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Abstract—The growing prevalence and computational de-
mands of Artificial Intelligence (AI) workloads has led to
widespread use of hardware accelerators in their execution.
Scaling the performance of AI accelerators across genera-
tions is pivotal to their success in commercial deployments.
The intrinsic error-resilient nature of AI workloads present
a unique opportunity for performance/energy improvement
through precision scaling. Motivated by the recent algorithmic
advances in precision scaling for inference and training, we
designed RAPID1, a 4-core AI accelerator chip supporting a
spectrum of precisions, namely, 16 and 8-bit floating-point and
4 and 2-bit fixed-point. The 36mm2 RAPID chip fabricated in
7nm EUV technology delivers a peak 3.5 TFLOPS/W in HFP8
mode and 16.5 TOPS/W in INT4 mode at nominal voltage.
Using a performance model calibrated to within 1% of the
measurement results, we evaluated DNN inference using 4-bit
fixed-point representation for a 4-core 1 RAPID chip system
and DNN training using 8-bit floating point representation for
a 768 TFLOPs AI system comprising 4 32-core RAPID chips.
Our results show INT4 inference for batch size of 1 achieves 3
- 13.5 (average 7) TOPS/W and FP8 training for a mini-batch
of 512 achieves a sustained 102 - 588 (average 203) TFLOPS
across a wide range of applications.

Keywords-Hardware Acceleration, Deep Neural Networks,
Reduced Precision

I. INTRODUCTION

The past decade has witnessed a paradigm shift in the

nature of workloads executed on computing platforms across

the spectrum from mobile and IoT edge devices to the

cloud and datacenters. Driven by the availability of massive

amounts of data and advances in deep learning with Deep

Neural Networks (DNNs), AI based applications and services

have significantly grown in prevalence, even surpassing

humans on several challenging AI tasks involving images,

videos, text and natural language [1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. However, the

high accuracy of DNNs come at a high computational cost.

For example, state-of-the-art image recognition DNNs (e.g.
ResNet50) take ∼10 billion scalar operations to classify a

1RAPID expands as Reduced Precision Dataflow accelerator for AI

single image. Furthermore, training DNN models require exa-

FLOPs of compute and use massive training datasets, which

are 100s of GB in size. Such high compute/storage/bandwidth

requirements severely stress the capabilities of traditional

computing platforms.

AI Accelerators. With the seeming slowdown of CMOS

technology scaling and its associated benefits, meeting the

computational demands of AI workloads and fueling future

AI research on even more complex and robust models

necessitates innovations across the hardware and software

system stack. One approach that has been broadly adopted

by the industry is building specialized systems for AI
with hardware accelerators. AI workloads lend well to

hardware acceleration as they are static dataflow graphs

and computations in DNNs can be expressed using a small

number (few tens) of primitives. This is evidenced by the

many academic demonstrations of specialized accelerators

for DNNs [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32],

and commercial AI cores (Google TPUs, NVIDIA Tensor

Cores, Intel NNP, etc.) [33, 34, 35].

Figure 1: Precision scaling road map for training and inference

Precision Scaling. Scaling the performance of AI accel-

erators across generations is pivotal to their success in

commercial deployments. Beyond traditional means of scal-

ing performance at different levels of the compute stack

viz. technology node, many-core/heterogeneous architectures,

and others, AI workloads present a unique opportunity for

performance/energy improvement through precision scaling.

Advances in Approximate Computing in recent years have
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successfully demonstrated that, if done judiciously, the intrin-

sic error-resilient nature of AI workloads can be leveraged

to reduce the bit width used for data representation during

computation without loss in accuracy.
As shown in Figure 1, research efforts have consis-

tently pushed down the precision requirements for both

inference and training. Inference precision scaling driven

by deployment in edge devices has gone to bit-widths as

low as 2-4 bits for representing both weights and activa-

tions [36, 37, 38, 39, 40, 41, 42, 43]. Precision scaling for

training is significantly more challenging due to the need to

maintain fidelity of the gradients during the back-propagation

step and a large dynamic range in the representation. Recently,

8-bit floating-point representations [44, 45] have been shown

to be effective for DNN training.
Ultra-Low Precision Capable AI accelerators. Given these

algorithmic advances, it is imperative that next generation

of AI accelerators should be capable of ultra-low precision

execution - beyond 16-bit floating point for training, and 8-bit

integer for inference. In this work, we present RAPID, an

accelerator architecture supporting a spectrum of precisions

from 16-bit floating-point to 2-bit fixed-point. We have

designed and fabricated a 4-core RAPID chip in 7nm EUV

technology operating at 1.5 GHz.
At a high level, precision scaling has several advantages

which makes it favorable to integrate within accelerator

designs. First, it impacts all aspects of system design i.e.,
improves compute efficiency, reduces memory footprint

and data bandwidth requirement. Next, it preserves the

regularity of compute which minimizes dataflow complexity

and control overheads. However, it also introduces new

challenges requiring careful architecture design. We highlight

the key features of RAPID below.

1) Mixed (Ultra-low) precision support. The RAPID ar-

chitecture supports 5 different precisions—16-bit floating

point (FP16), two flavours of 8-bit floating point (FP8-fwd

and FP8-bwd) with programmable bias together referred as

Hybrid-FP8 (HFP8), 4-bit fixed-point (INT4) and 2-bit fixed-

point (INT2). We select these precisions based on detailed

algorithmic studies in the context of both training [44, 45]

and inference [42, 46]. It is noteworthy that although we

target ultra-low precision execution, it is critical to retain

support for higher precisions. This is because while ultra-

low precision can be applied to most computations, selected

ones such as first and last layers, short-cut paths etc. require

high precision to preserve accuracy [46]. Our 4-core 36mm2

RAPID AI chip in 7nm EUV technology delivers 12/24/96

T(FL)OPS peak and achieves 1.8/3.5/16.5 T(FL)OPS/W in

FP16/HFP8/INT4 precisions respectively.

