
The Architectural Implications of Facebook’s
DNN-based Personalized Recommendation

Udit Gupta∗, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen

David Brooks∗, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich,
Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, Xuan Zhang

Facebook Inc.
{carolejeanwu, xdwang}@fb.com

ABSTRACT
The widespread application of deep learning has changed
the landscape of computation in data centers. In partic-
ular, personalized recommendation for content ranking
is now largely accomplished using deep neural networks.
However, despite their importance and the amount of
compute cycles they consume, relatively little research
attention has been devoted to recommendation systems.
To facilitate research and advance the understanding of
these workloads, this paper presents a set of real-world,
production-scale DNNs for personalized recommenda-
tion coupled with relevant performance metrics for eval-
uation. In addition to releasing a set of open-source
workloads, we conduct in-depth analysis that underpins
future system design and optimization for at-scale recom-
mendation: Inference latency varies by 60% across three
Intel server generations, batching and co-location of in-
ference jobs can drastically improve latency-bounded
throughput, and diversity across recommendation mod-
els leads to different optimization strategies.

1. INTRODUCTION
Deep learning has become a cornerstone in many

production-scale data center services. As web-based
applications continue to expand globally, so does the
amount of compute and storage resources devoted to
deep learning training and inference [18,32, 38]. Person-
alized recommendation is an important class of these
services. Deep learning based recommendation systems
are broadly used throughout industry to predict rankings
for news feed posts and entertainment content [22,26].
For instance, in 2018, McKinsey and Tech Emergence es-
timated that recommendation systems were responsible
for driving up to 35% of Amazon’s revenue [17,53,58].

Figure 1 illustrates the fraction of AI inference cycles
spent across recommendation models in a production
data center. DNN-based personalized recommendation
models comprise up to 79% of AI inference cycles in
a production-scale data center. While potentially hun-
dreds of recommendation-models are used across the
data center, we find that three recommendation model
classes, RMC1, RMC2, and RMC3 consume up to 65%
∗Harvard University, work done while at Facebook.

RMC1

RMC2
RMC3

Other RMCs

Figure 1: RMC1, RMC2, and RMC3 (studied
in this paper) represent three classes of recom-
mendation models that consume 65% of AI infer-
ence cycles in Facebook’s production data cen-
ter. Recommendation models in general com-
prise over 79% of AI inference cycles. Remain-
ing cycles are devoted to non-recommendation
use cases (e.g., CNN, RNNs).

of AI inference cycles. These three types of recommen-
dation models follow distinct recommendation model
architectures that result in different performance charac-
teristics and hardware resource requirements, and thus
are the focus of this paper.

The systems and computer architecture community
has made significant strides in optimizing the perfor-
mance, energy efficiency, and memory consumption of
DNNs. Recent solutions span across the entire system
stack including, efficient DNN architectures [19,33,35],
reduced precision datatypes [21, 28, 30, 39, 49], heavily
parallelized training/inference [27, 60], and hardware
accelerators [14,29,38,49,61]. These solutions primar-
ily target convolutional (CNN) [33, 50] and recurrent
(RNN) [10, 11] neural networks. However, these opti-
mization techniques often cannot be applied to recom-
mendation models as the models are intrinsically dif-
ferent, introducing unique memory and computational
challenges.

Finally, publicly available recommendation bench-
marks are not representative of production systems.
Compared to available recommendation benchmarks,
i.e. neural-collaborative filtering (MLPerf-NCF [5,44]),
production-scale models differ in three important fea-

RMC1

RMC2
RMC3

DeepSpeech2

GNMT

GoogLeNet

ResNet50

VGG16

NCF

Figure 2: At-scale recommendation models
(RMC1, RMC2, RMC3) have unique compute
(FLOPs) and memory (bytes read) requirements
compared to CNNs, RNNs, and open-source rec-
ommendation models like MLPerf-NCF [5,44].

tures: application-level constraint (use case), embed-
ding tables (memory intensive), fully-connected layers
(compute intensive). First, production recommenda-
tion use cases require processing requests with high
throughput under strict latency constraints; to meet
these application requirements, production systems ex-
ploit high degrees of data-level and task-level parallelism
not considered in publicly available benchmarks. Second,
production-scale recommendation models have orders of
magnitude more embeddings, resulting in larger storage
requirements and more irregular memory accesses. Fi-
nally, MLPerf-NCF implements fewer and smaller fully-
connected (FC) layers requiring fewer FLOPs (Figure 2).
The insights and solutions derived using these smaller
recommendation models may not be applicable to nor
representative of production systems.

In this paper, we present a set of production-scale
personalized recommendation models. First, we iden-
tify quantitative metrics to evaluate the performance
of these recommendation workloads. Next, we design
a set of synthetic recommendation models to conduct
detailed performance analysis. Because inference in our
data center is run across a variety of CPUs [32], we focus
the design tradeoff studies on Intel Haswell, Broadwell,
and Skylake servers. Finally, we study performance
characteristics of running recommendation models in
production-environments. The insights from this analy-
sis can be used to motivate broader system and archi-
tecture optimizations for at-scale recommendation. For
example, we can maximize latency-bounded through-
put by exploiting server heterogeneity when scheduling
inference requests.

The in-depth description and characterization pre-
sented in this paper of production-scale recommendation
models provides the following insights for future system
design:

• The current practice of using only latency for bench-
marking inference performance is insufficient. At
the data center scale, the metric of latency-bounded
throughput is more representative as it determines
the number of items that can be ranked given service

...

+

...

Emb. 0 Emb. N

Em
bedding

Tables

Dense Inputs Sparse Inputs
[i0, i1, … in,] [j0, j1, … jn,]

Bo
tto

m
-F

C + ++

To
p-

FC

CTR Output

...

FC

FC...

FC

FC...
Figure 3: Simplified model-architecture of rec-
ommendation models. Inputs to the model are
a collection of dense and sparse features. Sparse
features, unique to recommendation models, are
transformed to a dense representation using em-
bedding tables (blue). The number/size of em-
bedding tables, number of sparse feature (ID)
lookups per table, depth/width of Bottom-FC
and Top-FC layers varies based on the use-case.

level agreement (SLA) requirements (Section 3).

• Inference latency varies across several generations of
Intel servers (Haswell, Broadwell, Skylake) that co-
exist in data centers. With unit batch size, inference
latency is optimized on high-frequency Broadwell ma-
chines. On the other hand, batched inference (through-
put) is optimized with Skylake as batching increases
the compute density of FC layers. Compute-intensive
recommendation models are more readily accelerated
with AVX-512 instructions in Skylake, as compared
to AVX-2 in Haswell and Broadwell (Section 5).

• Co-locating multiple recommendation models on a
single machine can improve throughput. However,
this introduces a tradeoff between single model latency
and aggregated system throughput. We characterize
this tradeoff and find that processors with inclusive
L2/L3 cache hierarchies (i.e., Haswell, Broadwell) are
particularly susceptible to latency degradation due
to co-location. This introduces additional scheduling
optimization opportunities in data centers (Section 6).

• Across at-scale recommendation models and differ-
ent server architectures, the fraction of time spent
on compute intensive operations, like FC, varies from
30% to 95%. Thus, existing solutions for accelerating
FC layers only [29,38,49,61] will translate to limited
inference latency improvement for end-to-end recom-
mendation. This is especially true of recommendation
models dominated by embedding tables (Section 5).

Open-source: To facilitate future work on at-scale
recommendation systems for the systems and computer
architecture community, Facebook has open-sourced a
suite of synthetic models, representative of production

2

FC SLS Concat Conv BatchMM Activ. Recurrent Other
0

5

10

15

20

25

30
%

 c
y
cl

e
s

b
y
 o

p
e
ra

to
r Recommendation models Non-recommendation models

Figure 4: Breakdown of data center-wide cy-
cles by operators in recommendation and non-
recommendation (e.g., CNN, RNNs) models.

use cases1. Together with the detailed performance
analysis performed in this paper, the open-source im-
plementations can be used to further understand the
compute requirements, storage capacity, and memory
access patterns, enabling optimization and innovation
for at-scale recommendation systems.

2. BACKGROUND
This section provides an overview of the personalized

recommendation task and the architecture of at-scale
recommendation models. We also compare recommen-
dation models to other DNNs, in terms of their compute
density, storage capacity, and memory access patterns.

