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ABSTRACT
Cross-device Federated Learning (FL) is a distributed learning paradigm with several challenges that differentiate
it from traditional distributed learning, variability in the system characteristics on each device, and millions
of clients coordinating with a central server being primary ones. Most FL systems described in the literature
are synchronous – they perform a synchronized aggregation of model updates from individual clients. Scaling
synchronous FL is challenging since increasing the number of clients training in parallel leads to diminishing
returns in training speed, analogous to large-batch training. Moreover, stragglers hinder synchronous FL training.
In this work, we outline a production asynchronous FL system design. Our work tackles the aforementioned issues,
sketches of some of the system design challenges and their solutions, and touches upon principles that emerged
from building a production FL system for millions of clients. Empirically, we demonstrate that asynchronous FL
converges faster than synchronous FL when training across nearly one hundred million devices. In particular, in
high concurrency settings, asynchronous FL is 5× faster and has nearly 8× less communication overhead than
synchronous FL.

1 INTRODUCTION

Cross-device federated learning (FL) is a distributed learn-
ing paradigm where a large collection of clients collaborate
to train a machine learning model while the raw training data
stays on client devices. FL promises to train high-quality
models by leveraging data from massive client populations,
while ensuring security and privacy of client data.

In traditional parallel systems, concurrency refers to the
number of processors running a parallel application, and
utilization refers to the fraction of processors actively com-
puting at any time. In this paper we focus on the scalability
of FL systems: “a measure of [their] capacity to effec-
tively utilize an increasing number of processors” (Kumar
& Gupta, 1994). In the context of FL, concurrency refers to
the number of clients training simultaneously, and our aim
is to develop systems that can accelerate training by training
concurrently on more clients. Companies like Apple, Meta,
Google, and others have the potential to scale FL training to
hundreds of millions or billions of clients.

Prior work describing FL systems has focused on syn-
chronous training (Bonawitz et al., 2019; Paulik et al., 2021;
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Ludwig et al., 2020; NVIDIA; WeBank). Synchronous FL
(SyncFL) training proceeds in rounds, as illustrated in Fig-
ure 1. The number of clients participating in each round
corresponds to the concurrency.1 In each round, clients
download the current server model, train this model locally
on their respective data, and report a model update back
to the server. Once all client updates are ready, they are
aggregated, and then the server computes the new model
using the aggregated updates.

SyncFL faces two main challenges when scaling. First,
there are many sources of heterogeneity in cross-device
FL (Kairouz et al., 2019): clients have different hardware
capabilities (processor speeds, memory sizes), and data
can be highly imbalanced across clients, with some clients
having multiple orders of magnitude more data than others.
In synchronous systems, heterogeneity results in stragglers
— clients in the tail take much longer to complete local
training and prolong the time to complete each round of
training, hampering utilization. Over-selection is commonly
used to reduce the impact of stragglers on the runtime of
SyncFL methods (Bonawitz et al., 2019). Over-selection
results in discarding updates from the slowest-responding
clients selected in each round, and it has been noted that this
may bias the trained model against slow-responding clients.

The second challenge SyncFL faces is that increasing con-

1In the SyncFL literature, concurrency is also referred to as
clients per round (McMahan et al., 2016).
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Figure 1. Example of SyncFL with a concurrency of 4; i.e., up
to 4 devices can train in parallel. The server model is updated
once all clients are ready (once the aggregation goal is achieved),
so concurrency determines how frequently a new server model is
produced. If one client drops out mid-round (e.g., Device E), a
new client, (e.g., Device C) is selected to take its place. Utilization
decreases once some devices have returned updates, and the round
completion time depends on the slowest-returning device — the
straggler. To overcome stragglers, over-selection is often used, in
which case the concurrency may be higher than the aggregation
goal, and once the aggregation goal is achieved, updates from other
devices still processing are discarded. Note that mid-round client
replacement, like Device C replacing Device E, is not possible
in some other SyncFL Systems (Bonawitz et al., 2019), but is
possible in PAPAYA’s implementation of SyncFL. We see up to
10% of clients drop.

currency in synchronous training corresponds to using larger
cohorts (group of clients participating in a round); i.e., more
user updates averaged before performing a server update.
This leads to similar effects as using large batches in tra-
ditional data-parallel training (Keskar et al., 2017). Large-
cohort training has been found to make inefficient use of
client updates (Bonawitz et al., 2019; Charles et al., 2021).
Consequently, increasing cohort size does not reduce wall-
clock training time proportionally.

Asynchronous FL (AsyncFL, see Section 3) can potentially
alleviate these challenges. In AsyncFL, clients return up-
dates to be aggregated as soon as the updates are ready, and a
new client may then begin computing updates immediately.
Client training is decoupled from server model updates.
Consequently, AsyncFL is not impacted by stragglers and
utilization can be kept high (essentially at 100%) through-
out training. However, as with all asynchronous systems,
AsyncFL must handle staleness — updates from clients,
especially slow-responding clients, based on a server model
that has been updated many times in the interim, and hence
may not provide useful information for training (Bertsekas
& Tsitsiklis, 1989). AsyncFL methods have been previously
explored (Xie et al., 2019; Nguyen et al., 2021; Xu et al.,
2021), but none has yet been demonstrated and evaluated at
scale.

Contributions. This paper presents PAPAYA,2 the first
production FL system to support asynchronous and syn-
chronous training at scale. We introduce a novel asyn-
chronous secure aggregation protocol, allowing clients to
communicate updates to the server in a cryptographically
secure manner without needing to wait until other clients
are ready to perform secure aggregation. This enables the
implementation of FL with buffered asynchronous aggre-
gation that has been recently introduced in (Nguyen et al.,
2021).

We evaluate PAPAYA in Section 7 by training a language
model for next-word prediction on a population of millions
of devices in the field. We demonstrate that AsyncFL is
substantially more scalable than SyncFL. Although asyn-
chronous execution results in some stale client responses,
staleness in AsyncFL can be controlled by choosing an
appropriate aggregation goal in buffered asynchronous ag-
gregation (Nguyen et al., 2021). The aggregation goal is the
number of client updates that need to be received before the
server performs a model update. Consequently, AsyncFL
can compute many more server updates than SyncFL in a
fixed amount of time, leading to much better scaling than
SyncFL. Moreover, with AsyncFL, the number of server
updates per unit time increases nearly linearly with concur-
rency. When comparing both approaches in terms of wall-
clock time to reach a target test loss, we show that AsyncFL
is almost 5× faster and 8× more communication-efficient
than SyncFL.

Finally, we demonstrate that AsyncFL achieves more fair
models than SyncFL with over-selection. We observe very
high correlation between slow devices and devices with
many training samples. Discarding the updates from slow
devices results in biasing the model trained using SyncFL
with over-selection: the test perplexity for clients in the 99th
percentile increases by 53% when enabling over-selection.
This bias is not introduced when training with AsyncFL.

2 UNDERSTANDING THE LANDSCAPE OF
FEDERATED LEARNING AT-SCALE

Building a robust federated learning system faces key design
challenges:

• System and data heterogeneity, where client devices
participating in FL exhibit different system character-
istics and possess different amounts of training data,
leading to large differences in training time, and

• Scalability, where the training time speedup with
higher degree of concurrency experiences diminish-
ing return and plateaus quickly.

2Why PAPAYA? Say “privacy-preserving AI” five times in a
row, fast.
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Figure 2. Histogram of client execution times (note: x-axis is on a
logarithmic scale). Because of stragglers, the mean round duration
of SyncFL with concurrency set to 1000 is much larger than the
mean client execution time.

To demonstrate the impact of the aforementioned challenges
faced by FL, we begin by examining the degree of data and
system heterogeneity observed in production when hundreds
of millions of client devices jointly train a global model. To
understand the limit of SyncFL approaches, we take a data-
driven approach to demonstrate the impact of scale on the
state-of-the-art synchronous model aggregation protocol.