2) Scaling both TOPS and TOPS/W at low precision.
One of the key design tenets in RAPID is to improve both

performance (TOPS) and energy efficiency (TOPS/W) at

ultra-low precision catering to both real-time and battery-

driven deployment scenarios. This implies scaling the number

of compute engines commensurate with the power-saved at

lower precisions while navigating the speeds vs. feeds trade-

off at each precision.

3) End-to-End application coverage. While convolutions

and GEMMs account for a significant fraction of DNN

ops, they are embedded within a number of activation,

pooling, normalization and data-shuffle operations. Executing

these operations on the accelerator is vital as the data-

transfer cost between the accelerator and the host could

be costly. The Special Function Units (SFU) in RAPID

includes both accurate and fast versions for a broad-range of

such operations as well as permute engines for data-shuffling.

It also uses 32-bit floating point (FP32) units for selected

operations.

4) Sparsity-aware Frequency Throttling. To enhance

energy-efficiency, the fused-multiply-and-accumulate (FMA)

engines of RAPID are designed with zero-gating logic i.e.,
a bypass path is triggered when one of the multiplicands is

zero. It also includes a power management unit (controlled

from software) that can rapidly throttle the effective clock

frequency. In the context of inference, we leverage these

features to boost the performance of sparse (or pruned)

DNN models. Specifically, through offline analysis of the

sparsity exhibited by each layer, we estimate the power

saved through zero-gating and re-invest the power during the

layer’s execution by increasing the effective clock frequency

to benefit performance.

5) Multi-core Scaling. RAPID contains a Memory Neighbor

Interface (MNI) that enables core-to-core and core-to-memory

communication and synchronization. Our communication

protocol contains simple primitives that allow for concur-

rent data-transfers between overlapping multi-cast producer-

consumer core groups, allowing software to effectively utilize

the available bandwidth.

In summary, the RAPID architecture enables both training

and inference at ultra-low precision. The design fosters

scalability to multiple cores and provides the necessary

functional converge to execute end-to-end AI workloads.

In this paper, we evaluate the 4-core RAPID chip model for

inference with a primary focus on 4-bit fixed point. We also

evaluate a distributed 4-chip system using 32-core RAPID

chip model for training using 8-bit floating point. To the

best of our knowledge, RAPID is the first effort to support

a mixed-precision architecture capable of 8-bit training and

4-bit inference.

The rest of the paper is organized as follows. Section II

discusses the systolic dataflow architecture, akin to several re-

cent prior work, which is used as a baseline core architecture

and summarizes the advances in algorithmic approximations

that serve as the foundation for enabling ultra-low precision

support in RAPID. Section III presents the key architecture

and microarchitecture innovations in the core to support

for ultra-low precision and Section IV presents the 7nm



RAPID chip with 4 cores along with the programming model

and discusses proposed systems for training and inference

derived using scaled RAPID chip(s). Section V describes the

effectiveness of RAPID for inference and training especially

at ultra-low precision on a set of popular DNN benchmarks.

Section VI discusses related efforts, and finally Section VII

concludes the paper with future work.

II. BACKGROUND

AI workloads are static dataflow graphs and the compu-

tations in DNNs can be expressed using a small number

(few tens) of primitives. This has led to many academic

demonstrations and commercial AI cores exploiting systolic

dataflow architectures [23, 25, 26, 30, 47, 48, 49]. We use

such a systolic dataflow architecture as a baseline and enhance

the architecture to support ultra-low precision for training

and inference.

A. Baseline: Systolic Dataflow Architecture

Figure 2 shows the building block of the baseline systolic

dataflow architecture. The main computation unit comprises

of a 8x8 2D-systolic array of Processing Elements (PEs)

supporting 16-bit floating-point (FP16) computations to

execute convolution and matrix multiplication operations

in DNNs. and a 1D-array of Special Function Units (SFUs)

supporting both 16 and 32-bit floating-point computations

(FP16 and FP32) to perform activation functions, pooling,

gradient reduction and normalization operations, which may

require higher bit precisions.

Figure 2: Baseline: Systolic
Dataflow Architecture

Each PE contains a

8-way SIMD multiply-

and-accumulate (MAC)

unit whose operands are

received from the PE’s

North/West neighbors or

from its Local Register File

(LRF). Similarly, the output

of the MAC is sent to either

the South neighbor PE or

written back to the LRF.

Since the typical dataflows

used did not require diagonal

flow of operands, the PEs

of a given row execute the

same instruction sequence in

a systolic fashion. Each SFP

also contains 8-way SIMD

MACs in higher-precision which operate as a vector unit.

A 2-tiered memory hierarchy of scratchpads feeds data

to the PE array and SFUs. The L0 scratchpad is used to

feed data along the rows (X direction). The L1 scratchpad

memory is connected to the L0 memories and columns (Y
direction) of the SFU/PE array on one side and interfaces

with the external memory on the other.

To provide maximum flexibility, the baseline architecture

is fully decentralized by decoupling compute and dataflow
through the different components into multiple separate
threads of execution. Similar to the access-execute paradigm,

programmable units are located at the end points of each (or

set of) link(s) in the architecture to have fine-grained control

over the sequence of data through the link(s). For example,

to orchestrate dataflow between L1 and L0, a programmable

unit located near the L1 controls the address sequence read

from the L1 and pushes the data on the link. Upon receiving

the data, a programmable unit near L0 determines the location

where it needs to be stored in L0. The SFUs also run

their individual programs. They can read/write data operands

from/to any of their incoming/outgoing links and their local

register file.

Execution of a DNN operation is therefore orchestrated

through multiple programs which can be broadly classified

into: (i) Data sequencing programs that load/store data from

the scratchpad memories and feed them in sequence to

PE/SFUs, and (ii) Data processing programs that define

the set of computations executed on PE/SFUs on the

incoming data elements. To ensure correct functionality (e.g.,
producer-consumer dependency), the architecture uses token-

based hardware support for synchronization between selected

programmable units. For example, consider when data is

moved from L1 to L0 and then subsequently streamed to

the PE array, the program writing data into L0 and the one

reading it synchronize periodically to ensure writes precede

reads.

