
Applied Machine Learning at Facebook:
A Datacenter Infrastructure Perspective

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov,
Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin Lee, Jason Lu,

Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, Xiaodong Wang

Facebook, Inc.

Abstract—Machine learning sits at the core of many essential
products and services at Facebook. This paper describes the
hardware and software infrastructure that supports machine
learning at global scale. Facebook’s machine learning workloads
are extremely diverse: services require many different types of
models in practice. This diversity has implications at all layers in
the system stack. In addition, a sizable fraction of all data stored
at Facebook flows through machine learning pipelines, presenting
significant challenges in delivering data to high-performance
distributed training flows. Computational requirements are also
intense, leveraging both GPU and CPU platforms for training and
abundant CPU capacity for real-time inference. Addressing these
and other emerging challenges continues to require diverse efforts
that span machine learning algorithms, software, and hardware
design.

I. INTRODUCTION

Facebook’s mission is to “Give people the power to build
community and bring the world closer together.” In support
of that mission, Facebook connects more than two billion
people as of December 2017. Meanwhile, the past several
years have seen a revolution in the application of machine
learning to real problems at this scale, building upon the
virtuous cycle of machine learning algorithmic innovations,
enormous amounts of training data for models, and advances
in high-performance computer architectures [1]. At Facebook,
machine learning provides key capabilities in driving nearly
all aspects of user experience including services like ranking
posts for News Feed, speech and text translations, and photo
and real-time video classification [2], [3].

Facebook leverages a wide variety of machine learning al-
gorithms in these services including support vector machines,
gradient boosted decision trees, and many styles of neu-
ral networks. This paper describes several important aspects
of datacenter infrastructure that supports machine learning
at Facebook. The infrastructure includes internal “ML-as-a-
Service” flows, open-source machine learning frameworks,
and distributed training algorithms. From a hardware point
of view, Facebook leverages a large fleet of CPU and GPU
platforms for training models in order to support the necessary
training frequencies at the required service latency. For ma-
chine learning inference, Facebook primarily relies on CPUs
for all major services with neural network ranking services
like News Feed dominating the total compute load.

Facebook funnels a large fraction of all stored data through
machine learning pipelines, and this fraction is increasing over
time to improve model quality. The massive amount of data
required by machine learning services presents challenges at
the global scale of Facebook’s datacenters. Several techniques
are used to efficiently feed data to the models including de-
coupling of data feed and training, data/compute co-location,
and networking optimizations. At the same time, Facebook’s
scale provides unique opportunities. Diurnal load cycles leave
a significant number of CPUs available for distributed training
algorithms during off-peak periods. With Facebook’s compute
fleet spread over ten datacenter locations, scale also provides
disaster recovery capability. Disaster recovery planning is
essential as timely delivery of new machine learning models
is important to Facebook’s operations.

Looking forward, Facebook expects rapid growth in ma-
chine learning across existing and new services [4]. This
growth will lead to growing scalability challenges for teams
deploying the infrastructure for these services. While signifi-
cant opportunities exist to optimize infrastructure on existing
platforms, we continue to actively evaluate and prototype
new hardware solutions while remaining cognizant of game-
changing algorithmic innovations.

The key contributions of this paper include the following
major insights about machine learning at Facebook:

• Machine learning is applied pervasively across nearly all
services, and computer vision represents only a small
fraction of the resource requirements.

• Facebook relies upon an incredibly diverse set of ma-
chine learning approaches including, but not limited to,
neural networks.

• Tremendous amounts of data are funneled through our
machine learning pipelines, and this creates engineering
and efficiency challenges far beyond the compute nodes.

• Facebook currently relies heavily on CPUs for inference,
and both CPUs and GPUs for training, but constantly
prototypes and evaluates new hardware solutions from a
performance-per-watt perspective.

• The worldwide scale of people on Facebook and corre-
sponding diurnal activity patterns result in a huge number
of machines that can be harnessed for machine learning
tasks such as distributed training at scale.



Fig. 1. Example of Facebook’s Machine Learning Flow and Infrastructure.

II. MACHINE LEARNING AT FACEBOOK

Machine Learning, or ML, refers to any instance where a
product leverages a series of inputs to build a tuned model, and
leverages that model to create a representation, a prediction,
or other forms of useful signals.

Figure 1 illustrates this process which consists of the
following steps, executed in turn:

1) A training phase to build the model. This phase is
generally performed offline.

2) An inference phase to run the trained model in pro-
duction and make a (set of) real-time predictions. This
phase is performed online.

Training the models is done much less frequently than
inference – the time scale varies, but it is generally on the
order of days. Training also takes a relatively long time to
complete – typically hours or days. Meanwhile, depending on
the product, the online inference phase may be run tens-of-
trillions of times per day, and generally needs to be performed
in real time. In some cases, particularly for recommendation
systems, additional training is also performed online in a
continuous manner [5].

One salient feature of machine learning at Facebook is the
impact of the massive amounts of data that is potentially
available to train the models. The scale of this data has many
implications that span the entire infrastructure stack.

A. Major Services Leveraging Machine Learning

Most major Facebook products and services leverage ma-
chine learning. We discuss these services from a resource
standpoint later in this document, but by way of introduction,
we provide a bird’s eye view of how several of the major
services leverage machine learning.