2.1 Recommendation Task
Personalized recommendation is the task of recom-

mending new content to users based on their preferences
[22, 26]. Estimates show that up to 75% of movies
watched on Netflix and 60% of videos consumed on
YouTube are based on suggestions from their recommen-
dation systems [17,53,58].

Central to these services is the ability to accurately,
and efficiently rank content based on users’ preferences
and previous interactions (e.g., clicks on social media
posts, ratings, purchases). Building highly accurate per-
sonalized recommendation systems poses unique chal-
lenges as user preferences and past interactions are rep-
resented as both dense and sparse features [25,45].

For instance, in the case of ranking videos (e.g., Netflix,
YouTube), there may be tens of thousands of videos that
have been seen by millions of viewers. However, individ-
ual users interact with only a handful of videos. This
means interactions between users and videos are sparse.
Sparse features typically represent categorical inputs.
For example, for ranking videos, a categorical input may
represent the type of device or users’ preferences for a
genre of content [16]. Dense features (e.g., user age) rep-
resent continuous inputs. Categorical inputs are encoded
as multi-hot vectors where a 1 represents positive interac-
tions. Given the potentially large domain (millions) and
small number of interactions (sparse), multi-hot vectors
must first be transformed into real-valued dense vectors
using embedding table operations. Sparse features not
only make training more challenging but also require
intrinsically different operations (e.g., embedding tables)

1https://ai.facebook.com/blog/dlrm-an-advanced-open-
source-deep-learning-recommendation-model/

Figure 5: Compared to FC, CNN, and RNN lay-
ers, embedding table operations (SparseLength-
sSum, SLS, in Caffe2), seen in recommendation
systems, exhibit low compute density (left) and
high LLC cache miss rate (right).

which impose unique compute, storage capacity, and
memory access pattern challenges.

2.2 Recommendation Models
Figure 3 shows a simplified architecture of state-of-

the-art DNNs for personalized recommendation models.
(More advanced examples can be in found [1, 13].) The
model comprises a variety of operations such as FC lay-
ers, embedding tables (which transform sparse inputs
to dense representations), Concat, and non-linearities,
such as ReLU. At a high-level, dense and sparse input
features are separately transformed using FC layers and
embedding tables respectively. The outputs of these
transformations are then combined and processed by
a final set of FC layers. Figure 4 illustrates the cy-
cles breakdown of these operators across Facebook’s
data centers. Given their unique architecture, the cycle
breakdown of recommendation models follows a distinct
distribution compared to non-recommendation models
(e.g., CNNs, RNNs). In particular, FC, SLS and Con-
cat comprise over 45% of recommendation cycles. Note
that, SLS (embedding table operations in Caffe2) alone
comprise nearly 15% of AI inference cycles across Face-
book’s data centers — 4× and 20× more than CNNs
and RNNs.

Execution Flow: The inputs, for a single user and
single post, to recommendation models are a set of dense
and sparse features. The output is the predicted click-
through-rate (CTR) of the user and post. Dense features
are first processed by a series of FC layers, shown as
the Bottom-FCs in Figure 3. Recall that sparse features
represent categorical inputs that can be encoded as
multi-hot vectors. As the number of categories (i.e., size
of multi-hot vectors) is large, each vector is encoded as
a list of non-contiguous, sparse IDs.

For a single user-item input pair, multiple vectors
of such sparse IDs must first be made dense. While
the sparse to dense transformation can be accomplished
using FC layers, the compute demands of doing so would
be significant. Instead, we use embedding tables. Each
vector is paired with an embedding table, as shown in
Figure 3, and each sparse ID is used to look-up a unique
row in the embedding table. (Pseudo-code in Algorithm
1). The rows of the embedding are then combined into
a single vector, typically with a dimension of 32 or 64,
using element-wise operations.

3

https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/
https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/

Algorithm 1 SparseLengthsSum (SLS) pseudo-code

1: Emb← Embedding Table: R(∼millions) x C(∼tens)
2: Lengths← Vector: K . slices of IDs
3: IDs← Vector: M (∼tens) . non-contiguous
4: Out← V ector : K×C
5:
6: CurrentID = 0;OutID = 0
7: procedure SLS(Emb, Lengths, IDs)
8: for L in Lengths do
9: for ID in IDS[CurrentID: CurrentID+L]: do
10: Emb vector = Emb[ID]
11: for i in range(C): do
12: Out[OutID][i]+ = Emb vector[i]
13: end for
14: end for
15: OutID = OutID + 1;CurrentID = CurrentID + 1
16: end for
17: return Out
18: end procedure

Finally, embedding vectors and the output of the
Bottom-FC layers are concatenated, and processed by
the Top-FC layers shown in Figure 3. The output is a
single value representing the predicted CTR. User-post
pairs with the highest predicted CTR will be prioritized.

Processing multiple posts: At the data center
scale, recommendations for many users and posts must
be ranked simultaneously. Thus, it is important to
note that the vectors of sparse IDs shown in Figure 3
correspond to inputs for a single user and single post.
To compute the CTR of many user-post pairs at once,
requests are batched to improve overall throughput.

The depth and width of FC layers, number and size
of embedding tables, number of sparse IDs per input,
and typical batch-sizes depend on the use case of the
recommendation model (see Section 3 for more details).

2.3 Embedding Tables
A key distinguishing feature of DNNs for recommen-

dation systems, compared to CNNs and RNNs, is the
use of embedding tables. As shown in Figure 3, embed-
ding tables are used to transform sparse input features
to dense ones. However, the embedding tables impose
unique challenges to efficient execution in terms of their
large storage capacity, low compute density, and irregular
memory access pattern.

Large storage capacity The size of a single em-
bedding table seen in production-scale recommendation
models varies from tens of MBs to several GBs. Fur-
thermore, the number of embedding tables varies from
4 to 40, depending on the particular use case of the
recommendation model. (See Section 3 for details). In
aggregate, embedding tables for a single recommenda-
tion model can consume up to tens of GB of memory.
Thus, systems running production-scale recommenda-
tion models require large, off-chip storage such as DRAM
or dense non-volatile memory [25].

Low compute intensity As shown in Figure 5(left),
SparseLengthsSum (SPS) has a significantly lower com-
pute intensity, e.g. operational intensity, (0.25 FLOPs/Byte)
compared to RNN (5.5 FLOPs/Byte), FC (18 FLOPs/Byte),
and CNN (141 FLOPs/Byte) layers. As shown in Fig-

RMC 1

RMC 2 RMC 3

Filtering
(Light)

Ranking
(Heavy)

Personalized Recommendation
Outputs

Service 1 Inputs

RMC 1 RM 1

Service 2 Inputs

ML Models

Figure 6: Contents is ranked in two hierarchical
steps: filtering and ranking. Filtering reduces
the number of total items to a smaller subset
using lightweight machine learning techniques
or smaller DNN-based models (RMC1). Rank-
ing performs finer grained recommendation us-
ing larger models (e.g., RMC2, RMC3).

ure 5, compared to typical FC, RNN, and CNN layers,
embedding tables exhibit low compute density. (The
RNN layer considered is typically found in recurrent
NLP models while the FC and CNN layers are ones
found in ResNet50 [33]). Recall that the embedding
table operation (implemented as the SparseLengthsSum
operator in Caffe2 [2]) entails reading a small subset of
rows in the embedding table. The rows, indexed based
on input sparse IDs, are then summed. While the entire
embedding table is not read for a given input, the ac-
cesses follow a highly irregular memory access pattern
(Pseudo-code in Algorithm 1).

Irregular memory accesses On an Intel Broadwell
server present in production data centers, this results
in a high LLC cache miss rate. For instance, Figure
5(right) shows that a typical SparseLengthsSum oper-
ator in production-scale recommendation models has
an LLC cache miss rate of 8 MPKI [25], compared to
0.5 MPKI, 0.2 MPKI, and 0.06 MPKI in an RNN, FC,
and CNN layers. Previous work [25] demonstrates that
embedding table lookups exhibit low reuse; high miss-
rates are a result of compulsory misses not capacity
misses. The observed cache miss rates can be exacer-
bated by additional interference from OS-related activ-
ities, processor-dependent TLB miss handling, as well
as prefetching pollution [24, 56, 57]. Furthermore, the
element-wise sum is a low-compute intensity operation.
Due to their highly irregular memory access pattern and
low-compute density, efficient embedding table opera-
tions requires unique solutions, compared to approaches
applied to FC and CNN layers.