B. Scaling Training beyond FP16

Figure 3: Support for mixed FP8 precisions for training [45]
Reduced precision DNN training is significantly more

challenging due to the need to maintain fidelity of the gradi-

ents during the back-propagation step. Recently, algorithmic

approximations [44, 45] resulted in a new Hybrid-FP8 (HFP8)

data format, shown in Figure 3 for training DNNs. The HFP8

format involves using two different FP8 (sign, exponent, man-

tissa) representations - one representation with lower dynamic

range (1,4,3) for activations and weights, and the other with

higher dynamic range (1,5,2) for errors. Both operands in the

forward pass uses FP8(1,4,3), whereas the backward pass and

gradient computations have one operand in FP8(1,4,3) and

the other in FP8(1,5,2) representation. In addition to using

2 different exponent-mantissa bit combinations in forward

vs. backward passes, HFP8 requires the exponent bias to

be configurable. This enables different DNN layers to take



different dynamic ranges, despite using the same number of

exponent bits.

HFP8-based training [44, 45] has been shown to achieve

model accuracy equivalent to FP32 representation training of

deep learning models across a whole spectrum of applications

including image classification, object detection, machine

translation, and speech.

C. Scaling Inference beyond INT8

Precision scaling for inference has been demonstrated

successfully for 4-bit (INT4) and 2-bit (INT2) fixed-point

representations. Recently, two quantization techniques viz. PA-

rameterized Clipping acTivation (PACT) [42] for activations

and Statistics-aware Weight Binning (SaWB) for weights [46]

have demonstrated 4-bit (INT4) inference with negligible

loss in accuracy and 2-bit (INT2) inference with minimal

accuracy loss (≈2%). PACT introduces a new activation

function derived from ReLU that clips the output beyond

a value thereby reducing its range. The key insight is that

the clipping value is not statically fixed, but rather learnt

during model training independently for each layer of the

DNN. SaWB quantizes weights by using the first and second

moment of the weight while retaining the shape of the weight

distribution. Both PACT and SaWB have little/no impact on

the model training time.

III. CORE ARCHITECTURE FOR ULTRA-LOW PRECISION

One of the key features of precision scaling is that it

preserves the regularity of the compute as all elements of

a given tensor are scaled equally to the same precision. In

addition, precision scaling saves energy both in the execution

units and in the memory and interconnect subsystems as the

capacity requirement of data-structures and the amount of

data transferred between components are also reduced. Hence

the baseline systolic dataflow architecture shown in Figure 2

has the organization well-suited for these precision-scaled

AI workloads. But to meet the computational and bandwidth

requirements for ultra-low precision training and inference

the baseline architecture has to be enhanced to:

• Scale the overall peak TOPs to be commensurate with

the scaled precision

• Balance the area and power of the PE array to effectively

utilize the increased peak TOPs.

• Meet the bandwidth constraints for data flowing into the

PE array by choosing data-flows to re-use the operands

effectively across SIMD and rows/columns of the PE

array.

• Continue to produce outputs in 16-bit format from

the PE array so that the auxiliary operations can be

performed in higher precision to maintain accuracy of

classification.

• Balance the computational units to match the distribution

of high-precision activations in SFU array and ultra-low

precision convolutions and matrix operations in the PE

array.

We now present the key architecture and microarchitec-

ture innovations added to the different components of the

fundamental building block of the baseline architecture to

overcome the challenges and realize the above goals.

A. MPE Array: Mixed-Precision PE Array

As we continue to scale the precision of the computations,

one of the key challenges is to scale the overall peak TOPs to

be commensurate with the scaled precision. We now discuss

the architecture and microarchitecture enhancements in the

mixed-precision PE array that enabled scaling the peak TOPs

with precision scaling while overcoming the challenges of

bandwidth, area, and power.

1) Supporting both INT and FP pipelines To support both

training and inference in ultra-low precision, the MPE array

has to have comprehensive support for mixed precision

execution, which includes different number formats: viz.
FP16, Hybrid-FP8, INT4 and INT2 as discussed in Section II.

Figure 4(a) shows the block diagram of an MPE. Supporting

both floating-point and fixed-point operations in the compute

engines increases area and power overhead while also creating

potential mismatches in pipeline depth and execution latency.

Separation of the integer and floating point pipelines solves

the architectural complexity of handling multiple precisions

while providing circuit implementation opportunities to

aggressively improve power efficiency. As in the baseline

architecture, each MPE has 8 FPUs and 8 FXUS supporting

FP16/HFP8 and INT4/INT2 formats, respectively.

2) HFP8 Training The MPE’s FPU pipeline supports both

FP16 and HFP8 using the same 128-bit datapath for the

8-way SIMD FPU. As shown in Figure 4(a), each MPE’s

FPU receives input operands North/West neighbors or from

its Local Register File (LRF), and the input operands are also

propagated to the East links, and the outputs are propagated

to the South neighbor.

We enhanced the FPU with 2 key innovations for HFP8

support to enable supporting different representations for the

inputs operands and achieving 2X the peak TOPs relative to

FP16.

On-the-Fly Conversion to custom FP8 representation:
As shown in Figure 3, FP8 training requires matrix

multiplications and convolutions in the backward path of

training to use tensors of different FP8 formats as inputs.

However, this increases the hardware complexity for the

floating-point units both in terms of area and power. We

enhanced the FPU to use a custom (sign, exponent, mantissa)

format of (1,5,3) with the input operands in both (1,5,2) and

(1,4,3) formats converted on-the-fly to (1,5,3) format [50].