• News Feed ranking algorithms help people see the stories
that matter most to them first, every time they visit Face-
book. General models are trained to determine various
user and environmental factors that should ultimately
determine the rank order of content. Later, when a
person visits Facebook, the model is used to generate
a personalized set of the best posts, images, and other

content to display from thousands of candidates, as well
as the best ordering of the chosen content.

• Ads leverages ML to determine which ads to display to
a given user. Ads models are trained to learn how user
traits, user context, previous interactions, and advertise-
ment attributes can be most predictive of the likelihood of
clicking on an ad, visiting a website, and/or purchasing
a product [5]. Later, when a user visits Facebook, inputs
are run through a trained model to immediately determine
which ads to display.

• Search launches a series of distinct and specialized sub-
searches to the various verticals, e.g., videos, photos,
people, events, etc. A classifier layer is run atop the
various search verticals to predict which of the many
verticals to search, as searching all possible verticals
would be inefficient. Both the classifier itself and various
search verticals consist of an offline stage to train the
models, and an online stage to run the models and
perform the classification and search.

• Sigma is the general classification and anomaly detection
framework that is used for a variety of internal applica-
tions including site integrity, spam detection, payments,
registration, unauthorized employee access, and event
recommendations. Sigma includes hundreds of distinct
models running in production everyday, and each model
is trained to detect anomalies or more generally classify
content.

• Lumos extracts high-level attributes and embeddings
from an image and its content, enabling algorithms to
automatically understand it. That data can be used as
input to other products and services, for example as
though it were text.

• Facer is Facebook’s face detection and recognition
framework. Given an image, it first finds all of the faces in
that image. Then, it runs a user-specific facial-recognition
algorithm to determine the likelihood of that face belong-
ing to one of your top-N friends who have enabled face
recognition. This allows Facebook to suggest which of
your friends you might want to tag within the photos
you upload.



Models Services

Support Vector Machines (SVM) Facer (User Matching)
Gradient Boosted Decision Trees (GBDT) Sigma
Multi-Layer Perceptron (MLP) Ads, News Feed, Search, Sigma
Convolutional Neural Networks (CNN) Lumos, Facer (Feature Extraction)
Recurrent Neural Networks (RNN) Text Understanding, Translation, Speech Recognition

TABLE I
MACHINE LEARNING ALGORITHMS LEVERAGED BY PRODUCT/SERVICE.

• Language Translation is the service that manages inter-
nationalization of Facebook content. We support transla-
tions for more than 45 languages as the source or target
language, meaning we support more than 2000 translation
directions, e.g. English-to-Spanish or Arabic-to-English.
With these 2K+ systems, we serve 4.5B translated post
impressions every day, lowering language barriers for 600
million people who see translated posts in their News
Feed every day. Currently, each language pair direction
has its own model, although multi-language models are
being considered [6].

• Speech Recognition is the service that converts audio
streams into text. This provides automated captioning for
video. Currently, most streams are English language, but
other languages will be available in future. Additionally,
non-language audio events are also detected with a similar
system (simpler model).

In addition to the major products mentioned above, many
more long-tail services also leverage machine learning in
various forms. The count of the long tail of products and
services is in the hundreds.

B. Machine Learning Models

All machine learning based services use “features” (or
inputs) to produce quantified outputs. Machine learning al-
gorithms used at Facebook include Logistic Regression (LR),
Support Vector Machines (SVM), Gradient Boosted Decision
Trees (GBDT), and Deep Neural Networks (DNN). LR and
SVM are efficient to train and use for prediction. GBDT
can improve accuracy at the expense of additional computing
resources [7]. DNNs are the most expressive, potentially
providing the most accuracy, but utilizing the most resources
(with at least an order of magnitude compute over linear
models like LR and SVM). All three types correspond to
models with increasing numbers of free parameters, which
must be trained by optimizing predictive accuracy against
labeled input examples.

Among deep neural networks, there are three general
classes in use: Multi-Layer Perceptrons (MLP), Convolutional
Neural Networks (CNN), and Recurrent Neural Networks
(RNN/LSTM). MLP networks usually operate on structured
input features (often ranking), CNNs work as spatial pro-
cessors (often image processing), and RNN/LSTM networks
are sequence processors (often language processing). Table I
shows the mapping between these ML model types and
products/services.

C. ML-as-a-Service Inside Facebook

Several internal platforms and toolkits exist that aim to sim-
plify the task of leveraging machine learning within Facebook
products. The primary examples include FBLearner, Caffe2,
and PyTorch. FBLearner is a suite of three tools, each of which
focuses on different parts of the machine learning pipeline.
FBLearner leverages an internal job scheduler to allocate
resources and schedule jobs on a shared pool of GPUs and
CPUs, as shown in Figure 1. Most of the ML training at
Facebook is run through the FBLearner platform. Working
together, these tools and platforms are designed to make ML
engineers more productive and help them focus on algorithmic
innovation.

FBLearner Feature Store. The starting point for any ML
modeling task is to gather and generate features. The Feature
Store is essentially a catalog of several feature generators that
can be used both for training and real-time prediction, and it
serves as a marketplace that multiple teams can use to share
and discover features. Having this list of features is a good
starting point for teams starting to use ML and also to help
augment existing models with new features.

FBLearner Flow is Facebook’s machine learning platform
for model training [8]. Flow is a pipeline management sys-
tem that executes a workflow describing the steps to train
and/or evaluate a model and the resources required to do so.
Workflows are built out of discrete units, or operators, each
of which have inputs and outputs. The connections between
the operators are automatically inferred by tracing the flow
of data from one operator to the next and Flow handles the
scheduling and resource management to execute the workflow.
Flow also has tooling for experiment management and a simple
user interface which keeps track of all of the artifacts and
metrics generated by each workflow execution or experiment.
The user interface makes it simple to compare and manage
these experiments.

