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Abstract—Block Floating Point (BFP) can efficiently support
quantization for Deep Neural Network (DNN) training by provid-
ing a wide dynamic range via a shared exponent across a group
of values. In this paper, we propose a Fast First, Accurate Second
Training (FAST) system for DNNs, where the weights, activations,
and gradients are represented in BFP. FAST supports matrix mul-
tiplication with variable precision BFP input operands, enabling
incremental increases in DNN precision throughout training. By
increasing the BFP precision across both training iterations and
DNN layers, FAST can greatly shorten the training time while
reducing overall hardware resource usage. Our FAST Multipler-
Accumulator (fMAC) supports dot product computations under
multiple BFP precisions. We validate our FAST system on
multiple DNNs with different datasets, demonstrating a 2-6×
speedup in training on a single-chip platform over prior work
based on mixed-precision or block floating point number systems
while achieving similar performance in validation accuracy.

I. INTRODUCTION

Custom floating point (FP) formats, such as Google’s
bfloat16 [21] and Nvidia’s TensorFloat 32 [36], are increasingly
replacing IEEE 754 32-bit floating point (FP32) for DNN
training. These formats more efficiently fit the empirical
distribution of DNN weight, data, and gradient values, leading
to a smaller hardware footprint for the multiplier-accumulator
(MAC) unit. However, these formats are still significantly more
expensive to implement than fixed point (INT) formats of
similar bitwidths due to mantissa alignments which are required
for each floating point MAC operation.

By comparison, Block Floating Point (BFP) [43] formats
offer a middle ground between FP and INT formats, by
enforcing that a group of values share a common exponent
while maintaining individual mantissas. This constraint enables
BFP to achieve higher efficiency than FP for dot product (DP)
computations for three reasons. First, mantissa alignments are
only required on input values in each BFP group as opposed
to after each FP multiplication. Second, there is only one
exponent addition between each group as opposed to each FP
multiplication. Therefore, performing DP computations in BFP
can lead to a significant improvement in training efficiency.

In this work, we propose a Fast First, Accurate Second
Training (FAST) system for variable precision BFP DNN
training. Here, variable precision means that (1) the system
efficiently supports BFP formats across a range of mantissa
widths during training and (2) dot products between BFPs
with different mantissa widths is permitted. To support our
system, we have designed a FAST multiplier-accumulator
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Fig. 1: (left) Overview of the proposed FAST system for DNN
training with variable precision BFP with stochastic rounding.
A group of FP32 values are converted to a BFP group with a
selected mantissa width based on the current error tolerance
(see Algorithm 1). (right) FAST incrementally increases the
BFP precision across both layer depths and training iterations.
See Figure 17 on corresponding empirical data obtained from
FAST training of Resnet-18 on ImageNet.

(fMAC) which operates on n-bit chunks of mantissas across
two groups of BFP numbers being multiplied. Throughout this
paper, we use 2-bit chunks. Sub-dividing the computation into
2-bit chunks allows the same fMAC to implement arithmetic
operations involving higher precision mantissas by simply
running multiple passes of the fMAC. For instance, multiplying
two groups with 2-bit and 4-bit BFP mantissas translates to
2
2×

4
2 = 2 passes. The rate at which our FAST system performs

dot product computations is based on the BFP precision of the
two vectors being multiplied.

With FAST, we propose a DNN training regime that starts
with low-precision BFP and increases the precision of weights,
data, and gradients over the course of training. Figure 1 presents
an overview of how FAST can accelerate training via low-
precision operations. The left side of the figure provides a
sketch of the FAST system, which supports FP32 to BFP
conversion for a range of mantissa bitwidths and stochastic
rounding for gradients (to maintain training stability under
low-precision BFP). The FAST compute engine consists of a
systolic array [30] of fMAC units, which efficiently supports
BFP dot products with varying mantissa bitwidths. The right
side of the figure shows how the precision of the mantissa
field in BFP for a DNN increases across DNN layers and
over training iterations. While each DNN layer in the figure is
presented with a single precision, in practice the precision of
the weight, data, and gradient tensors in each layer are selected
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TABLE I: Terminology and notation used in the paper.

Notations Explanation
BFP BFP-quantized values
DP Dot product
FP Floating point. Assume FP32, unless otherwise stated

INT Fixed point integer
UQ Uniform quantization
SR Stochastic rounding
g Group size for BFP. Assume g=16, unless otherwise stated.
e Exponent bitwidth for FP and BFP
m Mantissa bitwidth for FP, BFP, and INT

independently for a given iteration (see Figure 17 for how
this precision selection works). Using this approach, FAST is
able to achieve this result on (1) CNNs for ImageNet [16], (2)
Transformers for the IWSLT14 German-English benchmark [1],
and (3) YOLOv2 [41] for the PASCAL VOC2012 [18] dataset.