As a result, for HFP8 training, the weights and activations

are stored in memory and scratchpads in either (1,4,3) (with

bias), or (1,5,2) formats, and converted to 9-bits (1,5,3)

formats on either the horizontal bus for data coming from

the L0 scratch-pad, or the FIFO interface for data from the

L1 scratch-pad via the north link.



INT4 2’s complement

INT2

Figure 4: Block diagram of Mixed-Precision Processing Element (MPE) and instruction formats

The ISA of the MPEs support input tensors for multiply-

accumulate instructions (FMMA) to have different FP8

formats. The MPE program uses the desired format for

the input operands based on the data-flow chosen. However,

within a program, the precision of the operands remains fixed,

and is set in registers to allow the hardware to determine data-

gating width for the operands. Another key feature of HFP8

datapath is that its exponent bias is programmable. Based

on the dynamic range of the computations under execution,

the MPE is configured with the appropriate exponent bias.
sub-SIMD partition: One of the key enablers to scale

the peak TOPs in HFP8 mode is the fine-grain partition

the SIMD units (sub-SIMD) within the FPU to realize 2X
performance at the same power as in FP16 while using the

same interface bus width. As shown in Figure 4(a), in HFP8

mode, the multiply-accumulate instruction (FMMA) of the

SIMD MPE realizes 2 multiplications and 2 additions. Even

with the additional complexity, the logic depth of the HFP8

multiplicand path remains comparable to FP16 due to the

4-bit multipliers.
With the ISA extensions shown in Figure 4(b) and the

microarchitecture enhancements described above, the MPE

supports HFP8 and FP16 in the FPU pipeline.
To maintain end-to-end accuracy, the auxiliary operations

require higher precision both in FP16 and HFP8 training.

Since both FP16 and HFP8 mode produces FP16 results, the

FPU compute paths of FP16 and HFP8 merge at the adder

as shown in Figure 4(a).
Finally, HFP8 training also uses chunk-based accumula-

tion [51] to accumulate partial sums in a hierarchical fashion

in order to preserve the fidelity of the intermediate sums.

The SFUs are used to realize chunk-based accumulation of

the partial sums(FP16/INT16) produced by the MPEs.

3) INT4/INT2 inference As mentioned above, we aug-

mented the MPE to have separate FPU and FXU pipelines.

In addition, since the INT4/INT2 engines target only DNN

inference, more circuit-level optimizations became feasible

to reduce area and power.
Double pumping INT4 and INT2 pipelines Our area

and power analysis of the de-coupled FPU and FXU units

revealed opportunities to double the INT4 and INT2 engines

within the FXU. As summarized in Figure 4(c) the addition

of a separate INT pipeline incurs ∼16% area overhead, but

the power of the INT4 pipeline was 0.3X that of the FP16

pipeline enabling doubling the INT4 and INT2 compute

engines in the MPE. Therefore, each FXU has 8 INT4 (16

INT2) multiply-accumulate engines.
Operand Reuse: Sub-SIMD + Across Columns: As

each of the 8-way SIMD unit completes 8 INT4 (and

16 INT2) multiply-accummulate operations in a cycle, we

doubled the datapath width of the SIMD MAC unit to be

256 bits and enhanced the architecture to allow accessing

2 registers (256 bits) in the MPEs with a single MAC

instruction. Doing so, also mitigates the energy cost of

accumulation especially as the cost of multipliers reduce

with precision scaling.
As shown in Figure 4(a) the 8-way SIMD FXU supports

4 and 2 bit integer MAC operations producing 16-bit integer

results matching the 128 bit datapath between MPEs. Efficient

data-flow mapping balances the L0 bandwidth constraints

and the operand re-use within the FXU. For example, with

a modified weight-stationery data-flow the 8 INT4 input

operand B (32 bits) flowing from West link are re-used

across each of the 8-way sub-SIMD, and is also propagated

across the columns of the MPE to be reused overall in 64

multiply-add operations.

4) Convolution and GEMM Dataflows in the MPE
array Figure 5 shows an example dataflow and simplified

pseudocode that we use to map convolutions and matrix

multiplications in the MPE array. Convolution layers can be

expressed using 7 dimensions: input and output channels

(Ci and Co), feature size (H×W ), kernel size (Ki×K j)
and minibatch (N). Dataflow design involves: (i) defining

dimensions that are spatially mapped along rows, columns,



SIMD lanes and local register file (LRF) of the MPE array,

and subsequently (ii) determining which data-structures are

streamed along rows, columns and held stationary in the LRF

and the sequence in which the elements are accessed.

Figure 5: Convolution dataflow

We have utilized a novel weight-stationary dataflow, which

was derived based on the following constraints to narrow

the dataflow choices: (i) achieve high utilization all the way

down to batch size of 1, which eliminated batch size as

a spatial dimension, (ii) avoid cross-row or cross-column

communication, which implies H×W cannot be chosen to

map spatially, and (iii) minimize residue effects due to strip-

mining when workload dimensions are not a multiple of

hardware dimensions, which meant Ki×K j is not a good

choice as they are typically small prime numbers. Therefore,

we selected input (Ci) and output (Co) channels as the

spatial dimensions. Further, to avoid cross-SIMD reduction in

hardware, we map Co along columns and SIMD, and Ci along

rows and the LRF. In a systolic dataflow, the data operand

fed along a row needs to be reused by all columns and vice

versa. This implies, the dimension spatially mapped along

columns should be unrelated to the data-structure streamed

along rows. Therefore, we stream input data-structure along

the rows and output data-structure along the columns. The

weights are held stationary in the LRF, which holds the

elements corresponding to the input and output channels

processed by the MPE (based on its location in the array)

for a given Ki×K j.
Figure 5 contains a simplified pseudocode that shows the

loop sequence in which we ordered the elements. Since

weights need to be block-loaded into the LRF before the

computation begins, the interval between block-loads need

to be maximized for high utilization. Therefore, we use

H×W and N as our innermost loops, both of which reuse

the block-loaded weights. We choose Ki×K j as our next

loop because the same input/output volume in the scratchpad

can be reused in all iterations of the loop. Finally, we place

the Ci and Co loops, whose loop counts are smaller as they

mapped spatially in hardware. The chosen dataflow yields

high utilization for almost all convolution layers other than

the first layer whose Ci is small. It can also be used for

fully-connected layers where H×W and Ki×K j are 1, but

requires frequent block-loads for small batch sizes.