3. AT-SCALE PERSONALIZATION
This section describes model architectures for three

classes of production-scale recommendation models: RMC1,
RMC2, and RMC3. This paper focuses on these three
classes of recommendation models for two reasons. First,
the models span different configurations in terms of

the number and size of embedding tables, number of
sparse IDs per embedding table, and size of FC layers.
These configurations determine compute density, storage
requirements, and memory access patterns, which may

4

Model Description
FC Embedding Tables

Bottom Top Number Input Dim. Output Dim. Lookups

RMC1
Small FC Layer1: 8× Layer1: 4×

1× to 3× 1× to 180× 1×
User: 4×

Few Emb. Tables Layer2: 4× Layer2: 2× Posts:Nx4×
Small Emb. Tables Layer3: 1× Layer3: 1×

RMC2
Small FC Layer1: 8× Layer1: 4×

8× to 12× 1× to 180× 1×
User:4×

Many Emb. Tables Layer2: 4× Layer2: 2× Posts:Nx4×
Small Emb. Tables Layer3: 1× Layer3: 1×

RMC3
Large FC Layer1: 80× Layer1: 4×

1× to 3× 10× to 180× 1× 1×Few Emb. Tables Layer2: 8× Layer2: 2×
Large Emb. Tables Layer3: 4× Layer3: 1×

Table 1: Model architecture parameters representative of production scale recommendation workloads
for three example recommendation models used, highlighting their diversity in terms of embedding
table and FC sizes. Each parameter (column) is normalized to the smallest instance across all three
configurations. Bottom and Top FC sizes are normalized to layer 3 in RMC1. Number, input
dimension, and output dimension of embedding tables are normalized to RMC1. Number of lookups
are normalized to RMC3.

lead to different system and micro-architecture optimiza-
tions. Second, the models consume the 65% of inference
cycles in Facebook’s data centers (Figure 1).

3.1 Production Recommendation Pipeline
As shown in Figure 6, personalized recommendation

is accomplished by hierarchically ranking content. Lets
consider the example of recommending social media
posts. When the user interacts with the web-based social
media platform, a request is made for relevant posts.
At any given time there may be thousands of relevant
posts. Based on user preferences, the platform must
recommend the top tens of posts. This is accomplished
in two steps, filtering and ranking [16].

First, the set of possible posts, thousands, is filtered
down by orders of magnitude. This is accomplished
using lightweight machine learning techniques such as
logistic regression. Compared to using heavier DNN-
based solutions, using lightweight techniques trades off
higher accuracy for lower run-time. DNN-based recom-
mendation models are used in the filtering step when
higher accuracy is needed. One such example is recom-
mendation model 1 (RMC1).

Next, the subset of posts is ranked and the top tens
of posts are shown to the user. This is accomplished
using DNN-based recommendation models. Compared
to recommendation models used for filtering content,
models for finer grained ranking are typically larger in
terms of FC and embedding tables. For instance, in the
case of ranking social media posts, the heavyweight rec-
ommendation model (i.e., RMC3) is comprised of larger
Bottom-FC layers. This is a result of the service using
more dense features. The other class of heavyweight
recommendation models (i.e., RMC2) is comprised of
more embedding tables as it processes contents with
more sparse features.

SLA requirements: In both steps, lightweight fil-
tering and heavyweight ranking, many posts must be
considered per user query. Each query must be processed
within strict latency constraints set by service level agree-

ments (SLA). For personalized recommendation, missing
latency targets results in jobs being preemptively termi-
nated, degrading recommendation result quality. The
SLA requirements can vary from tens to hundreds of
milliseconds [16,38,48]. Thus, when analyzing and op-
timizing recommendation systems in production data
centers, it is important to consider not only single model
latency but also throughput metrics under SLA. In the
data center, balancing throughput with strict latency
requirements is accomplished by batching queries and
co-locating inferences on the same machine (Section 5
and Section 6).

3.2 Diversity of Recommendation Models
Table 1 shows representative parameters for three

classes of recommendation models: RMC1, RMC2, and
RMC3. While all three types of models follow the gen-
eral architecture (Figure 3), they are quite diverse in
terms of number and size of embedding tables, embed-
ding table lookups, and depth/width of FC layers. To
highlight these differences we normalize each feature to
the smallest instance across all models. Bottom and Top
FC sizes are normalized to layer 3 in RMC1. Number,
input, and output dimensions of embedding tables are
normalized to RMC1. The number of lookups (sparse
IDs) per embedding table are normalized to RMC3.
RMC1 is smaller in terms of FCs and embedding tables,
RMC2 has many embedding tables (memory intensive),
and RMC3 has larger FCs (compute intensive). Note
that the number of FC parameters in the Top-FC layer
depends on not only the layer dimensions, but also the
input size which scales with the number of embedding
tables (Figure 3) and potentially large.

The number and size of embedding tables across
the three classes of recommendation models. For in-
stance, RMC2 can have up to an order of magnitude
more embedding tables compared to RMC1 and RMC3.
This is because RMC1 is a lightweight recommendation
model used in the initial filtering step and RMC3 is used
in applications with fewer sparse features. Furthermore,

5

Machines Haswell Broadwell Skylake
Frequency 2.5GHz 2.4GHz 2.0GHz

Cores per socket 12 14 20
Sockets 2 2 2
SIMD AVX-2 AVX-2 AVX-512

L1 Cache Size 32 KB 32 KB 32 KB
L2 Cache Size 256 KB 256 KB 1MB
L3 Cache Size 30 MB 35 MB 27.5MB

L2/L3 Inclusive
Inclusive Inclusive Exclusive

or Exclusive
DRAM Capacity 256 GB 256 GB 256GB

DDR Type DDR3 DDR4 DDR4
DDR Frequency 1600MHz 2400MHz 2666MHz
DDR Bandwidth

51 GB/s 77 GB/s 85 GB/s
per socket

Table 2: Description of machines present in data
centers and used to run recommendation models

while the output dimension of embedding tables is the
same across the recommendation models (between 24-
40), RMC3 has the largest embedding tables in terms
of the input dimensions. In aggregate, assuming 32-bit
floating point datatypes, the storage capacity of embed-
ding tables varies between 100MB, 10GB, and 1GB for
RMC1, RMC2, and RMC3. Thus, systems that run
any of the three at-scale recommendation model types,
require large, off-chip memory systems.

Embedding table lookups Embedding tables in
RMC1 and RMC2 have more lookups (i.e., more sparse
IDs) per input compared to RMC3. This is a result
of RMC1 and RMC2 being used in services with many
sparse features while RM3 is used in recommending so-
cial media posts, which has fewer sparse features. Thus,
RMC1 and RMC2 models perform more irregular mem-
ory accesses leading to higher cache miss rates on off-
the-shelf Intel server architectures found in the data
center.

MLP layers Bottom-FC layers for RMC3 are gener-
ally much wider than those of RMC1 and RMC2. This
is a result of using more dense features in ranking social
media posts (RMC3) compared to services powered by
RMC1 and RMC2. Thus, RMC3 is a more compute
intensive model than RMC1 and RMC2. Finally, it is im-
portant to note that width of FC layers is not necessarily
a power of 2, or cache-line aligned.

4. EXPERIMENTAL SETUP
Server Architectures: Generally, data centers are

composed of a heterogeneous set of server architectures
with differences in compute and storage capabilities.
Services are mapped to racks of servers to match their
compute and storage requirements. For instance, ML in-
ference in data centers is run on large dual-socket server-
class Intel Haswell, Broadwell, or Skylake CPUs [32].
These servers include large capacity DRAMs and sup-
port wide-SIMD instructions that are used for running
memory and compute intensive ML inference jobs.

Table 2 describes the key architecture features of the
Intel CPU server systems considered in this paper. Com-
pared to Skylake, Haswell and Broadwell servers have
higher operating frequencies. For consistency, turbo

Batch Size = 1

RMC1 RMC2 RMC3 RMC1 RMC2 RMC3

Figure 7: (Left) Inference latency of three at-
scale recommendation models (RMC1, RMC2,
RMC3) on an Intel Broadwell server, unit batch
size, varies by an order of magnitude. (Right)
Breakdown of time spent, unit batch size, in
each operator also varies significantly across the
three models.

boost is disabled for all experiments in this paper. On
the other hand, the Skylake architecture has support for
AVX-512 instructions, more parallel cores, and larger L2
caches. Furthermore, Haswell and Broadwell implement
an inclusive L2/L3 cache hierarchy, while Skylake imple-
ments a non-inclusive/exclusive cache-hierarchy [36,37].
(For the remainder of this paper we will refer to Skylake’s
L2/L3 cache hierarchy as exclusive). Sections 5 and 6
describe the tradeoff between the system and micro-
architecture designs, and their impact on inference la-
tency and throughput in the data center.