FBLearner Predictor is Facebook’s internal inference en-
gine that uses the models trained in Flow to provide predic-
tions in real time. The Predictor can be used as a multi tenancy
service or as a library that can be integrated in product-
specific backend services. The Predictor is used by multiple
product teams at Facebook, many of which require low latency
solutions.

The direct integration between Flow and Predictor also
helps with running online experiments and managing multiple
versions of models in productions.



D. Deep Learning Frameworks

We leverage two distinct but synergistic frameworks for
deep learning at Facebook: PyTorch, which is optimized for
research, and Caffe2, which is optimized for production.

Caffe2 is Facebook’s in-house production framework for
training and deploying large-scale machine learning models.
In particular, Caffe2 focuses on several key features required
by products: performance, cross-platform support, and cov-
erage for fundamental machine learning algorithms such as
convolutional neural networks (CNNs), recurrent networks
(RNNs), and multi-layer perceptrons (MLPs) with sparse or
dense connections and up to tens of billions of parameters.
The design involves a modular approach, where a unified graph
representation is shared among all backend implementations
(CPUs, GPUs, and accelerators). Separate execution engines
serve different graph execution needs, and the Caffe2 abstrac-
tion pulls in third-party libraries (e.g., cuDNN, MKL, and
Metal) for optimal runtime on different platforms.

PyTorch is the framework of choice for AI research at
Facebook. It has a frontend that focuses on flexibility, de-
bugging, and dynamic neural networks which enables rapid
experimentation. With its dependence on Python for execution,
it is not optimized for production and mobile deployments.
When research projects produce valuable results, the models
need to be transferred to production. Traditionally, this is
accomplished via rewriting the training pipeline in a prod-
uct environment with other frameworks. Recently we started
building the ONNX toolchain to simplify the transfer process.
As an example, dynamic neural networks are used in cutting-
edge AI research, but it takes longer for the models to mature
enough to be used in production. By decoupling frameworks,
we’ve avoided the need of designing more complex execution
engines needed for performance (such as those in Caffe2).
Furthermore, researchers may prioritize flexibility over speed.
In an exploration phase, performance degradations of 30%,
for instance, may be tolerable, especially if it comes with the
benefit of inspectability and visualization of models. However,
the same degradation is not appropriate for production. This
dichotomy shows up in the respective frameworks, where
PyTorch provides good defaults and reasonable performance,
while Caffe2 has the option to use features such as asyn-
chronous graph execution, quantized weights, and multiple
specialized backends to achieve maximum performance.

The FBLearner platform is agnostic of the framework in use,
be it Caffe2, TensorFlow, PyTorch, or other alternatives, but
the AI Software Platform team provides specific functionality
to allow FBLearner to integrate well with Caffe2. Overall,
decoupling research and production frameworks (PyTorch and
Caffe2, respectively) has given us the ability to move fast on
each side, reducing the number of constraints while adding
new features.

ONNX. The deep learning tools ecosystem is still in its
early days throughout industry. Different tools are better
for different subset of problems and have varying trade-
offs on flexibility, performance, and supported platforms -

Fig. 2. CPU-based compute servers. The single-socket server sled contains
4 Monolake server cards, resulting in 12 total servers in a 2U form factor.
The dual-socket server sled contains one dual-socket server, resulting in three
dual-socket servers in a 2U chassis.

similar to the tradeoffs described earlier for PyTorch and
Caffe2. As a result, theres significant desire to exchange
trained models between different frameworks or platforms.
To fill this gap, in late 2017, we partnered with several
stakeholders to introduce Open Neural Network Exchange
(ONNX) [9], which is a format to represent deep learning
models in a standard way to enable interoperability across
different frameworks and vendor-optimized libraries. ONNX is
designed as an open specification, allowing framework authors
and hardware vendors to contribute to the design and to own
the various converters between frameworks and libraries. We
are working with these partners to make ONNX more of a
living collaboration between all these tools than as an official
standard.

Within Facebook, we’re using ONNX as primary means of
transferring research models from the PyTorch environment to
high-performance production environment in Caffe2. ONNX
provides the ability to automatically capture and translate static
parts of the models. We have an additional toolchain that
facilitates transfer of dynamic graph parts from Python by
either mapping them to control-flow primitives in Caffe2 or
reimplementing them in C++ as custom operators.

III. RESOURCE IMPLICATIONS OF MACHINE LEARNING

Given that the two stages of machine learning - training and
inference - have distinct resource requirements, frequency, and
duration, we discuss the details and resource implications of
these two distinct phases separately, and in turn.

A. Summary of Hardware Resources at Facebook

Facebook Infrastructure has a long history of producing
efficient platforms for the major software services, including
custom-designed servers, storage, and networking support for
the resource requirements of each major workload [10]. We



Fig. 3. The Big Basin GPU server design includes 8 GPUs in a 3U chassis.

currently support roughly eight major compute and storage
rack types that map to the same number of major services. New
services tend to get mapped to existing rack types until they
rise to the level of warranting their own design. These major
rack types were designed to meet the resource requirements of
major services. For example, Figure 2 shows a 2U chassis that
accommodates three compute sleds supporting two alternative
server types. One sled option is a single socket CPU server
(1xCPU) supported for the web tier, which is a throughput-
oriented stateless workload, and therefore can be well served
by a more power-efficient CPU (Broadwell-D processor) with
a relatively small amount of DRAM (32GB) and minimal
on-board disk or flash storage [11]. Another sled option is
a larger dual socket CPU server (2x high power Broadwell-
EP or Skylake SP CPU) with large amounts of DRAM that is
used for compute- and memory-intensive services.