B. SFU arrays: Full Spectrum of Activation Functions

Special Function Units (SFU) include both accurate and

fast version for a spectrum of FP16 non-linear activation func-

tions as well as higher precision FP32 operations. Activation

functions including ReLU, Leaky-ReLU, Sigmoid, and Tanh

for both forward and backward phases of DNN operations,

normalization functions, and pooling operations use the

SFUs. In addition, functions such as sqrt, exponent, ln, Tanh,

Sigmoid, and reciprocal are realized using approximations.

The SFU arrays are also used to realize operations such as

shuffle, permute, and transpose which are used in the update

phases of training.

As we scale the precision and the peak TOPs of the

MPE array, the percentage of total cycles spent in auxiliary

operations in the SFUs start to grow. This necessitated

doubling the SFU arrays to maintain the balance between the

compute time spent in ultra-low precision convolutions and

matrix operations and higher-precision auxiliary operations.

C. Sparsity-aware Zero-gating and Frequency Throttling

To achieve a high TOPs/W when supporting ultra-low

precision, the AI core architecture includes mechanisms to

clock-gate FPU pipeline to save energy, and also includes

sparsity-aware frequency throttling to maximize TOPs within

the power limits.

1) Energy Savings: Zero-gating Support. Significant frac-

tion of zeroes in the input operands opened up an opportunity

to save power by not computing on zero operands. The

MPEs include support to skip the entire FPU pipeline when

multiplicands are zero and simply passes the addend to the

result.

2) Sparsity-aware Frequency Throttling. Across the dif-

ferent layers of a given DNN, we observed significant differ-

ences in the sparsity of the weights. Since the distribution

of sparsity in the weights are static for inference, RAPID

exploits a hardware/software co-design to throttle power to

maximize TOPs within the power limit. Unlike a DVFS based

power modulation which involves costly voltage regulation

and PLL loops, clock throttling guided by software is used to

modulate the power within a single clock cycle time period.

As part of silicon characterization, we measured power

(both dynamic and static) as a function of voltage, and also

determined the frequency in the admissible voltage range.

We extended this characterization to derive the stall rate for

clock throttling at each operating point (voltage, frequency)

by varying the degree of sparsity in the models. By using

the power limits when operating at the nominal voltage and

frequency, we determined the effective frequency for a given

sparsity and used it to derive the stall rate at that operating

point.

As shown in Figure 6 the graph compiler analyzes the

sparsity of the weights for all the layers of DNN, and uses the



Si characterization data as input, to determine the throttling

levels for individual layers, which pushes the power closest to

the power envelope. As this can be done during compilation,

the overhead is not in the critical path of the inference, and

is also amortized over multiple inferences for a given DNN.

RAPID includes an on-chip power control module via

clock-edge skipping which uses the throttling rate recom-

mended by the compiler to reduce the overall execution time

while operating within power and thermal limits.

Figure 6: Workload-Aware Power Throttling

D. Ultra-low Precision Core with 2 corelets

Figure 7: AI core: 2 corelets and shared L1 scratchpad
To maximize re-use of data from the L1 scratchpad and to

exploit the reduction in capacity requirements due to ultra-

low precision, the AI core combines 2 sets of MPE arrays,

SFU arrays and L0 scratchpad, each referred to as a corelet,

with a shared 2MB L1 scratchpad. As shown in Figure 7,

the shared L1 scratchpad communicates with independent

programmable load/store units with each of the corelet with

a bandwidth of 128 bytes/cycle. The large 2MB capacity of

the L1 scratchpad allows the intermediate outputs to be held

on-chip especially in ultra-low precision inference use-cases.

Similarly, the bandwidth from L1 to the 2 corelets is balanced

to meet the speeds vs. feeds for the dataflows across different

precisions. For example, with a modified weight stationary

dataflow, the INT4 computations of the MPE still consume

only 5/8th of the available L1 bandwidth of 128 bytes/cycle.

As the precision is scaled to INT2, each cycle a partial sum

is written to the L1 scratch-pad reaching the limits of the

available L1 bandwidth.

As shown in Figure 7, each AI core equipped with MPE

arrays and SFU arrays along with the 2-tiered scratchpad

hierarchy has all the necessary features to be used as a single-

core edge accelerator, and at the same time can be used as

a fundamental building block of a larger system comprising

multiple cores.

E. Data Communication Among Cores and Memory
To communicate with the external memory and to be

able to scale to a chip with multiple cores, we adopted

a bi-directional ring interconnection with a bandwidth of

128 bytes/cycle in each direction to communicate data

between cores and memory. Each core has a programmable

Memory-Neighbor Interface (MNI) unit to facilitate data

communication with memory and neighbors via a ring-

interface unit (RIU). We have enabled asynchronous clock

domain crossing support to allow the ring and the core to

operate at different frequencies.
Figure 8 shows the overview of the MNI and the flow of

requests and data returns between cores and memory using

separate programmable load and store units (MNI-LU and

MNI-SU). As the data access patterns in DNNs are both

static and regular, data fetch latency can be effectively hidden

by double-buffering data in the L1 scratchpad overlapped in

time with computations in the core. The compiler blocks and

tiles the program loops to guide the granularity of data

fetches/stores by balancing the scratch-pad capacity and

available bandwidth.
Each load/store request is assigned a unique identification

tag which is generated as part of the execution of the

send/receive primitives supported by the MNI-SU and MNI-

LU, respectively. Using load and store queues, MNI supports

multiple outstanding requests to neighbors and memory, and

MNI-LU allows out-of-order data returns as the local scratch-

pad address to be written is tracked in the load queue. MNI-

LU and SU programs stall once the limit on the allowed

outstanding requests is reached. To exploit the bi-directional

ring bandwidth, the MNI-LU is designed to receive up to 2

data returns in any cycle, exploiting the banked architecture

of the L1 scratchpad and the reservation management policy

in the RIU to avoid bank conflicts in the L1 scratchpad.
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Figure 8: Multi-cast Support in Memory-Neighbor Interface
DNN workloads exhibit high-degree of parallelism allow-

