(µt)‖2 ≤
n(f(µ0)− f(x∗))

THη
+
L2ηM2H2

n
(2r/λ2 + 4r2/λ22) +

4LηHM2

n
+

6H2L2M2η

n

=
(f(µ0)− f(x∗))√

TH
+
L2M2H2

√
T

(2r/λ2 + 4r2/λ22) +
4LHM2

√
T

+
6H2L2M2

√
T

≤ (f(µ0)− f(x∗))√
TH

+
11H2 max(1, L2)M2

√
T

max(1, 2r/λ2 + 4r2/λ22).

E Analysis without Second Moment Bound

We start by inductively defining the decrements we apply to the model with the
value Xi

t locally, without taking the multiplicative learning rate factor into the
account. Let

h̃0i (X
i
t) = 0.

and for 1 ≤ q ≤ H let:

h̃qi (X
i
t) = g̃i(X

i
t −

q−1∑
s=0

ηh̃si (X
i
t)).

Also , for 1 ≤ q ≤ H, let

hqi (X
i
t) = ∇f(Xi

t −
q−1∑
s=0

ηh̃si (X
i
t)).

be the expected value of h̃qi (X
i
t) taken over the randomness of the stochastic gra-

dient g̃i. Let h̃i(X
i
t) be the total amount by which we decrement the model(again

without the learning rate factor):

h̃i(X
i
t) =

H∑
q=1

h̃qi (X
i
t).
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The new value of the model Xi
t after local update is(before it gets averaged with

the other model)

Xi
t − ηh̃i(Xi

t) = Xi
t − η

H∑
q=1

h̃qi (X
i
t) = Xi

t − η
H∑
q=1

g̃i(X
i
t −

q−1∑
s=0

ηh̃si (X
i
t))

By applying Lemma 2 with Rit(X
i
t) = −ηh̃i(Xi

t), we get the following lemma

Lemma 11.

E[Γt+1] ≤ (1− λ2
rn

)E[Γt] +
η2H

n
(2 +

4r

λ2
)

H∑
q=1

n∑
i=1

E‖h̃qi (X
i
t)‖2.

Proof.

E[Γt+1]
Lemma2
≤ (1− λ2

rn
)E[Γt] + (2 +

4r

λ2
)

1

n

n∑
i=1

E‖ − ηh̃i(Xi
t)‖2 ≤ (1− λ2

rn
)E[Γt] +

η2

n
(2 +

4r

λ2
)

n∑
i=1

E‖h̃i(Xi
t)‖2

≤ (1− λ2
rn

)E[Γt] +
η2H

n
(2 +

4r

λ2
)

H∑
q=1

n∑
i=1

E‖h̃qi (X
i
t)‖2.

Lemma 12. For any 1 ≤ q ≤ H and step T , we have that

n∑
i=1

E‖∇f(µt)− hqi (X
i
t)‖2 ≤ 2L2E[Γt] +

n∑
i=1

2L2η2E‖
q−1∑
s=0

h̃si (X
i
t)‖2.

Proof.

n∑
i=1

E‖∇f(µt)− hqi (X
i
t)‖2 =

n∑
i=1

E‖∇f(µt)−∇f(Xi
t −

q−1∑
s=0

ηh̃si (X
i
t))‖2

≤
n∑
i=1

L2E‖µt −Xi
t + ηh̃q−1i (Xi

t))‖2 ≤
n∑
i=1

2L2E‖Xi
t − µt‖2 +

n∑
i=1

2L2η2E‖
q−1∑
s=0

h̃si (X
i
t)‖2

= 2L2E[Γt] +

n∑
i=1

2L2η2E‖
q−1∑
s=0

h̃si (X
i
t)‖2.

Lemma 13. For any 1 ≤ q ≤ H and step T , we have that

n∑
i=1

E‖h̃qi (X
i
t)‖2 ≤ nσ2+12L2E[Γt]+

n∑
i=1

12L2η2E‖
q−1∑
s=0

h̃si (X
i
t)‖2+3nE‖

n∑
i=1

hqi (X
i
t)/n‖2.
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Proof.

n∑
i=1

E‖h̃qi (X
i
t)‖2 ≤

n∑
i=1

(σ2 + E‖hqi (X
i
t)‖2) ≤ nσ2 +

n∑
i=1

E‖∇f(Xi
t −

q−1∑
s=0

ηh̃si (X
i
t))‖2

≤ nσ2 +

n∑
i=1

E

∥∥∥∥∥∇f(Xi
t − ηh̃

q−1
i (Xi

t))−∇f(µt) +∇f(µt)