To accelerate our progress as we train larger and deeper neu-
ral networks, we also created Big Basin, our latest-generation
GPU server, in 2017, shown in Figure 3. The initial Big Basin
design included eight NVIDIA Tesla P100 GPU accelerators
connected using NVIDIA NVLink to form an eight-GPU
hybrid cube mesh [12]. The design has since been upgraded
to support V100 GPUs as well.

Big Basin is the successor to our earlier Big Sur GPU
server, which was the first widely deployed, high-performance
AI compute platform in our data centers, designed to sup-
port NVIDIA M40 GPUs, which was developed in 2015
and released via the Open Compute Project. Compared with
Big Sur, the newer V100 Big Basin platform enables much
better gains on performance per watt, benefiting from single-
precision floating-point arithmetic per GPU increasing from
7 teraflops to 15.7 teraflops, and high-bandwidth memory
(HBM2) providing 900 GB/s bandwidth (3.1x of Big Sur).
Half-precision was also doubled with this new architecture to
further improve throughput. Big Basin can train models that
are 30 percent larger because of the availability of greater
arithmetic throughput and a memory increase from 12 GB
to 16 GB. Distributed training is also enhanced with the
high-bandwidth NVLink inter-GPU communication. In tests
with the ResNet-50 image classification model, we were

able to reach almost 300 percent improvement in throughput
compared to Big Sur, allowing us to experiment faster and
work with more complex models than before.

Each of these compute server designs, as well as several
storage platforms, has been publicly released through the
Open Compute Project. Meanwhile, internally, we are always
refreshing our hardware designs and thoroughly evaluating all
promising alternatives and new technologies.

B. Resource Implications of Offline Training

Today, different products leverage different compute re-
sources to perform their offline training step. Some products,
such as Lumos, do all of their training on GPUs. Other
products, such as Sigma, do all of their training on dual-
socket high-memory CPU compute servers. Finally, products
like Facer have a two-stage training process, where they train
a general face detection and recognition model infrequently
(many months) on GPUs, and then train user-specific models
much more regularly on thousands of 1xCPU servers.

In this section, we present high-level details about various
services with respect to machine learning training platforms,
frequency, and duration, summarized in Table II. We also
discuss the data set trends and implications for our compute,
memory, storage, and network infrastructure.

Compute Type and Locality. Offline training may be
performed on CPUs and/or GPUs, depending on the service.
While in most cases, training on GPUs tends to outperform
training on CPUs, the abundance of readily-available CPU
capacity makes it a useful platform. This is especially true
during the off-peak portions of the diurnal cycle where CPU
resources would otherwise sit idle, as we later show in
Figure 4. Below we identify which services currently train
their models on each compute resource:

• Training on GPUs: Lumos, Speech Recognition, Lan-
guage Translation

• Training on CPUs: News Feed, Sigma
• Training on Both: Facer (general model trained on GPUs

every few years as the model is stable; user-specific
model trained on 1xCPUs in response to a threshold of
new image data), Search (leverages multiple independent
search verticals, and applies a predictive classifier to
launch the most appropriate verticals).

Currently, the primary use case of GPU machines is offline
training, rather than serving real-time data to users. This flows
logically given that most GPU architectures are optimized for
throughput over latency. Meanwhile, the training process does
heavily leverage data from large production stores, therefore
for performance and bandwidth reasons, the GPUs need to
be in production near the data accessed. The data leveraged
by each model is growing quickly, so this locality to the
data source (many of which are regional) is becoming more
important over time.

Memory, Storage, and Network. From a memory capacity
standpoint, both CPU platforms as well as the GPU platform
provide sufficient capacity for training. This was even true for
applications like Facer, which trains user-specific SVM models



Service Resource Training Frequency Training Duration

News Feed Dual-Socket CPUs Daily Many Hours
Facer GPUs + Single-Socket CPUs Every N Photos Few Seconds
Lumos GPUs Multi-Monthly Many Hours
Search Vertical Dependent Hourly Few Hours
Language Translation GPUs Weekly Days
Sigma Dual-Socket CPUs Sub-Daily Few Hours
Speech Recognition GPUs Weekly Many Hours

TABLE II
FREQUENCY, DURATION, AND RESOURCES USED BY OFFLINE TRAINING FOR VARIOUS WORKLOADS.

on our 1xCPU servers with 32 GB RAM. Leveraging efficient
platforms and spare capacity whenever possible results in
significant overall efficiency wins.

Machine learning systems rely on training against example
data. Meanwhile, Facebook leverages a large fraction of all
stored data in machine learning pipelines. This creates regional
preferences for the placement of compute resources near
data stores. Over time, most services indicate a trend toward
leveraging increased amounts of user data, so this will result
in an increased dependence on other Facebook services, and
increased network bandwidth for data access as well. So,
significant local/nearby storage is required to allow off-line
bulk data transfers from distant regions to avoid stalling the
training pipelines waiting for additional example data. This has
implications on training machine region placement to avoid
having training clusters apply excessive pressure on nearby
storage resources.