ing spatial partitioning of the work with data sharing across



multiple cores [52]. This data sharing behavior is exploited

by supporting multi-cast communications both in the ISA

and the hardware of MNI’s load and store units. To support

multi-cast data transfers, the send and receive primitives

of MNI-SU and MNI-LU, respectively, are generated by

the compiler by assigning common identification tags for

the participating cores. As shown in Figure 8 a multi-cast

data transfer from core A to cores B and C requires each

consumer to make individual Recv request to core A (steps

1 and 2) using the common identification tag and specifying

the number of participating consumers. Independently, core

A’s program includes a matching Send multi-cast data with

the same identification tag, and number (list) of consumers

(step 3) enabling scaling to large number of cores.

As highlighted in Figure 8 (steps 4 through 6), MNI-SU of

core A includes hardware support for “request aggregation”.

After receiving requests from all the participating consumers,

core A’s MNI-SU dynamically constructs the list of con-

sumers, reads data read from the scratch-pad (step 7) and

posts to the ring with the common identification tag, and the

list of consumers. Similar “request aggregration” support in

the external memory interface enables MNI-LU of multiple

cores to request shared data from the memory to be sent as

a multi-cast transfer.

IV. RAPID CHIP FOR TRAINING AND INFERENCE

SYSTEMS

Figure 9 shows the architecture of the 4-core RAPID

chip [50] supporting 5 different data formats FP16 (1,6,9),

FP8(1,4,3) (with programmable bias), FP8(1,5,2), INT4 and

INT2 to take advantages of the break-through in the algo-

rithmic approximation for training and quantized inference.
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Figure 9: 4-core RAPID architecture

The RAPID chip consists of 4 cores connected to the

bi-directional clockwise (CW) and counter-clockwise (CCW)

ring. The ring and the cores operate in asynchronous clock

domains with separate core and ring PLLs so as to optimally

balance power/performance for compute and data movement.

Cores communicate with each other and with memory using

the memory/neighbor interface and the ring interface unit

across the asynchronous boundary. To enable scaling to

a larger system, the rings are connected through a chip

management unit (CMU) that can either close the rings within

a single RAPID chip or connect multiple chips to form many-

core systems. Finally, the RAPID chip also includes power

control module for workload-aware throttling via clock-edge

skipping to fully utilize the chip’s power budget for maximum

application performance.

Figure 10: 4-core RAPID Chip: 36mm2 in 7nm EUV technology

Figure 10 shows the 36mm2 RAPID chip fabricated in

7nm EUV technology which at nominal voltage achieves 3.5

TFLOPS/W in HFP8 and 16.5 TOPS/W in INT4.

A. Inference and Training System
As the RAPID chip architecture is designed to scale to

a large number of cores, it is possible to construct multi-

core/multi-chip inference and training systems.

Figure 11: AI Training System: 4 chips with 32 cores

To estimate inference and training performance across

different architecture configurations, we developed a detailed

performance model of the RAPID chip, and calibrated it to

within 1% of the measurement results [50].
In this work, we study the performance of INT4 inference

using a 4-core RAPID chip model with 96 TOPs at 1.5

GHz. Figure 11 shows the HFP8 training system model with

760 TOPs using 4 RAPID chips with 32-cores each at 1.5

GHz, connected using a high bandwidth interconnection to

communicate gradients and weights during the update phase

of training.

B. Software Architecture
Building and deploying an end-to-end AI system goes

beyond designing only the accelerator core. AI systems must

balance a diverse set of critical requirements: (i) deliver high

sustained performance and processing efficiencies across

workloads, (ii) have the flexibility to cater to future workloads

which are rapidly evolving, (iii) integrate seamlessly within

the existing AI software ecosystem while preserving end-user

productivity.
Figure 12 shows the high-level overview of the in-house

end-to-end software stack for the AI chip. We use a set of



compile-time and execution-time extensions [53] that are

pluggable into existing frameworks This leverages existing

capabilities of the DL frameworks yet enables aggressive,

accelerator-specific performance optimization.

Figure 12: End-to-End Software Stack for Inference and
Training

The key components of the software stack includes 1) a

graph compiler which automatically identifies how best to

execute a given DNN graph on the AI chip and constructs the

program binaries; and 2) an execution runtime which triggers

and manages the execution of compute and data-transfer

operations on the AI chip.

As part of the compilation, a systematic design space

exploration is performed focusing on graph optimization,

scratchpad management, and work assignment to the cores

of the AI chip. This design space exploration is guided by

a bandwidth-centric analytical power-performance model of

the AI chip which helps prune the search space to identify

profitable mapping choices of operations to the AI chip.

The performance model is validated against the hardware

measurements and therefore serve to study scaled AI systems

with multiple cores and chips in the context of both training

and inference.

V. RESULTS

In this section, we present the experimental methodology

and summarize the performance and compute efficiency

achieved for inference and training systems based on the

RAPID chip architecture.

A. Experimental Methodology

Performance Estimation. To estimate performance across

different architecture configurations, we developed a detailed

performance model of the RAPID chip, which was calibrated

to within 1% of the measurement results of [50]. The power

consumed by the different DNN primitives (e.g. Convolution,

ReLU, etc.) was measured in silicon and combined with the

projected utilization of the different components (MPE array,

SFU, scratchpad and others) to estimate compute efficiency

(TOPS/W).