Synthetic recommendation models: To study
the performance characteristics of recommendation mod-
els, we consider a representative implementation of the
three model types RMC1, RMC2 and RMC3 shown
in Table 1. We analyze inference performance using a
benchmark [47] which accurately represents the execu-
tion flow of production-scale models (Section 7). The
benchmark is implemented in Caffe2 with Intel MKL as
a backend library. All experiments are run with a single
Caffe2 worker and Intel MKL thread.

Inputs and models must be processed in parallel to
maximize throughput (i.e., number of posts) processed
under strict SLA requirements. This is accomplished by
using non-unit batch-sizes and co-locating models on a
single system (see Section 5 and Section 6). All data
and model parameters are stored in fp32 format.

5. UNDERSTANDING INFERENCE
PERFORMANCE OF A SINGLE MODEL

In this section we analyze the performance of a sin-
gle production-scale recommendation model running on
server class Intel CPU systems.

Takeaway-message 1: Inference latency varies by
15× across production-scale recommendation models.

Figure 7 (left) shows the inference latency of the three
classes of production-scale models, with unit batch-size,
on an Intel Broadwell server. RMC1 and RMC2 have
a latency of 0.04ms and 0.30ms, respectively. This is a

6

consequence of the size of the embedding tables which
are an order of magnitude larger in RMC2. Compared to
RMC1 and RMC2, however, RMC3 has a much higher
latency of 0.60ms. This is because RMC3 has signifi-
cantly larger FC layers. Furthermore, we find significant
latency differences between small and large implemen-
tations of each type of recommendation model. For
instance, a large RMC1 has a 2× longer inference la-
tency as compared to a small RMC1 model, due to more
embedding tables and larger FC layers (Table 1).

Takeaway-message 2: While embedding tables set
memory requirements, no single operator determines the
runtime bottleneck across recommendation models.

Figure 7 (right) shows the breakdown of execution
time for the three classes of production-scale models
running on an Intel Broadwell server. The trends of
operator level breakdown across the three recommen-
dation models hold for different Intel server architec-
tures (across Haswell, Broadwell, Skylake). When run-
ning compute intensive recommendation models, such
as RMC3, over 96% of the time is spent in either the
BatchMatMul or FC operators. However, the Batch-
MatMul and FC operators comprise only 61% of the
run-time for RMC1. The remainder of the time is
consumed by running SparseLengthsSum (20%), which
corresponds to embedding table operations in Caffe2,
Concat (6.5%), and element-wise activation functions.
In contrast, for memory-intensive production-scale rec-
ommendation models, like RMC2, SparseLengthsSum
consumes 80% of the execution time of the model.

Thus, software and hardware acceleration of matrix
multiplication operations alone (e.g., BatchMatMul and
FC) will provide limited benefits on end-to-end perfor-
mance across all three recommendation models. Solu-
tions for optimizing the performance of recommendation
models must consider efficient execution of non-compute
intensive operations such as embedding table lookups.

Takeaway-message 3: Running production-scale
recommendation models on Intel Broadwell optimizes
single model inference latency.

Figure 8 compares the inference latency of running
the recommendation models on Intel Haswell, Broadwell,
and Skylake servers. We vary the input batch-size from
16, 128, to 256 for all three recommendation models
RMC1(top), RMC2(center), and RMC3(bottom). For
a small batch size of 16, inference latency is optimized
when the recommendation models are run on the Broad-
well architecture. For instance, compared to the Haswell
and Skylake architectures, Broadwell sees 1.4× and 1.5×
performance improvement for RMC1, 1.3× and 1.4×
performance improvement for RMC2, and 1.32× and
1.65× performance improvement on RMC3.

At low batch sizes, Broadwell outperforms Skylake
due a higher clock frequency. As shown in Table 2,
Broadwell has a 20% higher clock frequency compared
to Skylake. While Skylake has wider-SIMD support with
AVX-512 instructions, recommendation models with
smaller batch sizes (e.g., less than 16) are memory bound
and do not efficiently exploit the wider-SIMD instruc-
tion. For instance, we can measure the SIMD through-

Low Latency Recommendation

Low Latency
 Recommendation

RMC1

RMC2

RMC3

Figure 8: Inference latency of RMC1 (Top),
RMC2 (Center), and RMC3 (Bottom) with
batch sizes of 16, 128, and 256. While Broadwell
is optimal at low batch-sizes, Skylake has higher
performance with larger batch-sizes. This is a
result of Skylake’s wider-SIMD (AVX-512) sup-
port. The horizontal line threshold indicates
SLA requirements in low-latency recommenda-
tion systems (e.g., search [16,38]).

put by measuring the number of fp arith inst retired
(512b packed single) instructions using the Linux perf
utility. The SIMD throughput with a batch-size of 4
and 16 are 2.9× (74% of theoretical) and 14.5× (91%
of theoretical) higher, respectively, as compared that
with unit batch-size. As a result, for small batch-sizes
Broadwell outperforms Skylake, due to its higher clock
frequency and the inefficient use of AVX-512 in Skylake.

Broadwell machines outperform Haswell machines due
to a higher DRAM frequency. Haswell’s longer exe-
cution time is caused by its slower execution of the
SparseLengthsSum operator. Recall that the Sparse-
LengthSum operator is memory intensive. For instance,
the LLC miss rate of the SparseLengthsSum operator
itself is between 1-10 MPKI (see Figure 5) which corre-
sponds to a DRAM bandwidth utilization of ∼ 1GB/s.
As a result, the performance difference between Broad-
well and Haswell for the SparseLengthsSum operator
comes from differences in DRAM frequency/throughput.
Haswell includes a slower DRAM (DDR3 at 1600MHz)
as compared to Broadwell (DDR4 at 2400MHz).

Takeaway-message 4: While the Skylake has wider-
SIMD support, which should provide performance benefits
on batched and compute-intensive inference, its through-
put is sub-optimal due to irregular memory access pat-

7

terns from embedding table lookups.
Recall that in production data centers, recommenda-

tion queries for many users and posts must be ranked si-
multaneously. One solution to improving overall system
throughput is batching. As shown in Figure 8, Skylake
exhibits lower run-time with higher batch-sizes. As a
result, for use cases with strict latency constraints (i.e.,
around 10ms for search [16, 38]), Skylake can process
recommendation with higher batch-sizes.

This is consequence of the Skylake architecture’s abil-
ity to accelerate FC layers using wider-SIMD support
with AVX-512 instructions. However, exploiting the
benefits of AVX-512 requires much higher batch-sizes,
at least 128, for memory intensive production-scale rec-
ommendation models, such as RMC1 and RMC2. For
compute-intensive models, like RMC3, Skylake outper-
forms both Haswell and Broadwell starting at a batch-
size of 64. These benefits are sub-optimal given Skylake
(AVX-512) has a 2× and 4× wider SIMD width compared
to Broadwell (AVX-2) and Haswell (AVX-2), respectively.
For instance, Skylake runs the memory-intensive RMC1
model 1.3× faster than Broadwell. This is due to the
irregular memory access patterns from the embedding
table lookups. In fact, the SparseLengthsSum oper-
ator becomes the run-time bottleneck in RMC1 with
sufficiently high batch-sizes.

Takeaway-message 5: Designers must consider a
unique set of performance and resource requirements
when accelerating DNN-based recommendation models.

First, solutions must balance low-latency, for use
cases with stricter SLA (e.g., search [16,38]), and high-
throughout for web-scale services. Thus, even for infer-
ence, hardware solutions must consider batching. This
can affect whether performance bottlenecks come from
the memory-intensive embedding-table lookups or com-
pute intensive FC layers. Next, optimizing end-to-end
model performance of recommendation workloads re-
quires full-stack optimization given the diverse memory
capacity, compute intensity, and memory access pat-
tern characteristics seen in representative implements
(e.g., RMC1, RMC2, RMC3). For instance, a com-
bination of aggressive compression and novel memory
technologies [25] are needed to reduce the memory ca-
pacity requirements. Existing solutions of standalone
FC accelerators [14,15,29,38,49,61] will provide limited
performance, area, and energy benefits to recommen-
dation models. Finally, accelerator architectures must
balance flexibility with efficient resource utilization, in
terms of memory capacity, bandwidth, and FLOPs, to
support the diverse set data center use cases.