The amount of training data leveraged during offline training
varies widely by service. In nearly all cases, the training data
sets are trending toward continued and sometimes dramatic
growth. For instance, some services leverage millions of rows
of data before the ROI degrades, while others leverage billions
of rows (100s of TB) and are bounded only by resources.

Scaling Considerations and Distributed Training. Train-
ing a neural network involves optimization of parameter
weights through Stochastic Gradient Descent (SGD). This
technique, used for fitting neural nets, involves iterative weight
updates through assessments of small subsets (i.e., a “batch” or
“mini-batch”) of labeled examples. Data parallelism involves
spawning model replicas (parallel instances) to process multi-
ple batches in parallel.

Traditionally, models were trained on a single machine.
Larger or deeper models can be more expressive and provide
higher accuracy, although training these models may require
processing more examples. Within a single machine, training
performance can be maximized by increasing model replicas
and employing data parallelism across GPUs. Given that the
data needed for training is increasing over time, hardware
limitations can result in an unacceptable increase in overall
training latency and time to convergence. Distributed training
is one solution for overcoming these hardware limitations and
reducing latency. This is an active research area not only at
Facebook, but also in the general AI research community.

A common assumption is that for data parallelism across
machines, a specialized interconnect is required. However, dur-

ing our work on distributed training, we have found Ethernet-
based networking to be sufficient, providing near-linear scaling
capability. The ability to scale close to linearly is closely
related to both model size and network bandwidth. If net-
working bandwidth is too low such that performing parameter
synchronization takes more time than performing gradient
computations, the benefits of data parallelism across machines
diminishes. With its 50G Ethernet NIC, our Big Basin server
has allowed us to scale out training of vision models without
inter-machine synchronization being a bottleneck.

In all cases, the updates need to be shared with the other
replicas using techniques that provide trade-offs on synchro-
nization (every replica sees the same state), consistency (every
replica generates correct updates), and performance (which
scales sub-linearly), which may impact training quality. For
example, the Translation service cannot currently train on large
mini-batches without degrading model quality. As a counter-
example, using certain hyperparameter settings, we can train
our image classification models to very large mini-batches,
scaling to 256+ GPUs [13]. For one of our larger workloads,
data parallelism has been demonstrated to provide 4x the
throughput using 5x the machine count (e.g., for a family of
models that trains over 4 days, a pool of machines training
100 different models could now train 20 models per day,
so training throughput drops by 20%, but the wait time for
potential engineering advancement improves from four days
to one day).

If models become exceptionally large, model parallelism
training can be employed, where the model layers are grouped
and distributed to optimize for throughput with activations
pipelined between machines. The optimizations might be
associated with network bandwidth or latency, or balancing
internal machine limitations. This increases end-to-end latency
of the model, so the raw performance gain in step time is often
associated with a degradation in step quality. This may further
degrade model accuracy per step. The combined degradation
of step accuracy may lead to an optimal amount of parallel
processing.

In many cases, during inference, the DNN models them-
selves are designed to be run on a single machine, as par-
titioning the model graph among the machines can result
in large amount of communication. But major services are
consistently weighing the cost/benefits of scaling their models.
These considerations may dictate changes in network capacity
needs.



Services Relative Capacity Compute Memory

News Feed 100X Dual-Socket CPU High
Facer 10X Single-Socket CPU Low
Lumos 10X Single-Socket CPU Low
Search 10X Dual-Socket CPU High
Language Translation 1X Dual-Socket CPU High
Sigma 1X Dual-Socket CPU High
Speech Recognition 1X Dual-Socket CPU High

TABLE III
RESOURCE REQUIREMENTS OF ONLINE INFERENCE WORKLOADS.

C. Resource Implications of Online Inference

After offline training, the online inference step involves
loading a model onto a machine and running that model with
real-time inputs to produce real-time results for web traffic.
Table III summarizes the relative compute capacity and type
of compute used for several services.

To provide an example of an online inference model in
operation, we will walk through the Ads ranking model.
The Ads ranking model screens tens of thousands of ads
down to display the top 1 to 5 ads in News Feed. This is
accomplished through progressively sophisticated passes of
ranking calculations performed against successively smaller
subsets of the ads. Each pass consists of a MLP-like model that
contains sparse embedding layers, with each pass narrowing
down the ad candidates count. The sparse embedding layer is
memory intensive, so for later passes where the models have
higher number of parameters, it is run on a separate server
from the MLP passes.

From a compute standpoint, the vast majority of online in-
ference runs on the abundant 1xCPU (single-socket) or 2xCPU
(dual-socket) production machines. Since 1xCPU machines are
significantly more power and cost-efficient for Facebook, there
is an emphasis toward migrating models from 2xCPU servers
to 1xCPU servers whenever possible. With the rise of high-
performance mobile hardware, it is even possible to run some
models directly on the user’s mobile device to improve latency
and reduce communication cost. However, some compute and
memory intensive services still require 2xCPU servers for the
best performance.

Finally, various products have varying latency requirements
for the results of online inference. In some cases, the resulting
data can be considered “nice to have” or can return after an
initial quick estimate is returned to the user. For instance, it
may be acceptable in some cases to initially classify content
as acceptable, while more complex models are run that can
later override the initial classification. Meanwhile, models like
Ads and News Feed have firm SLAs for delivering the proper
content to users. These SLAs are driving the model complexity
and dependencies, and thus more advanced compute power can
result in more advanced models.