−
n∑
j=1

∇f(Xj
t −

q−1∑
s=0

ηh̃sj(X
j
t ))/n+

n∑
j=1

∇f(Xj
t −

q−1∑
s=0

ηh̃sj(X
j
t ))/n

∥∥∥∥∥
2

≤ nσ2 +

n∑
i=1

3E‖∇f(µt)− hqi (X
i
t)‖2 + 3nE‖

n∑
i=1

(∇f(µt)− hqi (X
i
t))/n‖2 + 3nE‖

n∑
i=1

hqi (X
i
t)/n‖2

≤ nσ2 +

n∑
i=1

6E‖∇f(µt)− hqi (X
i
t)‖2 + 3nE‖

n∑
i=1

hqi (X
i
t)/n‖2

≤ nσ2 + 12L2E[Γt] +

n∑
i=1

12L2η2E‖
q−1∑
s=0

h̃si (X
i
t)‖2 + 3nE‖

n∑
i=1

hqi (X
i
t)/n‖2.

Next we use the above lemma to show the upper bound for
∑H
q=1

∑n
i=1 E‖h̃

q
i (X

i
t)‖2:

Lemma 14. For η ≤ 1
6LH , we have that :

H∑
q=1

n∑
i=1

E‖h̃qi (X
i
t)‖2 ≤ 2Hnσ2 + 24HL2E[Γt] + 6n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2

Proof. Notice that if η ≤ 1
6LH the Lemma 13 gives us that :

n∑
i=1

E‖h̃qi (X
i
t)‖2 ≤ nσ2 + 12L2E[Γt] +

n∑
i=1

1

2H2
E‖

q−1∑
s=0

h̃si (X
i
t)‖2 + 3nE‖

n∑
i=1

hqi (X
i
t)/n‖2

(31)

≤ nσ2 + 12L2E[Γt] +

n∑
i=1

q

2H2

q−1∑
s=0

E‖h̃si (Xi
t)‖2 + 3nE‖

n∑
i=1

hqi (X
i
t)/n‖2

≤ nσ2 + 12L2E[Γt] +

n∑
i=1

1

2H

q−1∑
s=0

E‖h̃si (Xi
t)‖2 + 3nE‖

n∑
i=1

hqi (X
i
t)/n‖2.

For 0 ≤ q ≤ H, let

Rq =

n∑
i=1

q∑
s=0

E‖h̃si (Xi
t)‖2.
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Observe that the inequality 31 can be rewritten as:

Rq −Rq−1 ≤
1

2H
Rq−1 + nσ2 + 12L2E[Γt] + 3nE‖

n∑
i=1

hqi (X
i
t)/n‖2.

which is the same as

Rq ≤ (1 +
1

2H
)Rq−1 + nσ2 + 12L2E[Γt] + 3nE‖

n∑
i=1

hqi (X
i
t)/n‖2.

By unrolling the recursion we get that

RH ≤
H−1∑
q=0

(1 +
1

2H
)q
(
nσ2 + 12L2E[Γt] + 3nE‖

n∑
i=1

hH−qi (Xi
t)/n‖2

)
Since,

(1 +
1

2H
)H ≤ (e

1
2H )H = e1/2 ≤ 2

we have that

RH =

H∑
q=1

n∑
i=1

E‖h̃qi (X
i
t)‖2 ≤ 2

(
H∑
q=1

(
nσ2 + 12L2E[Γt] + 3nE‖

n∑
i=1

hqi (X
i
t)/n‖2

))

= 2Hnσ2 + 24HL2E[Γt] + 6n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2.

Next we derive the upper bound for
∑T
t=0 E[Γt]:

Lemma 5. For η ≤ 1

7HL
√

2r/λ2+4r2/λ2
2

, we have that :

T∑
t=0

E[Γt] ≤
4nrη2σ2H2T

λ2
(2 +

4r

λ2
) +

12nrη2H

λ2
(2 +

4r

λ2
)

T∑
t=1

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2.