System Configuration. For inference, we study a RAPID

chip with 4 cores described in Section IV attached to an

external DDR memory with 200 GBps bandwidth. For

training, we consider a distributed system with 4 scaled-

up RaPiD chips (Section IV-A), each containing 32 cores,

64MB distributed L1 scratchpad and attached to a High

Bandwidth Memory (HBM) supplying 400 GBps bandwidth.

The chip-to-chip interconnect bandwidth is 128 GBps. We

also present the sensitivity of the performance as we scale

both the inference and training systems.

Benchmarks. We use 11 state-of-the-art DNN benchmarks

from a multitude of application domains: (i) Image clas-

sification - VGG16, Resnet50, InceptionV3, InceptionV4,

MobileNetV1 trained on ImageNet dataset, (ii) Object

detection - SSD300, YoloV3, YoloV3-Tiny trained on COCO

dataset, (iii) Natural language - BERT (sequence length =
384) trained on WMT14 En-De dataset, 2-layer LSTM trained

on PennTreeBank (PTB) dataset, and (iv) Speech - 4-layer

bidirectional LSTM trained on SWB300 dataset.

Experimental Setup and Baseline. In our experiments, we

consider a batch size of 1 for inference, and a minibatch size
of 512 for training. For a fair comparison, we use the FP16

implementation on RAPID (with identical system configura-

tion) as the baseline to report relative improvements achieved

at lower precisions. Based on performance numbers reported

in MLPerf [54], our FP16 baseline is quite competitive

compared to other accelerator designs, when normalized

for technology and power/area. Further, we also provide the

absolute inference latency and training throughput (inputs per

second) achieved at lower precisions. For inference, we limit

our study to FP8-fwd and INT4 precisions and reserve INT2

implementation for future work, as the models still result in

≈2% accuracy loss as mentioned in Section II. In addition,

we study the benefits of sparsity-aware frequency throttling

only in the context of DNNs pruned at FP16 precision,

as combining pruning with ultra-low precision is still an

evolving area of research.

B. Inference Performance and Efficiency

Figure 13 shows the inference latency (shaded contour)

achieved by the 4-core RAPID chip across the different

benchmarks at FP8 (1-4-3 format) and INT4 precisions.

Compared to the FP16 baseline on RAPID, the FP8 and

INT4 implementations achieve 1.2×-1.9× (average 1.55×)

and 1.4×-4.2× (average 2.8×) improvement in end-to-

end performance (bars) respectively. The speedup at lower

precisions are primarily limited by the fraction of opera-

tions that are executed in FP16 viz. first and last layers,

activation functions, normalization and pooling operations,

among others. The image classification and object detection

benchmarks with compute-heavy convolution layers achieve

the best improvement, while mobile networks with lean

convolutions and a significant fraction of auxiliary operations

benefit the least.

Figure 14 shows the sustained compute efficiency

(TOPS/W) achieved at FP8 and INT4 precisions (shaded

contour). Thanks to the micro-architectural/circuit design

of RAPID, the TOPS/W scaling is quite strong across

precisions - the FP8 implementations achieve 1.4-4.68

(average 3.16) TOPS/W, while INT4 achieves 3-13.5 (average



Figure 13: Classifications per second using 4-core RAPID chip

7) TOPS/W across benchmarks. This amounts to 1.6× and

3.6× improvement compared to the FP16 baseline (bars).

Figure 14: Sustained TOPS/W on 4-core RAPID chip

The results show that even for a batch size of 1, the RAPID

chip achieves both high sustained TOPS and TOPS/W for

inference at FP8 and INT4 precisions.

C. Training Throughput

Figure 15 shows the training throughput (i.e., inputs trained

per second) across the benchmarks in both FP16 and Hybrid-

FP8 precisions for a training system with 4 RAPID chips

(Section IV). Comparing FP16 vs. HFP8, the speedup ranges

between 1.1×-2× (average 1.4×). Unlike inference, the

availability of large mini-batch helps in achieving high

core utilization at reduced precision during convolution and

GEMM operations. However, overall speedups in training is

slightly smaller compared to inference due to 2 key factors:

(i) training incurs additional off-chip communication for

gradient reduction and weight broadcast, and (ii) training is

memory intensive as activations produced during the forward

pass needs to be retained for computing the weight gradients

during back-propagation.

D. Benefits of Sparsity-aware Throttling

We now present the improvement in performance achieved

by the sparsity-aware zero-grating and frequency throttling

scheme described in Section III-C. Given a power budget,

Figure 16(a) shows the rate of frequency throttling applied

at varying levels of sparsity for the 4-core RAPID chip

derived from silicon measurements. We apply this scheme

in the context of inference using publicly available sparse

Figure 15: Throughput with 4-chip RAPID training system

(or pruned) models, as the degree of throttling can be

ascertained at compile time. To this end, we consider pruned

versions of a number of our benchmarks [55, 56, 57, 58].

The pruned models used FP16 precision; combining pruning

with low precision is still an evolving area of research and

we hope to explore this trade-off as part of future work.

Figure 16(b) shows the average sparsity and the speedup

achieved compared to a baseline with no sparsity-aware

throttling across different benchmarks. The average sparsity

varies (across layers and networks) between 50%-80% with

negligible loss in accuracy. Correspondingly, we achieve

1.1×-1.7× (average 1.3×) improvement in performance by

selecting correct operating frequency.

Figure 16: Performance benefits with sparsity-aware throttling

E. Performance Breakdown Analysis

We now present the key factors impacting the end-to-end

performance on RAPID. For INT4 inference, Figure 17 shows

the breakdown of the compute cycles into 4 key categories viz.
Conv/GEMM, Conv/GEMM overheads, quantization and aux-

iliary operations. The first category constitutes Conv/GEMM

operations that execute on the MPE array and leverage the

full compute capabilities of the RAPID chip. Note that, while

most layers are executed in INT4 precision, a small fraction

of the layers may still need to executed in FP16 to preserve

accuracy. The second category captures the overheads that

occur during Conv/GEMM execution. These overheads come

from several factors including dataflow inefficiencies due

to spatio-temporal underuse of the MPE array for given

workload dimensions and imbalance in work assigned to

each core/corelet, among others. The third category includes

additional quantization and scaling operations that needs

to be performed to convert data between FP16 ⇔ INT4.