IV. MACHINE LEARNING AT DATACENTER SCALE

Aside from resource requirements, there are major consid-
erations when deploying machine learning at the datacenter

scale including the significant data requirements as well as
reliability in the face of natural disasters.

A. Getting Data to the Models

For many machine learning models at Facebook, success is
predicated on the availability of extensive, high-quality data.
The ability to rapidly process and feed these data to the
training machines is important for ensuring that we have fast
and efficient offline training.

For sophisticated ML applications such as Ads and Feed
Ranking, the amount of data to ingest for each training task
is more than hundreds of terabytes. Moreover, complex pre-
processing logic is applied to ensure that data is cleaned and
normalized to allow efficient transfer and easy learning. These
impose very high resource requirement especially on storage,
network, and CPU.

As a general solution, we want to decouple the data
workload from the training workload. These two workloads
have very different characteristics. The data workload is very
complex, ad-hoc, business dependent, and changing fast. The
training workload on the other hand is usually regular (e.g.
GEMM), stable (there are relatively few core operations),
highly optimized, and much prefers a “clean” environment
(e.g., exclusive cache usage and minimal thread contention).
To optimize for both, we physically isolate the different work-
loads to different machines. The data processing machines, aka
“readers”, read the data from storage, process and condense
them, and then send to the training machines aka “trainers”.
The trainers, on the other hand, solely focus on executing
the training options rapidly and efficiently. Both readers and
trainers can be distributed to provide great flexibility and
scalability. We also optimize the machine configurations for
different workloads.

Another important optimization metric is network usage.
The data traffic generated by training can be significant and
sometimes bursty. If not handled intelligently, this can easily
saturate network devices and even disrupt other services. To
address these concerns, we employ optimization in compres-
sion, scheduling algorithms, data/compute placement, etc.

B. Leveraging Scale

As a company serving users across the world, Facebook
must maintain a large fleet of servers designed to handle the
peak load at any given time. As seen in Figure 4, due to varia-
tions in user activity due to diurnal load and peaks during spe-



Fig. 4. Diurnal load across Facebook’s fleet over a 24-hour period on 19
September 2017.

cial events (e.g. regional holidays), a large pool of servers are
often idle at certain periods in time. This effectively provides
an enormous pool of compute resources available during the
off-peak hours. A major ongoing effort explores opportunities
to take advantage of these heterogeneous resources that can be
allocated to various tasks in an elastic manner. For machine
learning applications, this provides a prime opportunity to take
advantage of distributed training mechanisms that can scale
to a large number of heterogeneous resources (e.g. different
CPU and GPU platforms with differing RAM allocations).
The sheer scale of the number of compute resources available
during these low utilization periods leads to fundamentally
different distributed training approaches, imposing a few chal-
lenges. The scheduler must first balance the load properly
across heterogeneous hardware, so that hosts do not have to
wait for each other for synchronization. The scheduler must
also consider the network topology and synchronization cost
when training spans multiple hosts. If not handled properly,
the heavy intra- or inter-rack synchronization traffic could
significantly deteriorate the training speed and quality. For
example, in the 1xCPU design, the four 1xCPU hosts share
a 50G NIC [11]. If all four hosts attempt to synchronize
their gradients with other hosts at the same time, the shared
NIC will soon become the bottleneck, resulting in dropped
packets and timeouts. Therefore, a co-design between network
topology and scheduler is needed to efficiently utilize the spare
servers during off-peak hours. In addition, such algorithms
must also have the capability to provide check-pointing to stop
and restart training as loads change.

C. Disaster Recovery

The ability to seamlessly handle the loss of a portion of
Facebook’s global compute, storage, and network footprint
has been a long-standing goal of Facebook Infrastructure [14].
Internally, our disaster recovery team regularly performs drills
to identify and remedy the weakest links in our global infras-
tructure and software stacks. Disruptive actions include taking
an entire data center offline with little to no notice in order to
confirm that the loss of any of our global data centers results
in minimal disruption to the business.

For both the training and inference portions of machine
learning, the importance of disaster-readiness cannot be under-
estimated. While the importance of inference to drive several
key projects is unsurprising, there is a potentially surprising
dependency on frequent training before noticing a measurable
degradation in several key products.

We discuss the importance of frequent ML training for three
key products, and discuss the infrastructure support needed to
accommodate that frequent training, and how this all relates
to disaster recovery compliance.

What Happens If We Don’t Train Our Models? We
analyzed three key services that leverage ML training, to
ascertain the impact of being unable to perform frequent
updates to the models through training, including Ads, News
Feed, and Community Integrity. Our goal was to understand
the implications of losing the ability to train their models for
one week, one month, and six months.

The first obvious impact was engineer efficiency, as machine
learning progress is often tied to frequent experimentation
cycles. While many models can be trained on CPUs, training
on GPUs often enables notable performance improvement over
CPUs for certain use cases. These speedups offer faster iter-
ation times, and the ability to explore more ideas. Therefore,
the loss of GPUs would result in a net productivity loss for
these engineers.

Furthermore, we identified a substantial impact to Facebook
products, particularly for products that rely heavily on frequent
refreshes of their models. We summarize the problems that
arise when these products use stale models.