Proof. By combining Lemmas 11 and 14 we get that:

E[Γt+1] ≤ (1− λ2
rn

)E[Γt] +
η2H

n
(2 +

4r

λ2
)

H∑
q=1

n∑
i=1

E‖h̃qi (X
i
t)‖2

≤ (1− λ2
rn

)E[Γt] +
η2H

n
(2 +

4r

λ2
)
(

2Hnσ2 + 24HL2E[Γt] + 6n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2

)

= (1− λ2
rn

)E[Γt] + 2η2σ2H2(2 +
4r

λ2
) +

24H2L2η2

n
(2 +

4r

λ2
)E[Γt] + 6η2H(2 +

4r

λ2
)

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2
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Notice that for η ≤ 1

7HL
√

2r/λ2+4r2/λ2
2

we can rewrite the above inequality as

E[Γt+1] ≤ (1− λ2
2nr

)E[Γt]+2η2σ2H2(2+
4r

λ2
)+6η2H(2+

4r

λ2
)

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2.

since
∑∞
i=0(1− λ2

2nr )i ≤ 1

1−(1− λ2
2nr )

= 2nr
λ2

we get that:

T∑
t=0

E[Γt] ≤
2nr

λ2

(
2η2σ2H2(2 +

4r

λ2
) + 6η2H(2 +

4r

λ2
)

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2)

=
4nrη2σ2H2T

λ2
(2 +

4r

λ2
) +

12nrη2H

λ2
(2 +

4r

λ2
)

T∑
t=1

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2.

Now, we are ready to prove the following theorem

Theorem 4. Let f be an non-convex, L-smooth, function satisfying condition
4, whose minimum x? we are trying to find via the SwarmSGD procedure given
in Algorithm 1. Let H be the number of local stochastic gradient steps performed
by each agent upon interaction. Define µt =

∑n
i=1X

i
t/n, where Xi

t is a value of
model i after t interactions. For learning rate η = n√

T
and

T ≥ 225n4H2 max(1, (2r/λ2 + 4r2/λ22)2) max(1, L2) we have that:

∑T−1
i=0 E‖∇f(µt)‖2

T
≤ 1√

TH
E[f(µ0)− f(µt)] +

28H2 max(1, L2)σ2

√
T

max(1, 2r/λ2 + 4r2/λ22).
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Proof.

E[f(µt+1)]
L−smoothness

≤ E[f(µt)] + E〈∇f(µt), µt+1 − µt〉+
L

2
E‖µt+1 − µt‖2

(32)

= E[f(µt)] +

n∑
(i,j)∈E

1

rn/2
E〈∇f(µt),−

η

n
h̃i(X

i
t)−

η

n
h̃j(X

j
t )〉 (33)

+
∑

(i,j)∈E

L

rn
E‖ η
n
h̃i(X

i
t) +

η

n
h̃j(X

j
t )‖2 (34)

≤ E[f(µt)] +
∑

(i,j)∈E

1

rn/2
E〈∇f(µt),−

η

n
h̃i(X

i
t)−

η

n
h̃j(X

j
t )〉

+
∑

(i,j)∈E

2L

rn
E
[
‖ η
n
h̃i(X

i
t)‖2 + ‖ η

n
h̃j(X

j
t )‖2

]
(35)

= E[f(µt)] +

n∑
i=1

2

n
E〈∇f(µt),−

H∑
q=1

η

n
hqi (X

i
t)〉+

n∑
i=1

2L

n
E‖ η
n
h̃i(X

i
t)‖2 (36)

= E[f(µt)] +

H∑
q=1

n∑
i=1

2

n
E〈∇f(µt),−

η

n
hqi (X

i
t)〉+

H∑
q=1

n∑
i=1

2LH

n
E‖ η
n
h̃qi (X

i
t)‖2

(37)

= E[f(µt)] +

H∑
q=1

(
η

n
E‖

n∑
i=1

(∇f(µt)− hqi (X
i
t))/n‖2 −

η

n
E‖∇f(µt)‖2 −

η

n
E‖

n∑
i=1

hqi (X
i
t)/n‖2

+

n∑
i=1

2LH

n
E‖ η
n
h̃qi (X

i
t)‖2

)
(38)

≤ E[f(µt)] +

H∑
q=1

(
η

n2

n∑
i=1

E‖∇f(µt)− hqi (X
i
t)‖2 −

η

n
E‖∇f(µt)‖2 −

η

n
E‖

n∑
i=1

hqi (X
i
t)/n‖2

(39)

+

n∑
i=1

2LH

n
E‖ η
n
h̃qi (X

i
t)‖2

)
(40)