6. UNDERSTANDING EFFECTS OF
CO-LOCATING MODELS

In addition to batching multiple items into a single
inference, multiple RM inferences are simultaneously
run on the same server in order to service billions of
requests world-wide. This translates to higher resource
utilization. Co-locating multiple production-scale rec-
ommendation models on a single machine can however
significantly degrade inference serving latency, trading

N=1 N=2
 RMC1

N=4 N=8 N=1 N=2
 RMC2

N=4 N=8 N=1 N=2
 RMC3

N=4 N=8

Number of co-located inferences

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

n
cy

 n
o
rm

a
liz

e
d
 t

o
 s

in
g
le

 i
n
fe

re
n
ce

FC SparseLengthsSum Rest

Figure 9: Impact of co-locating production-scale
recommendation models on Broadwell. Increas-
ing the number of co-located models degrades
per-model latency. RMC2 latency is the most af-
fected by co-location as in FC and SparseLength-
sSum run-time degrade by 1.6× and 3×.

off single model latency with server throughput.
We analyze the impact of co-location on per-model

latency as well as overall throughput due to co-location.
We find that the effects of co-location on latency and
throughput depend on not only the type of production-
scale recommendation model but also the underlying
server architecture. For instance, processor architectures
with inclusive L2/L3 cache hierarchies (i.e., Haswell,
Broadwell) are particularly susceptible to performance
degradation and increased performance variability, com-
pared to processors with exclusive L2/L3 cache hierar-
chies (i.e., Skylake). This exposes opportunities for re-
quest scheduling optimization in the data center [12,43].

Takeaway-message 6 Per-model latency degrades
due to co-locating many production-scale recommenda-
tion models on a single machine. In particular, RMC2’s
latency degrades more than RMC1 and RMC3 due to a
higher degree of irregular memory accesses.

Figure 9 shows the model latency degradation as we
co-locate multiple instances of the RMC1, RMC2, and
RMC3 on a single machine with a batch-size of 32. To
highlight the relative degradation, latency is normalized
to that of running a single instance (N=1) of each rec-
ommendation model. Compared to RMC1 and RMC3,
we find that RMC2 suffers higher latency degradation.
For instance, co-locating 8 production-scale models, de-
grades latency by 1.3, 2.6, 1.6× for RMC1, RMC2, and
RMC3 respectively. At the data center scale, this in-
troduces opportunities for optimizing the number of
co-located models per machine in order to balance in-
ference latency with overall throughput — number of
items ranked under a strict latency constraint given by
the SLA requirements.

Figure 9 also shows that latency degradation from
co-location is caused by lower FC and SparseLength-
sSum performance. As seen in RMC1 and RMC2, the
fraction time spent running SparseLengthsSum increases
with higher degrees of co-location. RMC3 remains domi-
nated by FC layers. For instance, for RMC2, co-location

8

RMC2

Latency
optimal

4 co-located
models

Increasing
co-location

Figure 10: Latency/throughput tradeoff with
varying number of co-located RMC2 models.
Starting from no co-location, latency quickly de-
grades before plateauing. Broadwell performs
best under low co-location (latency). Skylake
is optimal under high co-location (throughput).
Skylake’s degradation around 18 co-located jobs
is due to a sudden increase in LLC miss rate.

increases time spent on FC and SparseLengthsSum in-
creases by 1.6× and 3×, respectively. While the time
spent on remaining operators, accumulated as ”Rest”,
also increases by a factor of 1.6×, the impact on the
overall run-time is marginal. Similarly, for RMC1 the
fraction of time spent running SparseLengthsSum in-
creases from 15% to 35% when running 1 job to 8 jobs.

The greater impact of co-location on SparseLength-
sSum is due to the higher degree of irregular memory
accesses which, compared to FC, exhibits less cache
reuse. For instance, by increasing the number of RMC2
co-located models from 1 to 8, the per. model LLC-
MPKI miss rate increases from 0.06 to 0.8. Thus, while
co-location improves overall throughput of high-end
server architecture, it can impact performance bottle-
necks when running production-scale recommendation
model leading to lower resource utilization.

Takeaway-message 7 Processor architectures with
inclusive L2/L3 cache hierarchies (i.e., Haswell, Broad-
well) are more susceptible to per-model latency degrada-
tion as compared to ones with exclusive cache hierarchies
(i.e., Skylake) due to a high degree of irregular memory
accesses in production recommendation models.

Figure 10 shows the impact of co-locating a production-
scale recommendation model on both latency and through-
put across the Intel Haswell, Broadwell, and Skylake
architectures. While the results shown are for RMC2, the
takeaways hold for RMC1 and RMC3 as well. Through-
put is measured by the number of inferences per second
and bounded by a strict latency constraint, set by the
SLA requirement, of 450ms.

No co-location: Recall that in the case of running a
single inference per machine, differences in model latency
across servers is determined by operating frequency, sup-
port for wide-SIMD instructions, and DRAM frequency
(see Section 5 for details). Similarly, with few co-located
inference (i.e., N = 2), Broadwell has a 10% higher
throughput and lower latency compared to Skylake.

Co-locating models: Increasing the co-location de-
gree, Skylake outperforms both Haswell and Broadwell

in terms of latency and throughput. Co-locating infer-
ences on a single machine stresses the shared memory
system causing latency degradation. This is particularly
true for co-locating production-scale recommendation
models that exhibit a high degree of irregular memory
accesses. In contrast, traditional DNNs exhibit higher
L1/L2 cache reuse. Under strict latency bounds (e.g.,
3ms), Skylake provides the highest throughput by accom-
modating multiple, co-located recommendation models
on a single machine.

Skylake’s higher performance with high co-location
is a result of implementing an exclusive L2/L3 cache
hierarchy as opposed to an inclusive one. Inclusive
caches suffer from a higher L2 cache miss-rate, due to
the irregular memory access patterns in recommendation
models. For instance, Broadwell’s L2 miss rate increases
by 29% when running 16 co-located inferences (22 MPKI)
compared to a single inference. Skylake has not only a
lower L2 miss rate (13 MPKI for single inference), but
also a smaller L2 miss rate increase (10%). This is not
only caused by a smaller L2 cache size in Broadwell,
but also a higher degree of cache back-invalidation due
to an inclusive L2/L3 cache hierarchy. For instance,
Broadwell sees a 21% increase in L2 read-for-ownership
miss rate, compared to only 9% on Skylake. Finally,
with a high number of co-located inferences (over 18),
Skylake suffers from a sudden latency drop caused by a
6% increase in LLC miss rate.

Simultaneous multithreading/hyperthreading
Prior work has shown that simultaneous multithread-
ing/hyperthreading in modern processors generally im-
proves system throughput [51,52]. However, multithread-
ing/hyperthreading degrades p99 latency for recommen-
dation models, especially compute-intensive ones (i.e.,
RMC3). Results in Figure 10 are without hyperthread-
ing — one model per physical core. Enabling hyper-
threading causes FC and SparseLengthsSum run-times
to degrade by 1.6× and 1.3×, respectively. The FC
operator suffers more performance degradation as it ex-
ploits hardware for wide-SIMD instructions (i.e., AVX-2,
AVX-512) that are time-shared across threads on the
physical core. As a result, latency degradation due to
hyperthreading is more pronounced in compute-intensive
recommendation models (i.e., RMC3).

6.1 Recommendation Inference in Production
The experiments thus far study average latency and

throughput across production-scale recommendation mod-
els, system architectures, and run-time configurations
(e.g., batch-size, number of co-located models). How-
ever, data center execution must also consider tail per-
formance [23, 40]. Here, we study the impact of co-
location on average and tail latency of individual op-
erators. Production-scale data shows that Broadwell
sees a larger performance degradation due to co-location
compared to Skylake.

Furthermore, inference for recommendation models
running in the data center suffer from high performance
variability. While we do not see performance variability
in stand-alone recommendation models (Section 5 and

9

Low co-location

Medium co-location

High co-location

FC fits in SKL L2 cache and BDW LLC

(a) FC in production-environment.