Community Integrity: Creating a safe place for people
to share and connect is the core of Facebook’s mission;
swiftly and accurately detecting offensive content is core to
this mission. Our Community Integrity team heavily leverages
machine learning techniques to detect offensive content in
text, images, and videos. Offensive content detection is a
specialized form of spam detection. Adversaries are constantly
searching for new and innovative ways to bypass our identifiers
in order to display objectionable content to our users. To
defend against these efforts, we frequently train models to
learn those new patterns. Each training iteration takes on the
order of days to generate a refined model for objectionable
image detection. We are continuing to push the boundaries to
train models faster using distributed training techniques, but
the inability to train entirely would result in degradation of
content.

News Feed: Less surprising was our finding that products
like News Feed have a heavy dependence on machine learning
and frequent model training. Identifying the most relevant
content for every user on every visit to our site results in
a significant dependence on state-of-the art machine learning
to properly find and rank that content. Unlike some other
products, the learning side of Feed Ranking happens in two
steps: an offline step to train the best model, which runs on
both CPUs/GPUs, followed by continuous online training that
currently runs on CPUs.



Fig. 5. Facebook global data center locations as of December 2017.

Stale News Feed models have a measurable impact on qual-
ity. The News Feed team continuously pushes the boundaries
to innovate on their ranking models, and models themselves
take on the order of hours to train. The loss of training compute
for even one week can hinder the team’s ability to explore new
models and new parameters.

Ads: Least surprising is the importance of frequent training
for the Ads Ranking models. Finding and displaying the very
best ads involves a significant dependence on and innovation
in machine learning. To underscore the importance of that
dependence, we learned that the impact of leveraging a stale
ML model is measured in hours. In other words, using a one-
day-old model is measurably worse than using a one-hour-old
model.

Overall, our investigation served to underscore the im-
portance of machine learning training for many Facebook
products and services. Disaster readiness of that large and
growing workload should not be underestimated.

Infrastructure Support for Disaster Recovery Figure 5
shows the world-wide distribution of Facebook’s datacenter
infrastructure. If we focus on the availability of CPU resources
used during training and inference, we have ample compute
servers in nearly every region to accommodate the potential
loss of our largest region. The importance of providing equal
redundancy for GPU resources had initially been underesti-
mated, however.

The initial workloads that leveraged GPUs for training were
primarily computer vision applications, and the data required
to train these models was globally replicated. When GPUs
were new to Facebook Infrastructure, rolling them out in a
single region seemed to be a smart option for manageability
until the designs matured and we could build internal expertise
on their service and maintenance requirements. These two
factors led to the decision to physically isolate all production
GPUs to one datacenter region.

However, several key changes occurred after that time. Due
to the increased adoption of Deep Learning across multiple
products, including ranking, recommendation, and content
understanding, locality between the GPU compute and big
data increased in importance. And complicating that need for
compute-data colocation was a strategic pivot toward a mega-
region approach for storage. The notion of a mega-region
means that a small number of data center regions will house

the bulk of Facebook’s data. Incidentally, the region housing
the entire GPU fleet did not reside in the storage mega-region.

Thus, aside from the importance of co-locating compute
with data, it quickly became important to consider what might
happen if we were to ever lose the region housing the GPUs
entirely. And the outcome of that consideration drove the need
to diversify the physical locations of the GPUs used for ML
training.

V. FUTURE DIRECTIONS IN CO-DESIGN: HARDWARE,
SOFTWARE, AND ALGORITHMS

As model complexity and dataset sizes grow, computational
requirements of ML also increase. ML workloads exhibit a
number of algorithmic and numerical properties which impact
the hardware choices.

It is well known that convolution and medium size matrix-
matrix multiplication are the key compute kernels of the for-
ward and backward passes of deep learning. With larger batch
sizes, each parameter weight is reused more often, so these
kernels would exhibit improvements in arithmetic intensity
(the number of compute operations per byte of accessed mem-
ory). Increasing arithmetic intensity generally improves the
efficiency of the underlying hardware, so within the limits of
latency, running with higher batch sizes is desirable. Compute
bound ML workloads would benefit from wider SIMD units,
specialized convolution or matrix multiplication engines, and
specialized co-processors.

In some cases, small batch sizes per node are a requirement,
both in real-time inference, when concurrent queries are low,
and during training, when scaling to large numbers of nodes.
Smaller batch sizes often result in lower arithmetic inten-
sity (e.g., matrix-vector multiplication operations on fully-
connected layers, which is inherently bandwidth-bound). This
could potentially degrade the performance of several common
use cases, where the full model does not fit into on-die
SRAM or last-level cache. This could be mitigated through
model compression, quantization, and high-bandwidth mem-
ory. Model compression can be achieved through sparsification
and/or quantization [15]. Sparsification prunes connections
during training, resulting in a smaller model. Quantization
compresses the model using fixed-point integers or narrower
floating-point formats instead of FP32 (single precision float-
ing point) for weights and activations. Comparable accuracy
has been demonstrated for several popular networks using 8
or 16 bits. There is also ongoing work to use 1 or 2 bits
for weights [16], [17]. In addition to reducing the memory
footprint, pruning and quantization can speed up the underly-
ing hardware by reducing the bandwidth and also by allowing
hardware architectures to have higher compute rates when
operating with fixed point numbers, which is much more
efficient than operating on FP32 values.