System and Data Heterogeneity. Compute capabilities of
mobile devices in the field differ by an order of magnitude
(Wu et al., 2019). Moreover, the number of training exam-
ples also varies widely across users (Caldas et al., 2018). In
combination, system and data heterogeneity can result in
large differences in training time. Variance in training time
results in stragglers that slow down the overall training time
in SyncFL.

Figure 2 shows the distribution of training times across
millions of clients for a common FL application (language
model training, Section 7). The per-client training time
distribution spans more than two orders of magnitude. When
running SyncFL with concurrency and aggregation goal set
to 1000, the average round completion time is 21× larger
than the mean client training time.

To mitigate the impact of stragglers in SyncFL, some sys-
tems use over-selection (Bonawitz et al., 2019). In Sec-
tion 7.4, we show that over-selection causes sampling bias,
thus producing models that are unfair to stragglers.

Scalability. To further minimize the training time to conver-
gence, a straightforward approach is to scale up the overall
training throughput of the FL system by increasing the de-
gree of training concurrency. Figure 3 illustrates the train-
ing time to convergence and the communication overhead
for the SyncFL method FedAdam (Reddi et al., 2020) as
the number of concurrently training users increases from
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Figure 3. We use SyncFL to train a language model until it reaches
a target accuracy, while varying the concurrency from 130 to 2600
in Section 7. The client population is around 100 million (Top)
As concurrency increases, training time decreases rapidly at first,
but then plateaus. (Bottom) As concurrency increases, SyncFL
becomes communication inefficient. Communication trips refers
to the number of client updates received at the server.

130 to 2600. As concurrency increases, training time de-
creases slowly, while communication resource consumption
increases much faster. For example, doubling the concur-
rency from 1300 to 2600 decreases the overall training time
by only 17% while increasing communication costs by 73%.

We need resilient solutions that handle data and system het-
erogeneity at scale. At the same time, as shown in Figure 3,
we are at the scaling limit of synchronous model aggrega-
tion. To build FL suitable for billions of clients, we need a
fundamentally different model aggregation protocol that is
resilient to heterogeneity (client independence), scalable to
large cohort sizes (beyond the order of hundreds), and secure
(asynchronous secure aggregation). Next we describe the
proposed design of PAPAYA and demonstrate how AsyncFL
can improve large-scale FL by improving scalability and
straggler resilience.

3 PROPOSED DESIGN

In this section, we first describe the AsyncFL algorithm PA-
PAYA uses. Next, we discuss the challenges in implementing
AsyncFL in a large-scale production system.
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Figure 4. Example of AsyncFL with concurrency of 4, and where
the aggregation goal is 2. In SyncFL with over-selection, the
aggregation goal is less than the concurrency to reduce the straggler
effect, but this results in wasted client effort and can lead to model
bias. In contrast, running AsyncFL with aggregation goal less
than concurrency does not result in wasted client effort, but rather
some updates may be stale. However, staleness can be controlled
by increasing the aggregation goal, and utilization remains high
throughout training.

3.1 AsyncFL Algorithm

PAPAYA implements a recently proposed AsyncFL algo-
rithm, FedBuff (Nguyen et al., 2021). In FedBuff, there is
no notion of rounds: clients download, train, and upload up-
dates asynchronously (Figure 4). After a client finishes local
training, it uploads the model update (difference between
the trained local model and initial model it received from
the server before training). The aggregator tracks progress
towards an aggregation goal, the number of client updates
that need to be received before the server performs a model
update. As soon as the aggregation goal has been achieved,
the aggregated update is released and the server model up-
date is performed. Each client update is weighted by the
number of examples the client trained on and a factor de-
pending on the staleness of the update. Staleness is defined
as the difference between the model version that a client
uses to start local training and the server model version at
the time when a client uploads its model update. For exam-
ple, Figure 4 shows FedBuff with 4 concurrent users and an
aggregation goal of 2. Device A’s update has a staleness of
1 since the server model was updated once while Device A
was training. In the rest of the paper, AsyncFL refers to our
implementation of the FedBuff algorithm in PAPAYA.

We show in Section 7 that in a large-scale production setting
with system and data heterogeneity, AsyncFL is faster and
more resource efficient than SyncFL. However, AsyncFL
brings a unique set of challenges that require careful system
design.

3.2 System Design challenges in AsyncFL

Existing large-scale FL systems are designed to run
SyncFL (Bonawitz et al., 2019; Paulik et al., 2021). Hence,
their architectures are not compatible with asynchronous
training. There are four main reasons for this incompatibil-
ity, which we discuss next.

Client Selection. Client selection in SyncFL is based on
forming synchronous cohorts. For example, in Bonawitz
et al. (2019) a client cannot begin training until the entire
cohort of clients has been selected. To support AsyncFL,
we design a client selection mechanism that avoids any
inter-client dependencies (Section 6.1).

Secure Aggregation. Secure Aggregation (SecAgg) im-
proves the privacy of FL algorithms by hiding individual
client model updates ensuring that the server can only view
the final aggregation of all model updates. Most FL systems
implement SecAgg based on secure multi-party computation
(SMPC) (Bonawitz et al., 2016; So et al., 2021b). SMPC-
based SecAgg requires clients participating in a round to
form a cohort and run a multi-leg protocol through the du-
ration of the round. These requirements are not compatible
with asynchronous training.

Motivated by these challenges, we propose a novel incre-
mental Asynchronous Secure Aggregation algorithm that
uses a Trusted Execution Environment (Karl et al., 2020b)
in Section 5.

Client Replacement for High Utilization. Cohort-based
SyncFL systems do not replace clients in the middle of a
round (Bonawitz et al., 2019). However, AsyncFL requires
continuous replacement of clients that have finished training
or have failed. We describe a fast client replacement mecha-
nism that enables our AsyncFL implementation to achieve
close to 100% client utilization, significantly higher than
SyncFL (Section 6.2).

Support for Fast Model Aggregation. AsyncFL generates
up to 30× more server model updates per unit time than
SyncFL, as shown below in Figure 8. We design our system
for fast model aggregation that can support much higher
throughput of server model updates (Section 6.3) than what
typical SyncFL systems can achieve.

In the next sections, we describe the design of our produc-
tion system and explain how it supports the four require-
ments above.

4 SYSTEM COMPONENTS

The PAPAYA high-level design involves two applications: a
server application that runs on a server in the data center,
and the client application that runs on end-user devices. The
server has three main components: Coordinator, Selector,
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Figure 5. PAPAYA high-level architecture.

and Aggregator. While the number of Selectors and Aggre-
gators can scale elastically based on the workload demand,
there is only one Coordinator; see Figure 5.

PAPAYA’s system architecture is influenced by the Google
FL stack (GFL) described in Bonawitz et al. (2019). We
use the same names for the main components, and their
functions are similar to those of GFL. However, their im-
plementation and interactions are substantially different.
GFL supports only SyncFL, whereas PAPAYA supports both
SyncFL and AsyncFL. As a result, our design has funda-
mental differences in the protocol, execution, and scalability
which enable it to achieve faster model convergence and
straggler resilience; these differences are discussed further
in Section 8. First, we briefly describe the responsibilities
of the main components and their interactions.

Coordinator. The Coordinator performs three main func-
tions. First, it assigns FL tasks to Aggregators, as discussed
in Section 6.3. Second, the Coordinator assigns clients to
FL tasks, as described in Section 6.1. Finally, it provides
centralized coordination and ensures that tasks progress in
the face of Aggregator failures.

Selector. The Selector is the only component that directly
communicates with clients. When necessary, it forwards
client requests to other components. The Selector has two
main responsibilities. For client selection, it advertises avail-
able tasks to clients, and summarizes current client avail-
ability for the Coordinator, as described in Section 6.2. For
client participation, the Selector routes client requests to the
corresponding Aggregator, as described in Section 6.3.