Lo
w

M
ed

iu
m

Hi
gh

FC fits in SKL L2 cache and BDW LLC

p5

p99

Mean

p99 degrades

(b) Same FC under co-location

Lo
w

M
ed

iu
m

Hi
gh

FC fits in SKL LLC and BDW LLC

p5

p99

Mean

p99 degrades

(c) Larger FC under co-location

Figure 11: (a) Performance distribution of FC operator that fits in Skylake L2 cache and Broadwell
LLC. The three highlighted modes correspond to Broadwell with low, medium, and high co-location.
(b) Mean latency of the same FC operator (solid line) increases with more co-location. Gap between
p5 and p99 latency (shaded region) increases drastically on Broadwell with high co-location and
more gradually on Skylake. (c) Larger FC operator highlights the difference in Broadwell’s drastic
p99 latency degradation compared to Skylake’s gradual degradation. Differences between Broadwell
and Skylake under high co-location are due to L2/L3 cache sizes and inclusive/exclusive hierarchies.

Section 6), we find pronounced performance variability
for recommendation-models co-located in the production
environment. In fact, p99 latency degrades faster, as
the number of co-located inferences increases, on Broad-
well machines (inclusive L2/L3 caches) as compared to
Skylake. This exposes opportunities for optimizing data
center level scheduling decisions to trade off latency and
throughput, with performance variability.

Takeaway-message 8 While co-locating production
scale recommendation models with irregular memory ac-
cesses increases the overall throughput, it introduces sig-
nificant performance variability.

As an example of performance variability in recom-
mendation systems in production environments, Figure
11a shows the distribution of a single FC (input and
output dim of 512) operator found in all three types
of recommendation models (i.e., RMC1, RMC2, and
RMC3). The production environment has a number
of differences compared to co-locating inferences using
the synthetic model implementation, including a job
scheduler that implements a thread pool with separate
queuing model. Despite fixed input and output dimen-
sions, performance varies significantly across Broadwell
and Skylake architectures. In particular, Skylake sees a
single mode (45µs) whereas, Broadwell follows a multi-
modal distribution (40µs, 58µs, and 75µs) — a result
of co-locating inferences.

Figure 11b shows the impact on latency for the same
FC operator under varying degrees of co-located in-
ferences on Broadwell and Skylake in the production
data-center environment. All inferences co-locate the
FC operator with RMC1 inferences. Inferences are first
co-located to separate physical cores (i.e., 24 for Broad-
well, 40 for Skylake) and exploit then hyper-threading.
The solid lines illustrate the average operator latency on
Broadwell (red) and Skylake (blue), while the shaded re-
gions represent the p5 (bottom) and p99 (top) latencies.

Three key observations are made here. First, average
latency increases with more co-location. On Broadwell
the average latency of the FC operator can be catego-

rized into three regions: 40µs (no co-location), 60µs
(5-15 co-located jobs), and 100µs (over 20 co-located
jobs). This roughly corresponds to the modes seen in Fig-
ure 11a. Second, the p99 latency increases significantly
with high co-location (over 20 jobs) on Broadwell. Thus,
increasing average throughput with co-location sacrifices
predictably meeting SLA requirements. Third, the aver-
age and p99 latency increases more gradually on Skylake.
This is a result of an exclusive L2/L3 cache-hierarchy in
Skylake — the impact of co-locating recommendation
models with irregular memory accesses is less on the
shared memory system.

Figure 11c runs the same experiments for a much
larger FC operator to highlight the key observations: (1)
three regions (no-location, 10-15 co-located jobs, more
than 20 co-located jobs) of operator latency on Broad-
well, (2) large increase in p99 latency under high co-
location, and (3) gradual latency degradation on Skylake.
Broadwell suffers from higher performance variability
as compared to Skylake. This exposes opportunities for
scheduling optimizations to balance latency, throughput,
and performance variability.

7. OPEN-SOURCE BENCHMARK
Publicly available DNN based recommendation bench-

marks, i.e., neural-collaborative filtering (MLPerf-NCF [5,
34]), are not representative of the ones used in the data
center. For instance, compared to production-scale
recommendation workloads, the NCF workload from
MLPerf [5] has orders of magnitude smaller embedding
tables and fewer FC parameters (Figure 12). Conse-
quently, FC comprises over 90% of the execution time in
NCF, in contrast SparseLengthSum comprises around
80% of the cycles in RMC1 (with batching) and RMC2.
This section describes an open-source benchmark that
represents data center scale implementations of Face-
book’s DNN-based recommendation models [47]. The
goal is to close the gap between currently available and
realistic production-scale benchmarks.

10

Figure 12: At-scale recommendation models
(RMC1, RMC2, RMC3) have orders of magni-
tude longer inference latency, larger embedding
tables, and FC layers compared to MLPerf-NCF.
All parameters are normalized to MLPerf-NCF.

7.1 Configuring the open-source benchmark
The open-source benchmark [46,47] was designed with

the flexibility to not only study the production scale
models seen in this paper (i.e., RMC1, RMC2, RMC3),
but also a wider set of realistic recommendation mod-
els (e.g., personalized ranking of video content [22]).
To facilitate ease of use and maximize flexibility, the
open-source benchmark provides a suite of tunable pa-
rameters to define an end-to-end recommendation sys-
tem, as shown in Figure 13. The set of configurable
parameters include: (1) the number of embedding ta-
bles, (2) input and output dimensions of embedding
tables, (3) number of sparse lookups per embedding ta-
ble, (4) depth/width of MLP layers for dense features
(Bottom-MLP), and (5) depth/width of MLP layers after
combining dense and sparse features (Top-MLP). These
parameters can be configured to implement recommen-
dation models dominated by dense feature processing
(i.e., RMC1, RMC3) and sparse feature processing (i.e.,
RMC1, RMC2). Table 3 summarizes the key micro-
architectural performance bottlenecks for the different
classes of recommendation models studied in this paper.

Example configurations: As an example, let’s con-
sider an RMC1 model (Table 1). In this model the
number of embedding tables can be set to 5, with input
and output dimensions of 105 and 32, the number of
sparse lookups to 80, depth and width of BottomFC
layers to 3 and 128-64-32, and the depth and width of
TopFC layers to 3 and 128-32-1.

Using the open-source benchmark The open-
source DLRM benchmark is used to study recommen-
dation models in this paper. By varying the batch, FC,
and embedding table configurations, it can also be used
to study other recommendation models. More generally,
it can been used to analyze scheduling decisions, such
as running recommendation models across many nodes
(distributed inference) or threads.

Finally, the open-source benchmark can be used to
design memory systems, intelligent pre-fetching/caching
techniques, and emerging memory technologies. For
instance, while the memory access patterns of recom-
mendation models are irregular compared to well-studied
CNNs, the memory accesses are highly dependent on
inputs and not completely random. Figure 14 illustrates
the fraction of unique sparse IDs used to index embed-

Bottom FC

D
ep

th Embedding
TableC

ol
s Embedding

Table

Number
of Tables

Sparse Inputs
Number of IDs

Sparse InputsDense Inputs

Top FC

Width

D
ep

th

Width Rows

Input Datasets
(e.g., synthetically generated, publicly available)

Batch Size

Figure 13: Overall architecture of the open-
source recommendation model system. All con-
figurable parameters are outlined in blue.

ding tables over a variety of production recommendation
use cases. Intuitively, the degree of unique IDs varies
based on user behavior (inputs). Use cases with fewer
unique IDs enable opportunities for embedding vector
re-use and intelligent caching. To study the implications
of this locality on memory systems, the recommenda-
tion model implementation can be instrumented with
open-source data sets [3, 6] as well as a provided load
generator [47].

8. RELATED WORK
While the systems and computer architecture com-

munity has devoted significant efforts to performance
analysis and optimization for DNNs, relatively little fo-
cus has been devoted to personalized recommendation
systems. This section first reviews DNN-based solutions
for personalized recommendation. This is followed by
a discussion on state-of-the-art performance analysis
and optimizations for DNNs with context on how the
proposed techniques relate to recommendation systems.