Lemma12
≤ E[f(µt)] +

H∑
q=1

(
η

n2

(
2L2E[Γt] +

n∑
i=1

2L2η2E‖h̃q−1i (Xi
t)‖2

)
− η

n
E‖∇f(µt)‖2

− η

n
E‖

n∑
i=1

hqi (X
i
t)/n‖2 +

n∑
i=1

2LH

n
E‖ η
n
h̃qi (X

i
t)‖2

)
(41)

Lemma14
≤ E[f(µt)] +

2ηL2H

n2
E[Γt]−

Hη

n
E‖∇f(µt)‖2 (42)

+
2L2η3

n2

(
2Hnσ2 + 24HL2E[Γt] + 6n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2

)

+
2LHη2

n3

(
2Hnσ2 + 24HL2E[Γt] + 6n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2

)

− η

n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2. (43)
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Next we choose η ≤ 1
8L and η ≤ n

60LH , so that 12L2η3

n ≤ η
5n and 12LHη2

n2 ≤ η
5n .

This together with the above inequalities allows us to derive the following upper
bound for E[f(µt+1)](we eliminate terms with positive multiplicative factor
E‖
∑n
i=1 h

q
i (X

i
t)/n‖2):

E[f(µt+1)] ≤ E[f(µt)] +
2ηL2H

n2
E[Γt]−

Hη

n
E‖∇f(µt)‖2

+
2L2η3

n2

(
2Hnσ2 + 24HL2E[Γt]

)
+

2LHη2

n3

(
2Hnσ2 + 24HL2E[Γt]

)
− 3η

5n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2.

We proceed by summing up the above inequality for 0 ≤ t ≤ T − 1:

T−1∑
t=0

E[f(µt+1)] ≤
T−1∑
t=0

E[f(µt)] +
4L2Hη3σ2T

n
+

4LH2η2σ2T

n2
−
T−1∑
i=0

ηH

n
E‖∇f(µt)‖2

+
2ηL2H

n2

T−1∑
t=0

E[Γt] +
48L4Hη3

n2

T−1∑
t=0

E[Γt] +
48L3H2η2

n3

T−1∑
t=0

E[Γt]

−
T−1∑
t=0

3η

5n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2 (44)

Next we use Lemma 5:

2ηL2H

n2

T−1∑
t=0

E[Γt] +
48L4Hη3

n2

T−1∑
t=0

E[Γt] +
48L3H2η2

n3

T−1∑
t=0

E[Γt]−
T−1∑
t=0

3η

5n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2

≤ 2ηL2H

n2

(4nrη2σ2H2T

λ2
(2 +

4r

λ2
) +

12nrη2H

λ2
(2 +

4r

λ2
)

T−1∑
t=1

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2

)

+
48L4Hη3

n2

(4nrη2σ2H2T

λ2
(2 +

4r

λ2
) +

12nrη2H

λ2
(2 +

4r

λ2
)

T−1∑
t=1

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2

)

+
48L3H2η2

n3

(4nrη2σ2H2T

λ2
(2 +

4r

λ2
) +

12nrη2H

λ2
(2 +

4r

λ2
)

T−1∑
t=1

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2

)

−
T−1∑
t=0

3η

5n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2.

By choosing η ≤ 1

11HL
√

2r/λ2+4r2/λ2
2

, η ≤ 1
8H1/2L(2r/λ2+4r2/λ2

2)
1/4 and η ≤

n1/3

15LH(2r/λ2+4r2/λ2
2)

1/3 we can eliminate terms with the multiplicative factor
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∑H
q=1 E‖

∑n
i=1 h

q
i (X

i
t)/n‖2 in the above inequality:

2ηL2H

n2

T−1∑
t=0

E[Γt] +
48L4Hη3

n2

T−1∑
t=0

E[Γt] +
48L3H2η2

n3

T−1∑
t=0

E[Γt]−
T−1∑
t=0

3η

5n

H∑
q=1

E‖
n∑
i=1

hqi (X
i
t)/n‖2

≤ 8η3L2H3Tσ2

n
(2r/λ2 + 4r2/λ22) +

192L4H3η5Tσ2

n
(2r/λ2 + 4r2/λ22) +

192L3H4η4σ2T

n2
(2r/λ2 + 4r2/λ22).

By using the above inequality in inequality 44, we get that :

T−1∑
t=0

E[f(µt+1)] ≤
T−1∑
t=0

E[f(µt)]−
T−1∑
i=0

ηH

n
E‖∇f(µt)‖2

+
4L2Hη3σ2T

n
+

4LH2η2σ2T

n2
+

8η3L2H3Tσ2

n
(2r/λ2 + 4r2/λ22)

+
192L4H3η5Tσ2

n
(2r/λ2 + 4r2/λ22) +

192L3H4η4σ2T

n2
(2r/λ2 + 4r2/λ22).