Aggregator. Every task is assigned to a single Aggregator
for the duration of the task (apart from failures and network
partitions), as described in Section 6.3. The Aggregator
has three main responsibilities. First, it aggregates client
model updates to produce new versions of the server model.
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Figure 6. Data transfer time versus aggregation goal to transfer
data across boundary into TEE for a 20MB model. We ran a
benchmark to obtain the data transfer time for K = 1 and use
that to extrapolate other points in this figure, as naive TEE’s data
transmission is linear in K. Transferring the full model from
each client to the TEE (Naive TSA) would take around 6500
milliseconds just for data transfer (when aggregation goal is 1000).
In AsyncSecAgg each client only sends a 16-byte seed to the TEE,
independent of model size. In this figure, the trusted hardware
resides in the same machine as server. The latency is potentially
greater if the trusted hardware is through a cloud provider.

Second, it drives participating clients to run the client execu-
tion protocol, as described in Section 6.1. Finally, it tracks
whether or not a task needs more clients and reports this to
the Coordinator, as discussed in Section 6.2.

Client Runtime. The client runs on end-user devices and
monitors training eligibility criteria such as whether or not
the device is idle. It also tracks prior participation history
to enable fair and unbiased client selection. If a client is
eligible for training, the client checks in with the server to
execute the FL client protocol as described in Section 6.1.

5 SECURE AGGREGATION

In this section, we summarize our SecAgg mechanism to
enable AsyncFL. In an honest-but-curious threat model,
SecAgg allows the server to compute aggregated client up-
dates without observing individual client updates. There
are two main approaches for implementing SecAgg: us-
ing Secure Multiparty Computation (SMPC) or a Trusted
Execution Environment (TEE).

Existing SMPC-based SecAgg approaches (Bonawitz et al.,
2016; Bell et al., 2020; So et al., 2021b) hinder asyn-
chronous training, as they require cohort formulation and
inter-client communication in each round.3 Meanwhile,
AsyncFL does not have a discrete notion of rounds; clients
join and finish training asynchronously.

On the other hand, naive TEE aggregation is unscalable.

3A concurrent work (So et al., 2021a) describes an SMPC
method that may overcome some of these issues. This approach
could be an alternative to the TEE-based approach described here.
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Asymptotically, this approach transmits O(K · m) data
across the host-TEE boundary, where K is the aggrega-
tion goal and m is the model size. Transferring data across
the TEE boundary is time-consuming (Figure 6): taking
nearly 650 milliseconds for 100 clients (K = 100), each
with a 20MB model. This data transfer time increases with
aggregation goal. Trusted hardware trades performance for
security guarantees.

Motivated by these challenges, we propose an Asynchronous
SecAgg mechanism, relying on a TEE and an attestation
mechanism; ensuring the Trusted Secure Aggregator (TSA)
has not been tampered with. In this approach, random
masking relies on an additive one-time-pad to protect client
updates and utilizes the TSA to generate aggregated random
masks, unmasking aggregated client updates. The overall
mechanism depends on a secure virtual channel established
between each client and the TSA using the Diffie-Hellman
key exchange protocol (Merkle, 1978). Then, the mech-
anism leverages the TSA’s ability to regenerate a random
unmask based on the clients’ secret received by the TSA
over the secure channel.

Asynchronous SecAgg empowers client independence and
fast incremental aggregation. The protocol consists of the
following steps: (1) A participating client establishes a
secure virtual channel with the TSA and validates the secure
aggregation configuration and integrity of the TSA; (2) The
client shares the masked model update with a corresponding
Aggregator and the random seed used to generate the mask
with the TSA; (3) The aggregator incrementally aggregates
masked model updates; (4) The aggregator requests the
TSA to generate the unmasking vector once the configured
aggregation goal is reached; (5) The aggregator unmasks
the aggregated model updates using the unmasking vector
and creates a new server model.

The random seed, usually 16 bytes shared between each
client and the TSA, allows the two parties to share an as-
large-as-the-model mask at a constant cost. Asymptotically,
this approach only transmits O(K + m) data across the
boundary of the TSA. Appendix B presents more details
about our secure aggregation protocol, including a security
proof.

6 SYSTEM DESIGN

In this section, we describe the system requirements to run
AsyncFL at scale and the design choices we made to fulfill
these requirements. We focus on the three most important re-
quirements for AsyncFL outside of Asynchronous SecAgg
(discussed in Section 5). For completeness, other require-
ments for running AsyncFL are described in Appendix E.

There are three main requirements. First, AsyncFL relies on
clients training asynchronously. Hence, the client protocol

must not introduce any dependence between clients. Second,
AsyncFL can support higher client utilization than SyncFL.
To enable this, our system must perform fast client replace-
ment. Third, AsyncFL takes many more server model steps
than SyncFL per unit time. Hence, our system must support
fast model aggregation.

6.1 Client Independence

To enable asynchronous training, PAPAYA’s client protocol
deliberately avoids any inter-client dependency. Moreover,
transient client failures do not cause clients to dropout be-
cause the client protocol is based on virtual sessions instead
of persistent connections. At a high level, the protocol can
be split into two phases: selection and participation. To
explain the selection process, we first define client demand
for a task as the difference between the target concurrency
and the number of users already participating in the training
of the task.

Selection. For a client, the goal of the selection phase is to
find a task with positive client demand. Thus, a client can
complete the selection phase with either acceptance (client
is accepted for participation) or rejection (client will try to
participate at another time).

Participation. Once a client is accepted, the goal of the
participation phase is for a client to share a trained model
with the server. Participation consists of four stages. 1. A
client first downloads model parameters, model code and
configuration from a content delivery network. 2. Next, the
client trains the downloaded model on its local data. 3. Once
the training finishes, the client reports its status to the server.
The server shares an upload configuration with the client
and, if enabled, the SecAgg configuration. 4. In the final
stage, the client uploads the model in chunks, potentially
after masking the model if SecAgg is enabled. All stages
happen within a virtual session established during selection.

6.2 High Client Utilization

AsyncFL is capable of higher client utilization compared
to SyncFL. This is mainly because in SyncFL the number
of active clients increases at the beginning of a round as
clients join the cohort, and it falls gradually towards the
end of the round as the server waits for all clients to finish
training (Figure 7). On the contrary, in AsyncFL there is no
cohort formation; as soon as one client completes training
or fails, a new one is selected. Thus AsyncFL achieves
high utilization throughout training. We show in Figure 7
that utilization in our AsyncFL implementation is close
to 100% throughout training. To realize high utilization,
an AsyncFL system needs to replace completed and failed
clients quickly. Achieving high utilization is especially
challenging in a multi-tenant FL system, where multiple
FL tasks are running in parallel, and a single client may be
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Figure 7. AsyncFL achieves high client utilization while SyncFL
client utilization fluctuates. SyncFL proceeds in rounds. The num-
ber of active clients (client utilization) increases at the beginning
of a round as clients join the cohort, and it falls gradually towards
the end of the round due to stragglers. In AsyncFL, the number
of active clients stays relatively constant over time; as clients fin-
ish training and upload their results, other clients take their place.
Both configurations in the figure have max concurrency of 1300.
SyncFL uses 30% over-selection.

compatible with many tasks.

We now describe the client assignment process which is
responsible for maintaining high utilization. There are three
important steps to assigning clients to tasks: tracking client
demand for each task, tracking task eligibility for each client,
and performing the actual assignment.

Tracking client demand for each task. First, each Aggre-
gator tracks client demand for the tasks that are assigned to
it. When a client finishes training or fails, the Aggregator
increases client demand for the associated task. Next, the
Coordinator pools together information from all Aggrega-
tors into a consolidated view of client demand for every task
in the system. Note that the Coordinator must explicitly
account for clients that have been assigned to a task, but
have not yet confirmed the assignment.

Tracking task eligibility for each client. For each available
client, the Coordinator constructs a list of eligible tasks. A
task is eligible if the client is compatible with its require-
ments (e.g., can train the model of the task), and if the task
has positive client demand.

Task assignment. Once an eligible task list is constructed
for a client, the Coordinator randomly assigns the client
to an eligible task. Concretely, the Coordinator instructs
Selectors to forward the client to the Aggregator responsible
for the task.