Reducing training time and expediting model delivery re-
quires distributed training. As discussed in Section IV-B,
distributed training requires a careful co-design of network
topology and scheduling to efficiently utilize hardware and
achieve good training speed and quality. The most widely-used



form of parallelism in distributed training is data parallelism,
described in Section III-B, which requires synchronizing the
gradient descent across all the nodes, either synchronously or
asynchronously. Synchronous SGD requires an all-reduce op-
eration. An interesting property of all-reduce, when performed
using recursive doubling (and halving), is that bandwidth
requirements decrease exponentially with the recursion levels.
This encourages hierarchical system design where nodes at
the bottom of the hierarchy form super-nodes with high
connectivity (e.g., connected via high-bandwidth point to point
connections, or high-radix switch); at the top of the hierarchy,
super-nodes are connected via slower network (e.g., Ethernet).
Alternately, asynchronous SGD (processing batches without
waiting for other nodes) is harder and is typically done via a
shared parameter server; nodes send their updates to a param-
eter server which aggregates and distributes them back to the
nodes. To reduce staleness of updates and reduce pressure on
parameter servers, a hybrid design could be beneficial. In such
a design, asynchronous updates happen within super-nodes
with high bandwidth and low latency connectivity between
local nodes, while synchronous updates happen across super-
nodes. Further increases to scalability require increasing the
batch size without sacrificing convergence. This is an active
area of algorithmic research both within and outside Facebook.

At Facebook, our mission is to is build high-performance,
energy-efficient systems for machine learning that meet the
demands of our abundant ML-based applications, described
in Section II. We continuously evaluate and prototype novel
hardware solutions, while simultaneously keeping an eye on
the upcoming, near and longer-term algorithm changes, and
their potential impact on system-level design.

VI. CONCLUSION

The increasing importance of machine learning-based work-
loads has implications that span all parts of the systems stack.
In response, there has been a growing interest within the
computer architecture community on how best to respond
to the resulting challenges that have emerged. While prior
efforts have revolved around efficiently handling the necessary
compute for ML training and inference, the landscape changes
when considering the additional challenges that arise when the
solutions are considered at scale.

At Facebook, we discovered several key factors that emerge
at scale and drive decisions in the design of our datacenter
infrastructure: the importance of co-locating data with com-
pute, the importance of handling a variety of ML workloads,
not just computer vision, and the opportunities that arise from
spare capacity from diurnal compute cycles. We considered
each of these factors when designing end-to-end solutions that
incorporate custom-designed, readily-available, open-source
hardware, as well as an open-source software ecosystem that
balances performance and usability. These solutions are what
power the large-scale machine learning workloads that serve
over 2.1 billion people today, and reflect the interdisciplinary
efforts of experts in machine learning algorithm and system
design.

REFERENCES

[1] B. Reagen, R. Adolf, P. N. Whatmough, G. Wei, and D. M. Brooks, Deep
Learning for Computer Architects, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2017.

[2] J. Quiñonero Candela, “Powering Facebook experiences with AI,” April
2016, https://fb.me/candela 2016.

[3] M. Kabiljo and A. Ilic, “Recommending items to more than a billion
people,” June 2015, https://fb.me/kabiljo 2015.

[4] M. Schroepfer, “Accelerating innovation and powering new experiences
with AI,” November 2016, https://fb.me/schroepfer 2016.

[5] X. He, J. Pan, O. Jun, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah,
R. Herbrich, S. Bowers, and J. Quiñonero Candela, “Practical lessons
from predicting clicks on ads at facebook,” in Proceedings of the
Eighth International Workshop on Data Mining for Online Advertising,
ser. ADKDD’14. New York, NY, USA: ACM, 2014, pp. 5:1–5:9.
[Online]. Available: http://doi.acm.org/10.1145/2648584.2648589

[6] J. M. Pino, A. Sidorov, and N. F. Ayan, “Transitioning entirely to neural
machine translation,” August 2017, https://fb.me/pino 2017.

[7] A. Ilic and O. Kuvshynov, “Evaluating boosted decision trees for billions
of users,” March 2017, https://fb.me/ilic 2017.

[8] J. Dunn, “Introducing FBLearner flow: Facebook’s AI backbone,” May
2016, https://fb.me/dunn 2016.

[9] J. Quiñonero Candela, “Facebook and Microsoft introduce new open
ecosystem for interchangeable AI frameworks,” September 2017, https:
//fb.me/candela 2017.

[10] A. G. Murillo, “The end-to-end refresh of our server hardware fleet,”
March 2017, https://fb.me/murillo 2017.

[11] V. Rao and E. Smith, “Facebook’s new front-end server design delivers
on performance without sucking up power,” March 2016, https://fb.me/
rao 2016.

[12] K. Lee, “Introducing Big Basin: Our next-generation AI hardware,”
March 2017, https://fb.me/lee 2017.

[13] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: Training ImageNet in 1 hour,” CoRR, vol. abs/1706.02677, 2017.
[Online]. Available: http://arxiv.org/abs/1706.02677

[14] J. Parikh, “Keynote address at the @Scale Conference,” August 2016,
https://fb.me/parikh 2016.

[15] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” International Conference on Learning Representations (ICLR),
2016.

[16] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural
networks with weights and activations constrained to +1 or -
1,” CoRR, vol. abs/1602.02830, 2016. [Online]. Available: http:
//arxiv.org/abs/1602.02830

[17] H. Alemdar, N. Caldwell, V. Leroy, A. Prost-Boucle, and F. Pétrot,
“Ternary neural networks for resource-efficient AI applications,” CoRR,
vol. abs/1609.00222, 2016.