DNN-based personalized recommendation Com-
pared to image-classification [33], object detection [50],
and speech recognition [10,11,31] which process dense
features, inputs to personalized recommendation are a
mix of both dense and sparse features. NCF [34] uses a
combination of embedding table, FC layers, and ReLU
non-linearities using the open-source MovieLens-20m
dataset [6]. Dense and sparse features are combined us-
ing a series of matrix-factorization and FC layers. In [22],
the authors discuss applying this model architecture to
Youtube video recommendation. A similar model ar-
chitecture is applied to predict click-through-rates [54].
More generally, [16] explores the the accuracy trade-
off of wide (few FC layers and embedding tables) and
deep (many FC layers and embedding tables) for serving
recommendation in the Google Play Store mobile ap-
plication. The authors find that accuracy is optimized
using a combination of wide and deep neural networks,
similar to the production-scale recommendation mod-
els considered in this paper. While on-going research

11

Dense features Sparse features
Model(s) RMC1 & RMC3 RMC1 & RMC2
Operators MLP dominated Embedding dominated

µarch bottleneck

Core frequency Core frequency
Core count Core count

DRAM capacity DRAM capacity
SIMD performance DRAM freq. & BW

Cache size Cache contention

Table 3: Summary of recommendation models
and key micro-architectural features that impact
at-scale performance.

explores using CNNs and RNNs in recommendation sys-
tems [59], for the purposes of this paper we focus on
production-scale recommendation models (Figure 3).

DNN performance analysis and optimization
Current publicly available benchmarks [4, 9, 20, 62] for
DNNs focus on models with FC, CNN, and RNN layers
only. In combination with open-source implementations
of state-of-the-art networks in high-level deep learning
frameworks [2,7, 8], the benchmarks have enabled thor-
ough performance analysis and optimization. However,
the resulting software and hardware solutions [14,15,29,
38,49,61] do not apply to production-scale recommen-
dation workloads.

Recommendation workloads pose unique challenges
in terms of memory capacity, irregular memory ac-
cesses, diversity in compute intensive and memory in-
tensive models, and high-throughput and low-latency
optimization targets. Furthermore, available implemen-
tations of DNN-based recommendation systems (i.e,
MLPerf NCF [5]) are not representative of production-
scale ones. To alleviate memory capacity and band-
width constraints, Eisenman et al. propose storing
recommendation-models in non-volatile-memories with
DRAM to cache embedding-table queries [25]. Re-
cent work has also proposed solutions based on near-
memory processing to accelerate embedding table op-
erations [41,42]. The detailed performance analysis in
this paper will enable future work to consider a broader
set of solutions to optimize end-to-end personalized rec-
ommendation systems currently running in data centers
and motivate additional optimization techniques that
address challenges specifically for mobile [55].

9. CONCLUSION
This paper provides a detailed performance analy-

sis of recommendation models on server-scale systems
present in the data center. The analysis demonstrates
that DNNs for recommendation pose unique challenges
to efficient execution as compared to traditional CNNs
and RNNs. In particular, recommendation systems re-
quire much larger storage capacity, produce irregular
memory accesses, and consist of a diverse set of operator-
level performance bottlenecks. The analysis also shows
that based on the performance target (i.e., latency ver-
sus throughput) and the recommendation model being
run, the optimal platform and run-time configuration
varies. Furthermore, micro-architectural platform fea-

random 1 2 3 4 5 6 7 8 9 10

Production traces

0

20

40

60

80

100

U
n
iq

u
e
 s

p
a
rs

e
 I
D

s
(%

)

Figure 14: Percent of unique sparse IDs (e.g.,
embedding table lookups) varies across recom-
mendation use cases and production traces. This
enables opportunities for intelligent cache and
prefetching optimizations. The open-source im-
plementation provides embedding trace gener-
ators in order to instrument recommendation
models to study memory system optimizations.

tures, such as processor frequency and core count, SIMD
width and utilization, cache capacity, inclusive versus
exclusive cache hierarchies, and DRAM configurations,
expose scheduling optimization opportunities for running
recommendation model inference in the data center.

For the servers considered in this paper, Broadwell
achieves up to 40% lower latency while Skylake achieves
30% higher throughput. This paper also studies the
effect of co-locating inference jobs, as mechanisms to
improve resource utilization, on performance variability.
The detailed performance analysis of production-scale
recommendation models lay the foundation for future
full-stack hardware solutions targeting personalized rec-
ommendation.

12

10. REFERENCES

[1] “Breakthroughs in matching and recommendation
algorithms by alibaba.” [Online]. Available: https:
//www.alibabacloud.com/blog/breakthroughs-in-matching-
and-recommendation-algorithms-by-alibaba 593976

[2] “Caffe2.” [Online]. Available: https://caffe2.ai///

[3] “Crieto dataset.” [Online]. Available:
https://labs.criteo.com/2014/02/download-dataset/

[4] “Deep bench.” [Online]. Available: https://deepbench.io///

[5] “Mlperf.” [Online]. Available: https://mlperf.org/

[6] “Movielens 20m dataset.” [Online]. Available:
https://grouplens.org/datasets/movielens/20m/

[7] “Pytorch.” [Online]. Available: https://pytorch.org//

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al.,
“Tensorflow: A system for large-scale machine learning,” in
Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016, pp.
265–283.

[9] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks,
“Fathom: Reference workloads for modern deep learning
methods,” in Proceedings of the IEEE International
Symposium on Workload Characterization (IISWC). IEEE,
2016, pp. 1–10.

[10] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai,
E. Battenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng,
G. Chen et al., “Deep speech 2: End-to-end speech
recognition in english and mandarin,” in Proceedings of the
International conference on machine learning, 2016, pp.
173–182.

[11] E. Battenberg, J. Chen, R. Child, A. Coates, Y. G. Y. Li,
H. Liu, S. Satheesh, A. Sriram, and Z. Zhu, “Exploring
neural transducers for end-to-end speech recognition,” in
Proceedings of the IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU). IEEE, 2017, pp.
206–213.

[12] N. Beckmann and D. Sanchez, “Jigsaw: Scalable
software-defined caches,” in Proceedings of the 22nd
international conference on Parallel architectures and
compilation techniques. IEEE, 2013, pp. 213–224.

[13] T. Bredillet, “Lessons learned at instagram stories and feed
machine learning.” [Online]. Available:
https://instagram-engineering.com/lessons-learned-at-
instagram-stories-and-feed-machine-learning-54f3aaa09e56

[14] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss:
An energy-efficient reconfigurable accelerator for deep
convolutional neural networks,” IEEE Journal of Solid-State
Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun et al., “Dadiannao: A
machine-learning supercomputer,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2014, pp.
609–622.

[16] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra,
H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir
et al., “Wide & deep learning for recommender systems,” in
Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems. ACM, 2016, pp. 7–10.

[17] M. Chui, J. Manyika, M. Miremadi, N. Henke, R. Chung,
P. Nel, and S. Malhotra, “Notes from the AI frontier insights
from hundreds of use cases,” 2018.

[18] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengill, M. Liu, D. Lo, S. Alkalay,
M. Haselman et al., “Serving dnns in real time at datacenter
scale with project brainwave,” IEEE Micro, vol. 38, no. 2,
pp. 8–20, 2018.

[19] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” arXiv preprint arXiv:1412.3555, 2014.

[20] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang,
L. Nardi, P. Bailis, K. Olukotun, C. Ré, and M. Zaharia,
“Dawnbench: An end-to-end deep learning benchmark and
competition.”

[21] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1
or-1,” arXiv preprint arXiv:1602.02830, 2016.

[22] P. Covington, J. Adams, and E. Sargin, “Deep neural
networks for youtube recommendations,” in Proceedings of
the 10th ACM conference on recommender systems. ACM,
2016, pp. 191–198.

[23] J. Dean and L. A. Barroso, “The tail at scale,”
Communications of the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[24] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt,
“Coordinated control of multiple prefetchers in multi-core
systems,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO
42, 2009, pp. 316–326.

[25] A. Eisenman, M. Naumov, D. Gardner, M. Smelyanskiy,
S. Pupyrev, K. Hazelwood, A. Cidon, and S. Katti,
“Bandana: Using non-volatile memory for storing deep
learning models,” arXiv preprint arXiv:1811.05922, 2018.

[26] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender
system: Algorithms, business value, and innovation,” ACM
Trans. Manage. Inf. Syst., vol. 6, no. 4, pp. 13:1–13:19, Dec.
2015. [Online]. Available:
http://doi.acm.org/10.1145/2843948

[27] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He,
“Accurate, large minibatch sgd: Training imagenet in 1 hour,”
arXiv preprint arXiv:1706.02677, 2017.