6.3 Fast Model Aggregation

As shown in Figure 8, AsyncFL generates server model
updates up to 30× more frequently than SyncFL. Thus,
fast model aggregation in a scalable AsyncFL system is
critical. In this section, we describe how PAPAYA efficiently
aggregates client updates.
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Figure 8. Server Model Updates per hour with concurrency. At
a concurrency of 2,300, AsyncFL generates roughly 30× more
server model updates per hour. The aggregation goal for AsyncFL
is fixed at 100.

Persistent Aggregator. In our system, Aggregators are
persistent and stateful because creating a new Aggregator
for each task incurs a substantial overhead. Therefore, the
Coordinator moves tasks between Aggregators only when it
detects failed or overloaded Aggregators. The Coordinator
evenly distributes tasks among available Aggregators using
the estimated workload of a task. The Coordinator estimates
this workload using the task concurrency and model size.

Parallel Model Aggregation. Once a client completes
training, it uploads the trained serialized model update to
the server. This update is then pushed into an in-memory
queue on the Aggregator. A different thread drains the
queue by de-serializing the updates into trainable parameters
and aggregating them. To speed up this aggregation, we
parallelize the aggregation process across available cores.
To reduce lock contention, the ID of the thread performing
intermediate aggregation is hashed to choose one of the
intermediate aggregates. Once the cumulative number of
aggregated model updates reaches the aggregation goal, the
final aggregation is performed and a new server model is
generated. Note that the aggregation goal in SyncFL is
typically 1.3× concurrency (30% over-selection), while in
AsyncFL it is independent of concurrency.

7 EVALUATION

In this section, we present evaluation results for AsyncFL.
We first compare the convergence speed, scalability, and
communication efficiency of AsyncFL with SyncFL. Next,
we analyze the source of AsyncFL’s speed up. We then
show that SyncFL can be either straggler resilient (with
over-selection) or be unbiased (without over-selection), but
not both simultaneously. In contrast, AsyncFL is straggler
resilient without introducing bias.

7.1 Experimental Setup

To study the performance of AsyncFL, we train an LSTM-
based language model (Kim et al., 2015), a common FL
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Figure 9. (left) Number of hours to reach a target loss. For AsyncFL, a server update is produced every 100 client updates, K = 100. For
SyncFL, we use 30% over-selection as in (Bonawitz et al., 2019) to mitigate stragglers. (middle) Speed up of AsyncFL relative to SyncFL.
AsyncFL is 5x faster than SyncFL. (right) As concurrency increases, AsyncFL outperforms SyncFL by increasingly larger amounts.

application (Hard et al., 2019), on a population of nearly
100 million Android phones. We repeat each experiment
3 times, each at the same time of the day, and report the
average. AsyncFL and SyncFL are run at the same time, so
they have access to the same client population.

Following the requirements in Hard et al. (2019), a client de-
vice can participate in FL training only when idle, charging,
and on an unmetered network. Similar to Bonawitz et al.
(2019), a timeout is imposed to limit the client training time;
we set the timeout to 4 minutes. The distribution of client
execution times is analyzed in Section 7.4.

For both SyncFL and AsyncFL, we use SGD on the client
and FedAdam (Reddi et al., 2020) on the server. For the
server optimizer, we use Adam’s default learning rate and
tune the first-moment parameter in simulation. We run hy-
perparameter sweeps in simulation, using a representative
dataset, for the client optimizer to find the best client learn-
ing rate. Each client runs one local epoch of training with
batch size B = 32. We partition each client’s data into train,
test, and validation sets randomly.

Our system has two configuration parameters. First, for both
SyncFL and AsyncFL tasks, concurrency specifies the maxi-
mum number of concurrently participating devices. Second,
for AsyncFL tasks, K is the aggregation goal, controlling
the size and frequency of server update. The server produces
a new model every K client model updates. In our experi-
ence, we find that choosing K to be 10-30% of concurrency
works well in practice. Finally, unless otherwise stated, we
use 30% over-selection with SyncFL to alleviate the impact
stragglers, as proposed in Bonawitz et al. (2019).

7.2 Results on Convergence Time and Scalability

To begin, we evaluate the training time performance and
scalability of AsyncFL and SyncFL. We measure the con-
vergence time as the wall-clock training time to reach a
target loss. To measure scalability, we compare AsyncFL
and SyncFL in terms of their speedup and the number of

Figure 10. (top) Number of hours to reach a target perplexity of
60 with concurrency = 1,300 and varying values of K. (bottom)
Server Model Updates per hour at concurrency = 1,300 and vary-
ing values of aggregation goal K.

communication trips with increasing concurrency. Figure 9
shows (left) the time taken by the two algorithms to reach a
target loss for varying levels of concurrency, (middle) the
speedup of AsyncFL over SyncFL, and (right) the number
of communication trips to reach a target loss. As Figure 9
(left and middle) illustrates, the speedup gap widens as
concurrency increases, from 2× to 5×. Furthermore, the
SyncFL communication efficiency worsens. The overall
communication efficiency gain of AsyncFL increases from
2× to 8× as concurrency increases. The evaluation results
demonstrate that AsyncFL handles the system heterogeneity
and scalability challenges more effectively than SyncFL. In
the following sections, we unravel why our AsyncFL sys-
tem is more suitable for scaling FL training to hundreds of
millions of clients.
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Table 1. Test perplexity (lower is better) after 1 million client up-
dates. Perplexity is a measure of language model accuracy. We
partition clients into percentiles, based on the training data volume.
All signifies all clients; 75% and 99% represent clients with data
volume in the 75th and 99th percentiles, respectively. SyncFL w/o
OS denotes SyncFL without over-selection and SyncFL w/ OS
denotes SyncFL with over-selection

Method All 75% 99% Time (hour)

SyncFL w/o OS 68.38 66.64 47.82 130.60
SyncFL with OS 72.97 73.10 73.24 18.63
AsyncFL 57.32 55.71 38.51 18.28

7.3 Analysis of Server-Model Step Frequency

To understand the performance of our AsyncFL implemen-
tation in detail, we study how the aggregation goal impacts
convergence. The aggregation goal determines how many
client updates contribute to each server model update, and
for a fixed concurrency, it also affects the frequency of server
model updates. We fix concurrency to be 1300 and vary
aggregation goal (K) from 100 to 1300. Figure 10 (top)
depicts the time for each configuration to reach a target loss,
while Figure 10 (bottom) describes the server-model step
frequency per hour. As K increases, the batch size increases,
and the server takes less frequent model steps. Thus, the
larger the K is, the slower the convergence time. It is natu-
ral to ask if convergence time could be further reduced for
K smaller than 100. However, Nguyen et al. (2021) found
that moderate values of K can lead to more stable conver-
gence. Moreover, the frequency of server updates is limited
by the system’s write bandwidth. Thus, we cannot create
a new server model too often. We leave improvements to
overcome write bandwidth limitations as future work.

7.4 Analysis of Sampling Bias from Over-Selection

To compare the effectiveness of over-selection and asyn-
chronous training in combating stragglers, we examine the
distribution of participating clients, their execution time,
and the number of training examples. Figure 11 illustrates
the discrepancy between the client execution time distri-
bution of SyncFL with and without over-selection. Since
over-selection discards updates from some clients, the distri-
bution of SyncFL without over-selection should be consid-
ered representative of the entire client population. Figure 11
(top-left) shows that over-selection drops slow clients, as
desired. However, as illustrated in Figure 11 (top-right), the
slowest clients often have more training examples.

To rigorously assess the difference, we perform a two-
sample Kolmogorov-Smirnov test (Chakravarti et al., 1967)
to measure the goodness of fit between AsyncFL, SyncFL
with over-selection, and the ground truth distribution

Figure 11. (top) Participating client execution time and normalized
number of examples for SyncFL with over-selection and SyncFL
without over-selection. (bottom) Histogram of number of training
examples for participating clients for SyncFL and AsyncFL. In the
right figure, SyncFL with 30% selection drops the slowest clients.
The slowest clients are often the ones with many training examples,
as illustrated in the right figure.