Given the high throughput of the MPE array at low-precision,



this overhead becomes non-trivial, especially when the size

of the activation is large. The final category includes the

cost of other auxiliary operations (activation function, batch

normalization etc.) which are executed in the SFU in FP16.

Figure 17: Breakdown of compute cycles for INT4 inference

We observe that the benchmarks are quite heterogeneous

with respect to the compute cycles expended in each category.

DNNs such as inception3/4, Tiny-yolov3 and LSTMs, incur

overheads during CONV/GEMM operations as their workload

dimensions do not exactly match the dimensions of the MPE

array. Convolutional networks with large activation sizes incur

quantization overheads, while mobile networks (MobileNetv1,
Tiny-yolov3) contain the most auxiliary operations. On

average, the Conv/GEMM occupy 50% of the compute cycles,

while Conv/GEMM overheads, quantization and auxiliary

operations amount to 14%, 17% and 19% respectively.

F. Inference/Training System Scaling

In this section we present the speedup achieved as we scale

both the inference and the training systems. For inference

systems, we increase the number of cores in the chip and show

the speedup for INT4 precision, and for training systems, we

increase the number of chips in the systems and show the

speedup for HFP8 precision.

As shown in Figure 18(a) we see that even for a mini-batch

of 1, performance scales as we scale the number of cores

from 1 to 32. Compute-intensive benchmarks like VGG16,
Resnet50, Yolov3, SSD300 show performance improvement

even as we scale to 32 cores. For benchmarks that are either

auxiliary operations dominated (MobileNetv1), or memory

stalls dominated due to the high TOPs of the INT4 engines,

we see a saturation in the speedup as we increase the number

of cores especially because we fixed the external bandwidth

even as we scaled the number of cores in the system.

Similarly, Figure 18(b) shows the speedup with HFP8

training as we increase the total chips in the system from 1 to

32 with a chip-to-chip bandwidth of 128 GBps. These studies

used data-parallelism and hence required communicating

gradients, and the weights in the update phase of training.

HFP8 reduces the communication overhead for weights since

the forward pass uses only 8-bit weights, and each chip

concurrently computes the updates for the weight portion

it owns, and communicates only updated 8b weights to the

neighbors.

Figure 18: Performance scaling for inference and training

VI. RELATED WORK

Improving efficiency of AI workloads on different hard-

ware platforms is a vibrant topic of research. We describe

related research efforts in accelerating AI workloads on CPUs,

GPUs, accelerators and commercial AI chips.

CPU-based techniques. Accelerating AI workloads on

CPUs includes the use of optimized linear algebra li-

braries [59], techniques for efficient parallelization on multi-

cores [60, 61], as well as efficient data layouts and batch-

ing [62]. Some recent efforts have also proposed compiler,

ISA and micro-architectural optimizations to exploit certain

properties of AI workloads including sparsity [63, 64, 65].

GPU-based techniques. Research efforts on accelerating AI

workloads on GPUs have focused on data/model/pipeline

parallelization techniques [66], memory management [67]

and locality-aware device placement [68, 69]. Similar to

CPUs, some efforts have also explored exploiting sparsity in

activations and weights [70].

Hardware accelerator techniques. Specialized hardware

is key to satiate the computational needs of AI workloads.

Recognizing this, a myriad of accelerators ranging from

low-power ASIC / FGPA / CGRA cores [21, 22, 23, 24,

26, 32, 47, 71, 72, 73, 74, 75, 76, 77, 78] to large scale

systems [29, 30, 31, 79, 80, 81] have been proposed. These

architectures demonstrate impressive peak processing capabil-

ities using dense arithmetic arrays, heterogeneous processing

tiles, low-precision data representations and sometimes dy-

namic hardware reconfiguration. Recent efforts have explored

exploiting sparsity in activations and weights [25, 27, 82], 3D

memory technologies [28, 83], bit-serial architectures [84, 85]

as well as in-memory computation [86, 87, 88, 89, 90, 91]

to further boost efficiency.

Commercial AI chips. The immense success of specialized

AI accelerators have further driven commercial efforts to

design them. These include Google TPUs, NVIDIA Tensor

Cores, Intel NNP, among others [33, 34, 35].

For all these AI accelerator solutions, scaling the per-

formance across generations is pivotal to their success in

commercial deployments. Since AI workloads present a

unique opportunity for performance/energy improvement

through precision scaling, we exploited that knob to design

RAPID to support a mixed-precision architecture capable of

8-bit training and 4-bit inference.



VII. CONCLUSION

We presented the design of a 4-core AI chip, called RAPID,

supporting ultra-low precision training and inference [50].

RAPID supports mixed precision execution, which includes

different number formats viz. FP16, Hybrid-FP8, INT4 and

INT2. RAPID provides broad workload coverage (CNNs,

LSTMs and transformers) and is scalable to multiple cores

and chips. Silicon measurements from a 4-core RAPID chip

in 7nm demonstrates 3.5 TFLOPS/W in FP8 mode and

16.5 TOPS/W in INT4 mode. Using a performance model

calibrated to within 1% of the measurement results, we

evaluated FP8 training for a 768 TOPs AI system comprising

4 RAPID chips, and INT4 inference for a 1 RAPID chip

system. Our results show INT4 inference for batch size of 1

yields 3 - 13.5 (average 7) TOPS/W and FP8 training for a

mini-batch of 512 achieves a sustained 102 - 588 (average

203) TFLOPS across a wide range of applications. As future

work, we plan to study INT2 performance of RAPID and

sparsity-aware power throttling for ultra-low precision.
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