After rearranging terms and dividing by ηTH
n we get that∑T−1

i=0 E‖∇f(µt)‖2

T
≤ n

ηTH
E[f(µ0)− f(µt)] + 4L2η2σ2 +

4LHησ2

n
+ 8η2L2H2σ2(2r/λ2 + 4r2/λ22)

+ 192L4H2η4σ2(2r/λ2 + 4r2/λ22) +
192L3H3η3σ2

n
(2r/λ2 + 4r2/λ22).

Next we use η ≤ 1/n and η ≤ 1
6HL :∑T−1

i=0 E‖∇f(µt)‖2

T
≤ n

ηTH
E[f(µ0)− f(µt)] +

4L2ησ2

n
+

4LHησ2

n
+

8ηL2H2σ2

n
(2r/λ2 + 4r2/λ22)

+
192L4H2η3σ2

n
(2r/λ2 + 4r2/λ22) +

192L3H3η3σ2

n
(2r/λ2 + 4r2/λ22)

≤ n

ηTH
E[f(µ0)− f(µt)] +

4L2ησ2

n
+

4LHησ2

n
+

8ηL2H2σ2

n
(2r/λ2 + 4r2/λ22)

+
62L2ησ2

n
(2r/λ2 + 4r2/λ22) +

6LHησ2

n
(2r/λ2 + 4r2/λ22)

.

Recall that η = n√
T

to get:∑T−1
i=0 E‖∇f(µt)‖2

T
≤ 1√

TH
E[f(µ0)− f(µt)] +

4L2σ2

√
T

+
4LHσ2

√
T

+
8L2H2σ2

√
T

(2r/λ2 + 4r2/λ22)

+
6L2σ2

√
T

(2r/λ2 + 4r2/λ22) +
6LHσ2

√
T

(2r/λ2 + 4r2/λ22)

≤ 1√
TH

E[f(µ0)− f(µt)] +
28H2 max(1, L2)σ2

√
T

max(1, 2r/λ2 + 4r2/λ22).

Notice that all assumptions and upper bounds on η are satisfied if η ≤ 1
15nHmax(1,(2r/λ2+4r2/λ2

2))max(1,L)
,

which is true for T ≥ 225n4H2 max(1, (2r/λ2 + 4r2/λ22)2) max(1, L2).
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F Splitting data among the agents

Our analysis can be extended to the case where agents do not necessarily have
access to the entire data. More formally, let f(x) =

∑n
i=1 fi(x)/n, where fi(x) is

a loss function computed over the data available to the agent i. We will require
the following assumptions(Which match the assumptions in [23]):

(1) For each agent i, the gradient ∇fi(x) is L-Lipschitz continuous for some
L > 0, i.e. for all x, y ∈ Rd:

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖. (45)

(2) For each agent i and x ∈ Rd:

E[g̃i(x)] = ∇fi(x). (46)

(3) For each agent i and x ∈ Rd there exist ς2 such that:

E‖g̃i(x)−∇fi(x)‖2 ≤ ς2. (47)

(4) For each x ∈ Rd there exist ρ2 such that:

n∑
i=1

‖∇fi(x)−∇f(x)‖2/n ≤ ρ2. (48)

Under assumptions 45 and 46 we are able to show that Theorem 1 still holds.
In the case of Theorem 4 , if all the assumptions above hold(we do not need
assumption 4 in this case), we are able to derive similar result by replacing σ2

with O(ς2 + ρ2) in the convergence bound.

G Additional Experimental Results
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(a) Convergence of ResNet50/ImageNet
versus Local Steps. SwarmSGD is able to
recover (and slightly surpass) the Torchvi-
sion model’s (baseline) top accuracy.

(b) Accuracy versus local epochs and local steps
for CIFAR-10/ResNet20. The original schedule
for this model has 300 epochs, and this experi-
ment is executed on 8 nodes. If the convergence
scaling were perfect, 300/8 = 37.5 epochs would
have been sufficient to converge. However, in
this case we need an epoch multiplier of 2, lead-
ing to 75 epochs to recover full accuracy (which
in this case is 91.5%.

Figure 2: Additional convergence results for CIFAR-10 and ImageNet datasets.
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