(SyncFL without over-selection). We find that the D-
statistic, representing the absolute max distance between
the cumulative distribution functions of the two samples,
for AsyncFL and the ground truth is 8.8 × 10−4 (p-value
= 0.98). In comparison, the D-statistic for SyncFL with
over-selection and the ground truth is 6.6× 10−2 (p-value
= 0.0). This result shows that AsyncFL and the ground truth
have similar distributions while SyncFL with over-selection
does not. Thus, over-selection introduces sampling bias
while AsyncFL does not. The sampling probability is condi-
tioned on the client’s device speed or the number of training
examples. Next, we show that sampling bias hurts model
performance, especially for clients with more training ex-
amples.

Table 1 reports the model quality in test perplexity for all
clients and those with data volume in the 75% and 99% per-
centile. Perplexity is a measure of language model accuracy
(lower is better). The sampling bias from over-selection in
SyncFL causes a 6% drop in model quality overall and a
50% drop in model quality for clients with more examples.
Although SyncFL without over-selection is unbiased, it is
also 10× slower. On the other hand, AsyncFL combines
fast training with high model quality and no sampling bias.
Meanwhile, SyncFL with over-selection has to choose be-
tween sampling bias or straggler resilence. In summary,
AsyncFL is a more desirable method to address the impact
of stragglers.

7.5 Understanding AsyncFL Advantages

The previous sections showed that AsyncFL has two main
advantages over SyncFL: better scalability because of more
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Improvement due to 
straggler resilience

Improvement due to frequent 
server model steps

Improvement 
due to 
sampling bias

Figure 12. Training curves for different FL configuration at aggre-
gation goal = 1,000. We set concurrency = 1,300 for AsyncFL,
SyncFL with over-selection. For SyncFL without over-selection,
we set concurrency equal to aggregation goal.
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Figure 13. Number of hours to reach a target loss for different FL
design configurations.

frequent model steps and straggler resilience without adding
sampling bias. To quantify the benefits from these two prop-
erties, we present the training curves for AsyncFL alongside
the current state-of-art SyncFL. We remove the frequent
update advantage of AsyncFL by increasing the aggregation
goal for AsyncFL to be the same as SyncFL.

Figure 12 depicts production training curves for the best
synchronous setup, SyncFL with over-selection (orange),
and two AsyncFL configurations: aggregation goal K = 100
(red) and K = 1000 (blue). All three use concurrency 1,300.
Note that overall, AsyncFL with K = 100 is 4.3× faster
than SyncFL with over-selection, as shown in Figure 13.
We find that about half of this speedup comes from using
smaller K and the rest from avoiding sampling bias (i.e.,
using AsyncFL rather than SyncFL with over-selection).

To read Figure 12, start with AsyncFL with K = 100 (red),
which is the best configuration since it takes more frequent
server model steps and is resilient to stragglers. Next, see
AsyncFL with K = 1000 (blue), which is straggler resilient

but takes less frequent model steps. Finally, move to SyncFL
with over-selection (orange), which adds sampling bias.

The figure also shows SyncFL without over-selection (green)
for reference, using concurrency 1000. The large gap be-
tween this configuration and AsyncFL with K = 1000 is
attributable to stragglers.

It is instructive to compare the training loss at a fixed point,
e.g., at the 10-hour mark. By minimizing sampling bias,
AsyncFL with K = 1000 reduces training loss by 3.4% com-
pared to SyncFL with over-selection. Taking more frequent
server-model steps (K = 100) in AsyncFL decreases training
loss by an additional 3.5%.

8 RELATED WORK

The PAPAYA system described in this paper is inspired by
the GFL system (Bonawitz et al., 2019). Another FL system
is described by Apple (AFL) in (Paulik et al., 2021). We
focus on comparison with GFL and AFL given the similarity
of production scale. At a high level, both GFL and AFL only
implement SyncFL, while PAPAYA implements both SyncFL
and AsyncFL. Diving deeper we find similarities and differ-
ences in how clients are selected for participation, client
availability and participation outcome impact on model
training progress, model update aggregation and privacy
mechanisms. PAPAYA actively (through the Coordinator)
selects available clients for participation at any point in time
based on demand by active tasks (driven by desired task con-
currency), unlike GFL which actively selects clients before
the rounds starts, and AFL which uses passive probabilistic
selection. PAPAYA enables incremental progress by making
participating clients independent and replaceable whenever
they complete or drop out, unlike GFL where no client can
join after a round has started, potentially leading to failed
rounds, and similar to AFL where clients can contribute as
long as the model version is the same. PAPAYA moves tasks
between long living Aggregators only when failure or load
imbalance is detected to minimize client progress loss and
reduce placement overhead, unlike GFL where tasks are dy-
namically placed to ephemeral Aggregators every round and
AFL where aggregation is performed by an offline service.
PAPAYA implements Asynchronous SecAgg based on TEEs,
whereas GFL uses SMPC-based Synchronous SecAgg and
AFL does not report using SecAgg.

Another line of related work is the FL software tool kits,
offered by other technology companies. Notable among
these are Clara (NVIDIA), IBM-FL (IBM), OpenFL (Reina
et al., 2021) and FATE (WeBank). While related to the
PAPAYA system described in this paper, these software tools
are distinct from production FL systems training across
hundreds of millions of devices, which is the focus of this
paper.
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9 CONCLUSIONS

We presented our design of a production asynchronous FL
system for training at scale. Designing for a production
FL system, PAPAYA, we find that AsyncFL is faster, more
straggler resilient, and provides better model quality than
SyncFL. PAPAYA is flexible and supports both synchronous
and asynchronous FL. Empirically, we demonstrated that
in high concurrency settings, asynchronous FL achieves
5× faster speed up and conserves nearly 8× more resources
than synchronous FL. Finally, PAPAYA can be extended with
features to enable differential privacy, which we leave as
future work.
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cas, B. Federated learning of deep networks using model
averaging. arXiv preprint arXiv:1602.05629, 2016.

Merkle, R. C. Secure communications over insecure chan-
nels. Communications of the ACM, 21(4):294–299, 1978.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Esmaeili, M. M., and Huba, D. Federated learning
with buffered asynchronous aggregation. International
Workshop on Federated Learning for User Privacy and
Data Confidentiality in Conjunction with ICML, 2021.

NVIDIA. Clara train sdk. https://docs.nvidia.
com/clara/clara-train-sdk/index.html.

Paillier, P. Public-key cryptosystems based on composite
degree residuosity classes. In International conference on
the theory and applications of cryptographic techniques,
pp. 223–238. Springer, 1999.

Paulik, M., Seigel, M., Mason, H., Telaar, D., Kluivers, J.,
van Dalen, R. C., Lau, C. W., Carlson, L., Granqvist,
F., Vandevelde, C., Agarwal, S., Freudiger, J., Byde, A.,
Bhowmick, A., Kapoor, G., Beaumont, S., Cahill, Á.,
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SUPPLEMENTARY MATERIAL

A CRYPTOGRAPHIC PRIMITIVES

A.1 Diffie–Hellman Key Exchange Protocol

Diffie–Hellman key exchange protocol allows two parties
to securely agree on a randomly-generated shared secret
via an untrusted communication channel. Viewed in the
server-client setting, the protocol consists of an initial mes-
sage from one party (server) and a completing message as a
response from the other one (client). The server can prepare
the initial messages in advance, without knowing the identi-
ties of the clients. The client can solely determine the shared
secret once it receives the initial message. The client needs
to interact with the server only once to finish the protocol
by sending the completing message.

A.2 Additive One-time pad (OTP)

There are many existing additive homomorphic encryption
schemes such as the works in (ElGamal, 1985; Goldwasser
& Micali, 1982; Paillier, 1999; Cohen & Fischer, 1985). The
complexity of the decryption algorithms in these protocols is
usually linear in the ciphertext size and is independent of the
number of additions. However, these schemes often operate
on a large finite group whose elements can be as large as
1024–3072 bits. Such requirement inflates the ciphertext
size even if the plaintext space is much smaller (e.g., 32 bit
integers). Such blow-up makes these schemes less desirable
when ciphertexts are transmitted via network and traffic is
at a premium, for example, on mobile devices.