[28] S. Gupta, A. Agrawal, K. Gopalakrishnan, and
P. Narayanan, “Deep learning with limited numerical
precision,” in Proceedings of the International Conference on
Machine Learning, 2015, pp. 1737–1746.

[29] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “Eie: efficient inference engine on
compressed deep neural network,” in Proceedings of the
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2016, pp. 243–254.

[30] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[31] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates
et al., “Deep speech: Scaling up end-to-end speech
recognition,” arXiv preprint arXiv:1412.5567, 2014.

[32] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro et al.,
“Applied machine learning at Facebook: a datacenter
infrastructure perspective,” in Proceedings of the IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 620–629.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[34] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua,
“Neural collaborative filtering,” in Proceedings of the 26th
International Conference on World Wide Web.
International World Wide Web Conferences Steering
Committee, 2017, pp. 173–182.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets:
Efficient convolutional neural networks for mobile vision
applications,” arXiv preprint arXiv:1704.04861, 2017.

[36] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr, and
J. Emer, “Achieving non-inclusive cache performance with
inclusive caches: Temporal locality aware (tla) cache
management policies,” in Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture.

13

https://www.alibabacloud.com/blog/breakthroughs-in-matching-and-recommendation-algorithms-by-alibaba_593976
https://www.alibabacloud.com/blog/breakthroughs-in-matching-and-recommendation-algorithms-by-alibaba_593976
https://www.alibabacloud.com/blog/breakthroughs-in-matching-and-recommendation-algorithms-by-alibaba_593976
https://caffe2.ai///
https://labs.criteo.com/2014/02/download-dataset/
https://deepbench.io///
https://mlperf.org/
https://grouplens.org/datasets/movielens/20m/
https://pytorch.org//
https://instagram-engineering.com/lessons-learned-at-instagram-stories-and-feed-machine-learning-54f3aaa09e56
https://instagram-engineering.com/lessons-learned-at-instagram-stories-and-feed-machine-learning-54f3aaa09e56
http://doi.acm.org/10.1145/2843948

IEEE Computer Society, 2010, pp. 151–162.

[37] A. Jaleel, J. Nuzman, A. Moga, S. C. Steely, and J. Emer,
“High performing cache hierarchies for server workloads:
Relaxing inclusion to capture the latency benefits of
exclusive caches,” in Proceedings of the IEEE 21st
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2015, pp. 343–353.

[38] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al.,
“In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1–12.

[39] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial deep neural network
computing,” in Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–12.

[40] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a
warehouse-scale computer,” in Proceedings of the ACM
SIGARCH Computer Architecture News, vol. 43, no. 3.
ACM, 2015, pp. 158–169.

[41] L. Ke, U. Gupta, C.-J. Wu, B. Y. Cho, M. Hempstead,
B. Reagen, X. Zhang, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li,
B. Maher, D. Mudigere, M. Naumov, M. Schatz,
M. Smelyanskiy, and X. Wang, “Recnmp: Accelerating
personalized recommendation with near-memory processing,”
2019.

[42] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical
near-memory processing architecture for embeddings and
tensor operations in deep learning,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2019, pp. 740–753.

[43] J. Mars and L. Tang, “Whare-map: Heterogeneity in
homogeneous warehouse-scale computers,” in Proceedings of
the ACM SIGARCH Computer Architecture News, vol. 41,
no. 3. ACM, 2013, pp. 619–630.

[44] P. Mattson, C. Cheng, C. Coleman, G. Diamos,
P. Micikevicius, D. Patterson, H. Tang, G.-Y. Wei, P. Bailis,
V. Bittorf, D. Brooks, D. Chen, D. Dutta, U. Gupta,
K. Hazelwood, A. Hock, X. Huang, B. Jia, D. Kang,
D. Kanter, N. Kumar, J. Liao, D. Narayanan, T. Oguntebi,
G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S.
John, C.-J. Wu, L. Xu, C. Young, and M. Zaharia, “Mlperf
training benchmark,” arXiv preprint arXiv:1910.01500,
2019.

[45] M. Naumov, “On the dimensionality of embeddings for
sparse features and data,” arXiv preprint arXiv:1901.02103,
2019.

[46] M. Naumov and D. Mudigere, “Deep learning
recommendation model for personalization and
recommendation systems,” 2019. [Online]. Available:
https://ai.facebook.com/blog/dlrm-an-advanced-open-
source-deep-learning-recommendation-model/

[47] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang,
N. Sundaraman, J. Park, X. Wang, U. Gupta, C.-J. Wu,
A. G. Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii,
Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko, X. Chen,
V. Rao, B. Jia, L. Xiong, and M. Smelyanskiy, “Deep
learning recommendation model for personalization and
recommendation systems,” arXiv preprint arXiv:1906.00091,
2019. [Online]. Available: https://arxiv.org/abs/1906.00091

[48] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah,
D. Khudia, J. Law, P. Malani, A. Malevich, S. Nadathur
et al., “Deep learning inference in Facebook data centers:
Characterization, performance optimizations and hardware
implications,” arXiv preprint arXiv:1811.09886, 2018.

[49] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.
Lee, J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks,
“Minerva: Enabling low-power, highly-accurate deep neural
network accelerators,” in Proceedings of the ACM/IEEE
43rd Annual International Symposium on Computer

Architecture (ISCA). IEEE, 2016, pp. 267–278.

[50] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 779–788.

[51] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm, “Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithreading
processor,” ACM SIGARCH Computer Architecture News,
vol. 24, no. 2, pp. 191–202, 1996.

[52] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
multithreading: Maximizing on-chip parallelism,” in
Proceedings of the ACM SIGARCH Computer Architecture
News, vol. 23, no. 2. ACM, 1995, pp. 392–403.

[53] C. Underwood, “Use cases of recommendation systems in
business – current applications and methods,” 2019. [Online].
Available: https://emerj.com/ai-sector-overviews/use-
cases-recommendation-systems/

[54] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross
network for ad click predictions,” in Proceedings of the
ADKDD’17. ACM, 2017, p. 12.

[55] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury,
M. Dukhan, K. Hazelwood, E. Isaac, Y. Jia, B. Jia,
T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen, J. Spisak,
F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang, B. Wasti,
Y. Wu, R. Xian, S. Yoo, and P. Zhang, “Machine learning at
Facebook: Understanding inference at the edge,” in
Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), Feb 2019, pp.
331–344.

[56] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, Jr., and
J. Emer, “Pacman: Prefetch-aware cache management for
high performance caching,” in Proceedings of the 44th
Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-44, 2011.

[57] C.-J. Wu and M. Martonosi, “Characterization and dynamic
mitigation of intra-application cache interference,” in
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, ser. ISPASS
’11, 2011.

[58] X. Xie, J. Lian, Z. Liu, X. Wang, F. Wu, H. Wang, and
Z. Chen, “Personalized recommendation systems: Five hot
research topics you must know,” 2018. [Online]. Available:
https://www.microsoft.com/en-us/research/lab/microsoft-
research-asia/articles/personalized-recommendation-
systems/

[59] L. Yang, E. Bagdasaryan, J. Gruenstein, C.-K. Hsieh, and
D. Estrin, “Openrec: A modular framework for extensible
and adaptable recommendation algorithms,” in Proceedings
of the 11th ACM International Conference on Web Search
and Data Mining. ACM, 2018, pp. 664–672.

[60] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer,
“Imagenet training in minutes,” in Proceedings of the 47th
International Conference on Parallel Processing. ACM,
2018, p. 1.

[61] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-x: An accelerator for
sparse neural networks,” in Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct 2016, pp. 1–12.

[62] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan,
A. Phanishayee, B. Schroeder, and G. Pekhimenko,
“Benchmarking and analyzing deep neural network training,”
in Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 2018, pp.
88–100.

14

https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/
https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/
https://arxiv.org/abs/1906.00091
https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/
https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/personalized-recommendation-systems/
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/personalized-recommendation-systems/
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/personalized-recommendation-systems/

	Introduction
	Background
	Recommendation Task
	Recommendation Models
	Embedding Tables

	At-scale Personalization
	Production Recommendation Pipeline
	Diversity of Recommendation Models

	Experimental Setup
	Understanding Inference Performance of a Single Model
	Understanding Effects of Co-locating Models
	Recommendation Inference in Production

	Open-Source Benchmark
	Configuring the open-source benchmark

	Related Work
	Conclusion
	References