A PRNG-generated additive one-time pad (OTP) is a good
alternative to avoid the expansion of the ciphertext. The
protocol is summarized in Figure 14.

The additively homomorphic encryption scheme in Fig-
ure 14 can operate over any finite Abelian group (e.g., Z232 ).
Therefore the ciphertext can be in the same space as plain-
text. The downside is that the complexity of the decryption
algorithm scales up linearly with number of additions per-
formed, in contrast to a constant in other encryption schemes.
We argue that trading in decryption workload for a more
compact ciphertext is an acceptable trade-off in settings with
mobile devices if the decryption is performed server-side
for the following reasons:

1. Mobile devices are often restricted in both computa-
tion power and communication bandwidth. An additive
OTP is more efficient in both computation and band-
width cost, compared to the group operations needed
in other encryption schemes.

2. The server usually has much more computation re-
sources to perform the relatively more expensive de-
cryption. Furthermore, hardware acceleration optimiza-

Public parameters: finite Abelian group G

• Enck(v): To encrypt a vector v ∈ Gℓ, a cryp-
tographically secure PRNG is used to generate a
vector m ← PRNG(k) where m ∈ Gℓ. The ci-
phertext c is defined as the element-wise sum v+m.

• Addition: Two ciphertexts c1 and c2 can be added
together element-wise.

• Decryption: An (aggregated) ciphertext c :=∑
Encki

(vi) can be decrypted as
∑

vi = c −∑
PRNG(ki).

Figure 14. Additive one-time pads.

tions are often available server-side, reducing the costs
of the decryption algorithm.

B PROTOCOL DESIGN AND SECURITY
PROOF

In this section we will go over the detailed design of our
protocol and formally prove its security. We adopt the same
strategy from Cryptonite (Karl et al., 2020a). A trusted
party realized by trusted hardware (e.g., Intel SGX) will
assist with the procedure and help make up for the dropped
clients. With the assistance of the trusted hardware, clients
no longer rely on each other to protect their own private
inputs or mitigate the dropout of their peers. Without client
interdependence, clients no longer need to communicate
with each other via the server and no longer need to know
about each others’ identities. The absence of interdepen-
dency requirement among clients allows them to participate
asynchronously, making our protocol compatible with Fed-
Buff (Nguyen et al., 2021).

B.1 Problem Setup and Threat Model

The thread model is composed of a server, a trusted third
party and n clients. The trusted third party and the clients
can only communicate directly with the server. The clients
can choose to participate in the protocol at any time, not
necessarily in the beginning. Instead, they will check-in
with the server when they become available. Clients may
have limited availability. The availability of any two clients
may have no overlap on the timeline.

Each client has a private ℓ-element array of group elements
of a finite group G, where ℓ and G are public parameters.
The trusted party’s public key is available to all clients. The
server and the trusted third party have no private inputs.
The parties wish to collaborate and reveal the position-to-
position aggregation result across at least t clients’ private
array but any individuals’ inputs should remain private. A
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Public inputs: The group G, the vector length ℓ and
threshold t.
Private inputs: Client i has input vi ∈ Gℓ. The server
has no inputs.

1. The clients send their secret vi to the ideal function-
ality F .

2. The ideal functionality F sends the list of clients C0
to the server.

3. The server chooses a subset of clients C1 ⊂ C0 and
sends it back to the ideal functionality.

4. The ideal functionality F computes
∑

i∈C1
vi and

sends the sum to the server if |C1| ≥ t clients; oth-
erwise, does nothing.

Figure 15. Ideal functionality F for secure aggregation

malicious adversary may corrupt the server and number of
clients.

The ideal functionality is summarized in Figure 15.

B.2 Overview of Our Solution

To avoid sending big chunks of data across the boundary of
the secure enclave, we will aggregate random masks, instead
of the actual data, inside the secure enclave. The high-level
idea is to mask clients’ private inputs with some additive
masks, while the server will be responsible for aggregating
the masked inputs and trusted party will be responsible for
aggregating the masks. Note that a 128-bit seed is sufficient
to represent a random mask. The amount of data transferred
into the secure enclave for each client will be a constant,
despite of amount of data to aggregate. Our protocol can be
divided into three steps:

1. New client checks in and validates the identity of the
trusted party.

2. Client sends masked input to the untrusted server and
demasking information to the trusted party.

3. The trusted party instructs the untrusted server how to
demask the sum of all masked inputs.

B.3 Protocol Detail

Our protocol is detailed in Figure 16. We use
Diffie–Hellman key exchange protocol to establish private
communication channels between the trusted party and the
clients.

Client i has input vi ∈ Gℓ. The server and the trusted
party have no inputs.

1. The trusted party runs N(N > n) DH key exchange
protocol instances and obtains N DH key exchange
initial messages. The trusted party then sends these
initial messages with their indices and signatures to
the server.

2. When the i’th client checks in with the server, the
server sends the i’th initial message and the corre-
sponding signature received from the trusted party
to this client.

3. Upon receiving a DH key exchange initial message
and the corresponding signature, client i validates
the signature and aborts if not valid. Otherwise,
the client generates a DH key exchange completing
message and obtains a secret ki that will be shared
with the trusted party.

4. Client i picks a random seed si and uses it as the
random seed to randomly generate mi ∈ Gℓ, and
sends vi +mi, di := Encki(si) as well as DH key
exchange completing message to the server. Enc
employs standard techniques like MAC and sequen-
tial number to detect any tampered encryption.

5. Upon receiving masked vector vi +mi, encryption
di, and the DH key exchange completing message
from client i, the server aggregates vi + mi to a
running sum

∑
(v +m) and sends the encryption

di, the completing message, and the index of the
corresponding initial message to the trusted party.

6. Upon receiving encryption di and the completing
message for the i’th initial message for DH-key
exchange, the trusted party computes the shared
secret ki and uses it to recover si = Decki

(di).
Then the trusted party re-generates mi with si and
aggregates it to a running sum

∑
m. After that, the

trusted party will not process any further completing
messages to i’th initial message.

7. The server can request the trusted party to generate
the unmasking vector. Upon receiving such request,
the trusted party sends the running sum

∑
m to

the server only if at least completing messages of
t clients have been processed. The trusted party
ignores any further messages from the server.

8. Upon receiving
∑

m, the server computes the sum
of all private arrays by

∑
v =

∑
(v +m)−

∑
m.

Figure 16. Real world protocol for secure aggregation
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Figure 17. Illustration of the simulator

B.4 Security Proof

We adopt the simulation-based proof technique to show
that the ideal functionality and the real world protocol are
computationally indistinguishable. Let Cc ⊂ C denotes the
indices of all the clients corrupted by the adversary and C̄c ⊂
C denotes the indices of the honest clients. Our strategy
is to construct a simulator with the following properties
(Appendix B.4):

1. The simulator runs the adversary as a subroutine.

2. The simulator executes the real world protocol with the
adversary. The simulator plays the role of the trusted
party and client i for all i ∈ C̄c. The adversary plays
the role of the server and corrupted clients i for all
i ∈ Cc.

3. The simulator executes the ideal functionality with the
ideal functionality and honest clients. The simulator
will play the role of the server and all the clients in Cc.

We prove that the joint view of the adversary as the simula-
tor’s subroutine is computationally indistinguishable from
that of a real world execution. The detailed description of
the simulator is in Figure 18.

We now argue that the adversary’s views are the same in
either the simulation or a real world execution with real hon-

est clients. We will show that by a series of computationally
indistinguishable hybrid experiments.

1. Hybrid0: The simulator executes the real world pro-
tocol with the adversary. The simulator plays the role
of honest clients with their private inputs vi. The adver-
sary plays the role of the server and corrupted clients.
This is exactly the real world protocol execution.

2. Hybrid1: The same as Hybrid0, except:

(a) In step 3, for i ∈ C̄c, the simulator sends a random
vector m̃i ∈ Gℓ as vi +mi and a random string
as the DH key exchange response on behalf of the
honest client i.

(b) In step 6, upon receiving a DH key exchange re-
sponse with successfully decrypting the encrypted
seed from client i:

• if i ∈ Cc, the simulator follows the protocol;
• if i ∈ C̄c, the simulator adds i to Ca;

If decrypting the encrypted seed fails, ignore the
update.

(c) In step 7, if the trusted party is expected to gener-
ate an unmasking vector, the simulator will send
(
∑

m)+(
∑

i∈Ca
m̃i)−

∑
i∈Ca

vi to the server if
no honest clients’ response is detected to be tam-
pered with in step 6; otherwise sends a uniform
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When interacting with the adversary, the simulator fol-
lows the real world protocol as the trusted party and client
i for all i ∈ C̄c, excepts:

1. In step 3, for i ∈ C̄c, the simulator sends a random
vector m̃i ∈ Gℓ as vi + mi and a random string
as the DH key exchange response on behalf of the
honest client i.

2. In step 6, upon receiving a DH key exchange re-
sponse with successfully decrypting the encrypted
seed from client i:

• if i ∈ Cc, the simulator follows the protocol;
• if i ∈ C̄c, the simulator adds i to Ca;

If decrypting the encrypted seed fails, ignore the
update.

Note: The adversary chooses to aggregate honest
clients’ inputs whose index is in Ca and discards
rest of the honest clients’ inputs.

3. In step 7, if the trusted party is not expected to
generate a unmasking vector, the simulator follows
the protocol. Otherwise, the simulator interacts with
the real honest clients via the ideal functionality:

(a) For each i ∈ Cc, the simulator sends out a 0-
vector to the ideal functionality on behave of
the corrupted client i.

(b) The simulator sends Ca to the ideal functional-
ity.

(c) The simulator receives V , which is the sum of
all honest clients’ inputs, as the server from
the ideal functionality.

(d) The simulator sends (
∑

m) + (
∑

i∈Ca
m̃i)−

V to the server in the real world protocol on
behalf of the trusted party, where

∑
m is the

running sum maintained by the trusted party.

4. In step 8, no matter what the adversary outputs in
the real world protocol in each role, the simulator
outputs the same content as the same role in the
ideal functionality.

Figure 18. Simulator for secure aggregation

random unmasking vector to the server.

Hybrid0 ≈ Hybrid1:

• The correctness of Hybrid1 is obvious since the
server will get

∑
i∈Cc

(v +m) + (
∑

i∈Ca
m̃i) −(∑

i∈Cc
m+

∑
i∈Ca

m̃i −
∑

i∈Ca
vi
)

=∑
i∈Cc∪Ca

v at the end of Hybrid1, which
is exactly what the server will learn at the end of
Hybrid0.

• The indistinguishability between Hybrid0 and
Hybrid1 comes from the fact that both vi +mi

and m̃i are subject to independent uniform distri-
bution over Gℓ.

3. Hybrid2: The same as Hybrid1, except:

(a) The simulator no longer has the inputs of honest
clients, but runs the ideal functionality with real
honest clients.

(b) In step 7, if the trusted party is expected to gener-
ate an unmasking vector, the simulator interacts
with the real honest clients via the ideal function-
ality:
i. For each i ∈ Cc, the simulator sends out a

0-vector to the ideal functionality on behalf of
the corrupted client i.

ii. The simulator sends Ca to the ideal function-
ality.

iii. The simulator receives V , which is the sum of
all inputs of honest clients, as the server from
the ideal functionality.

iv. The simulator sends (
∑

m)+ (
∑

i∈Ca
m̃i)−

V to the server in the real world protocol on
behalf of the trusted party, where

∑
m is the

running sum maintained by the trusted party.
(c) In step 8, no matter what the adversary outputs

in the real world protocol, the simulator outputs
the same content as the same role in the ideal
functionality.

This is exactly the ideal functionality execution with
the simulator.

Hybrid1 ≈ Hybrid2: The indistinguishability
comes from the fact that

• The ideal functionality will correctly sum up the
honest clients’ inputs.

• The simulator’s output in the ideal functionality
for each role it plays is identical to the adversary’s
output in the real world protocol for the same role.

C DEPLOYMENT WITH INTEL SGX
The secure aggregation protocol (Figure 16) we present in
Appendix B.2 involves a trusted party. When deploying this
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protocol, we use a Intel SGX enclave to play the role of
this trusted party. To enforce the honest behavior of this
trusted party, we have to ensure the following two security
guarantees.

1. Confidentiality: the trusted party realized by the en-
clave shares no information with any other party except
what is specified in the protocol.

2. Integrity: the trusted party realized by the enclave exe-
cutes the protocol with the correct public parameters
(including the group G, the vector length ℓ and the
threshold t) without any deviation from the protocol.

In this section, we see how we employ remote attestations
and verifiable logs to ensure these properties.

C.1 Enforce Security with Remote attestations

Remote attestation technique was originally designed to
allow an enclave owner to verify the identity of a trusted
binary executed in the cloud. In our use case, there is noth-
ing secret about the code or the initial parameters inside
the enclave. Therefore these data can be provided to the
clients to allow them play the role of enclave owner and to
verify the identity of the trusted binary that plays the role of
the trusted party. To be more specific, the extra steps speci-
fied in Figure 19 are taken on top of the secure aggregation
protocol in Figure 16 to ensure the honest behavior of the
trusted party.

We follow the standard assumptions of SGX:

1. It is infeasible to forge an attestation quote that does
not match the running trusted binary and/or the hash
of public parameters as the custom payload, but can be
verified against Intel’s collateral.

2. It is infeasible to tamper with the trusted binary exe-
cuted inside the enclave.

3. It is infeasible to access the data stored inside the en-
clave except via the predefined APIs.

Under these assumptions and other standard assumptions4 ,
clients accept an attestation quote only if:

1. the quote is generated by a legitimate enclave;

2. the enclave is running the predefined code;

3. the enclave is running with server-claimed parameters;

4Including: 1. the hash algorithm we use is collusion resistant;
and 2. AES is a secure block cipher.

0. Before executing the protocol, the code of the
trusted party running inside the Intel SGX enclave is
open sourced in advance along with the hash of the
trusted binary, such that the community can exam
the code and rebuild the trusted binary running in-
side the enclave and verify against the claimed hash.

1. In step 1, the Intel SGX enclave, playing the role
of the trusted party, generates an attestation quote
along with each DH key exchange request and sends
it to the server. This attestation quote can be used to
verify the initial state of the enclave. It consists of
the DH key exchange request, the hash of running
trusted binary, and the hash of public parameters for
the protocol.

2. In step 2, the server sends the public parameters
used in the protocol and the corresponding attesta-
tion quotes to the clients.

3. In step 3, upon receiving an attestation quote along
with the key exchange request from the server, the
client verifies the quote to ensure:

(a) the hash of the running trusted binary is the
same as the one published with the open
sourced code;

(b) the hash of the public parameters provided by
the server matches the hash included in the
attestation quote.

The client aborts if any of these conditions cannot
be verified.

Figure 19. Deploying the protocol with Intel SGX enclaves

These arguments jointly assert the enclave is faithfully play-
ing the role of the trusted party. The clients will proceed
in the protocol with their private inputs only if they can
validate the faithful trusted party. With that said, the server
will not hear back from clients unless attestation quotes
from a legitimate enclave with correct trusted binary and
parameters are forwarded to the clients.

In addition, the server cannot successfully tamper with the
data that is meant to be sent into the enclave, i.e. the DH key
exchange response and the encrypted seed. This is because
the decryption fails if any of them is modified by the server.
Furthermore, the encrypted seed and the response is not
accepted by another enclave instance either since it will not
have the necessary private randomness to recover the shared
key correctly. In summary, the server must use exactly the
same enclave during the whole protocol, otherwise it is
effectively dropping clients.
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C.2 Updating the Trusted Binary with Verifiable Logs

Remote attestations allow clients to validate the trusted
binary’s identity against a hardcoded hash. Such design
makes it impossible to update the trusted binary in the future
without updating the clients at the same time. To ease the
updating process, verifiable logs(ver; tri) can be used to note
down any changes made to the code that will run inside an
enclave.

A verifiable log is implemented by a Merkle tree and append-
only. Each new record appended to the end of the log is
added as a new leaf in the underlying Merkle tree. The hash
of the root of the Merkle tree serves as the snapshot of the
whole log. An inclusion proof can be generated to demon-
strate a record is indeed included in the log. A consistency
check can be performed between two snapshots to decide
if the corresponding append-only logs are consistent with
each other.

There are several steps to integrate this technique, as detailed
in Figure 20.

0. Before releasing the trusted binary, append the
identity and manifest of the trusted binary to the
verifiable log if it is not already there.

1. In step 2, the server needs to generate an inclusion
proof that the trusted binary used in the protocol is
included in the latest snapshot.

2. In step 3, the client requests for the latest log snap-
shot from the server and validates the inclusion
proof. The client aborts if the proof cannot be vali-
dated.

Auditing: Anyone can audit the code running inside the
enclave with the following steps:

1. Request for the latest log snapshot via the same API.

2. Request for all the records (i.e. the trusted binaries)
in the log and any of the corresponding source code
used for building the trusted binaries to audit.

3. Check if the source code can be used to build the
expected trust binaries. Verify if there is any diver-
sion from the protocol design in the binary.

Figure 20. Deploying the protocol with verifiable logs

Note that both clients and auditors use the same API to
request the log’s latest snapshot. Therefore the auditors and
clients share the same snapshots. Due to the unforgeability
of the underlying secure hashes, any logged trusted binary
cannot avoid audition without being noticed. On the other
hand, clients will only proceed in the protocol only if the

trusted binary is logged. In summary, no trusted binary
that interacts with clients can avoid audition without getting
caught.

With this auditing mechanism in place and sufficient public
auditors watching the latest snapshots, the trusted binary
can be updated on a regular basis without updating on the
client side.

D FIXED POINT CONVERSION

Our secure aggregation protocol works with a finite group.
On the other hand, machine learning algorithms operate on
real numbers. Hence we need to convert between fixed point
and floating point. We observe that plain integer additions
and element additions in an integral finite group (e.g. Z32)
share the same behavior if there is no wrap-around/overflow.
Therefore we cover the gap between real numbers and group
elements by using integers as a bridge. A real number is
picked as the scaling factor c in advance. Any real number
a waiting for aggregation is multiplied by c and rounded
to the nearest integer [ca]. For the next step an integral
finite group (Zn) is picked to simulate the plain integer addi-
tion. We map [−⌊n/2⌋, ⌈n/2⌉) onto Zn by mapping integer
0, 1, . . . , ⌈n/2⌉ − 1 to group element 0, 1, . . . , ⌈n/2⌉ − 1
and integer−⌊n/2⌋,−⌊n/2⌋+1, . . . ,−1 to group elements
⌈n/2⌉, ⌈n/2⌉ + 1, . . . , n − 1. This conversion allows to
support both positive and negative real numbers between
−⌊n/2⌋/c to ⌈n/2⌉/c. In summary, a real number is first
mapped to an integer before it is finally mapped to a group
element in Zn.

Note that our protocol in fact does group-element addition
on the private inputs. To properly simulate the behavior of
integer addition, wrap-round needs to be avoided. In other
words, the parties need to estimate the scale of the model
updates to aggregate, the desired accuracy to properly pick
the parameters including the scaling factor c and the finite
group Zn.

E ADDITIONAL SYSTEM DESIGN DETAILS

E.1 Enforcing Max Concurrency

To prevent unbounded client participation, the system en-
forces an upper bound of concurrently participating clients
(C) for every task based on task configuration. A client
can be selected for a task only if number of active clients
is below the configured threshold. An active client may
become inactive for various reasons. The client may have
completed execution, or it may be considered dead due to
missed heartbeats or execution error. Finally, clients may
also be aborted by the server if staleness (measured as the
difference between current and initial model versions) is
higher than a configurable value.
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E.2 Handling Staleness

The cost of asynchronous training is staleness of model
updates. In this section, we describe how our AsyncFL
system tracks and handles staleness. The server model
is identified by a model version—a non-negative natural
number that is incremented every time a new server model
is generated. A new server model is generated when K
client updates have been aggregated. In an asynchronous
FL systems, clients can download a model with an initial
version, but upload results when the server model has moved
to a different final version. Recall that we define staleness as
the difference between the model version in which a client
uses to start local training, and the server model version
at the time instance when a client uploads its update. For
each client, the aggregator records initial model version to
track staleness. Let si be the staleness of client i with initial
version Vinitial and final version Vfinal; thus si = Vfinal−Vinitial.
We down-weight client i’s update using the same scheme
as Nguyen et al. (2021). Formally, let wi be the weight
of client i whose staleness is si, then wi := 1/

√
1 + si.

Finally, to bound staleness, the aggregator abort clients
whose staleness is larger than a configurable parameter,
maximum staleness.

After every server model update, the aggregator aborts
clients whose staleness is larger than a configurable pa-
rameter, maximum staleness.

E.3 Switching between SyncFL and AsyncFL

PAPAYA highlights that an FL system can support both syn-
chronous and asynchronous training by using client inde-
pendence, fast model aggregation, high client utilization and
asynchronous secure aggregation. These properties improve
the performance of both training regime.

Switching from SyncFL to AsyncFL in our system requires
three small changes in behavior: client demand computation,
handling of stale clients, and model aggregation.

Client demand computation. In AsyncFL, client demand
is computed as concurrency − active clients . However,
in a typical SyncFL round, client demand is high in the
beginning of a round, but decreases as clients report results
(see Figure 7). In SyncFL, client demand is computed as
concurrency · (1 + o)− completed clients , where o is the
over-selection factor.

Aborting stale clients. When a server model update is
performed in SyncFL, users that are still training are aborted
(users may still be training because of over-selection). In
AsyncFL, users that are still training continue normally,
unless their staleness would exceed maximum staleness.

Model Aggregation. AsyncFL and SyncFL use different
model aggregation algorithms.

These three behavior changes are relatively minor. Thus,
switching between SyncFL and AsyncFL can be done via a
configuration change.

E.4 Failure Recovery

Fast recovery and isolated impact from failures help the
system minimize model training progress impact. Below
we outline mechanisms employed:

Client Routing. Client requests are routed by selectors us-
ing assignment maps (model training task to corresponding
aggregator identity) refreshed from coordinator on every
report. Upon selector failure or selector having stale assign-
ment map clients retry through a different selector. Failed
or stale selector refreshes assignment map on next report to
coordinator.

Client Participation. Coordinator assigns clients to tasks.
Upon coordinator failure participating clients are not af-
fected, only for the duration of the recovery no new clients
are assigned. Selectors and aggregators wait until a new
leader coordinator is elected meanwhile continuing to op-
erate based on last known assignments. After the leader
election coordinator enters the recovery period (typically
30s) to rebuild the current assignment map from aggregator
reports and then resumes assignments.

Task Execution. Aggregator executes assigned tasks. Upon
aggregator failure or unresponsiveness, coordinator detects
failures after several missed heartbeats and reassigns all
tasks to other aggregators, updates and distributes the new
assignment map to selectors. Coordinator detects stale as-
signments in aggregator reports via sequence numbers and
requests to stop executing stale assignments.

E.5 Edge Training Engine

The Papaya client is built to be both a hosting platform
and an ML framework. An Example Store collects training
data in persistent storage and enforces the data use and re-
tention policy. An Executor abstracts model training logic
in a general way that supports easily swapping in differ-
ent ML tasks (data source, model, loss, etc.). The imple-
mentation is based on PyTorch Mobile and relies on two
features: selective build and the mobile interpreter. Selec-
tive build only compiles in ops used by the application to
reduce the binary size. The mobile interpreter facilitates
efficient cross-platform execution (Android, iOS, Linux)
by providing common functionality to save and load model
code and parameters, execute forward and backward passes,
and optimizer steps.