In FAST, we use (1) BFP for variable precision training and
(2) BFP with stochastic rounding. BFP is an old idea dating
back as early as the 1960s (see, e.g., [43]), and there has been
recent literature demonstrating the advantages of using BFP in
DNN inference [15] and training [17]. We believe that our ideas
of (1) and (2) are novel. For (1), we point out the convenience
in Section VII of implementing variable precision hardware
for BFP. For (2), we note in Section III-C that using stochastic
rounding in conjunction with BFP is critical to model accuracy,
especially when using BFP for gradients with low-precision
mantissa (e.g., 2 or 4 bits). In Section III-D we provide an
analysis of the reasons for using stochastic rounding in BFP.
The main contributions of the paper are:
• The FAST variable precision training algorithm for

efficient DNN training. The proposed solution reduces
total training time by adaptively selecting the optimal
precision for weights, data, and gradients in every DNN
layers at each iteration.

• Our proposed use of (1) BFP for variable precision training
and (2) BFP with stochastic rounding. We provide a novel
analysis of the impact of applying stochastic rounding to
weight gradients on the loss in gradient decent (Theorem 1
in Section III-D).

• A modular architecture consisting of FAST multiplier-
accumulator (fMAC) for groups of BFP values. fMAC
operates on chunks of BFP mantissas (e.g., 2-bit chunks)
to support variable-width mantissas in 2-bit increments.

Table I lists the terminology and notation used in the paper.

II. BACKGROUND AND RELATED WORK

In Section II-A, we provide an overview of number formats
for DNN training and inference. Section II-B provides an
overview of the computation dataflow of DNN training.
Finally, in Section II-C, we review related work on hardware
accelerators for DNN training.

A. Number Formats for DNNs

As the majority of computation in both DNN training and
inference are dot products, the formats for their underlying
numbers has been extensively studied to make this computation
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Fig. 2: Number formats commonly used for DNN training
and inference. Fixed point formats (top) are often used for
inference. Floating point formats (middle) are used for training,
with bfloat16 and TensorFloat replacing IEEE 754 in most
cases by increasing the number of exponent bits to widen the
dynamic range. BFP (bottom) fits between fixed and floating
point by sharing a single exponent across the group values.

efficient. Figure 2 divides various formats into three groups:
fixed point (top), floating point (middle), and BFP (bottom).
The number of exponent bits (e) and mantissa bits (m) are
provided for each format.

Fixed point formats do not have an exponent field, which
reduces the dynamic range that can be represented but simplifies
the hardware. The use of fixed point formats for DNN training
and inference has been well explored [7], [8], [13], [14], [22],
[23], [24], [27], [31], [38], [46]. The smallest format is a 1-bit
binary representation (upper left of Figure 2) used by binarized
neural networks which has no exponent or mantissa bits.
Floating point formats have a larger dynamic range than fixed
point, making them more amenable to wider dynamic range of
gradients in DNN training [10]. IEEE 754 32-bit IEEE floating
point or FP32 (middle left of Figure 2) is the conventional
format for DNN training. Mixed precision training operates on
some tensors in a higher precision and other tensors in a lower
precision. For instance, Nvidia Mixed Precision (MP) [34]
proposed to perform most computations in the forward pass in
FP16, while keeping an FP32 copy of the weights for updating
during training. Custom floating point formats like bfloat16 [21],
TensorFloat [36] and HFP8 [42] (middle right of Figure 2)
operate in a similar mixed precision regime and have been
shown to work as well as FP32 for training accurate DNNs.
For example, HFP8 performs forward pass computations using
8-bit FP with one bit sign, 4-bit exponent, 3-bit mantissa (1-
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4-3) and backward pass computations with one bit sign, 5-bit
exponent and 2-bit mantissa (1-5-2).

While BFP represents a promising direction for improving
the efficiency of DNN training as middle ground between fixed
and floating point, there has been a small amount of prior work
in designing efficient hardware to support it. Flexpoint [29]
proposed a BFP format with a 16-bit mantissa (m=16) and
a 5-bit shared exponent across an entire tensor. Our paper
focuses on how to adjust the BFP mantissa bitwidth adaptively
(e.g., m = 2 or 4) during training to reduce training time and
power consumption. Drumond et al. [17] proposed to use a
large BFP group size of 576 (a 2D tile of size 24×24) which
requires a wide mantissa bitwidth of m=12 to achieve good
accuracy. Compared to these prior approaches, we show in
Section VI-B, that training under INT with similar number of
bits (e.g., 12 bits) also has good performance, which suggests
that BFP has little advantages over INT12 for such large tiles.
Additionally, they did not provide a detailed hardware design
for the implementation of BFP computation.

More recently, Microsoft proposed a BFP format (MSFP-12
in lower right of Figure 2) for DNN inference via post-training
quantization [15] on their Project Brainwave FPGA cloud
platform [20]. In our paper, by using BFP-aware DNN training
instead of post-training quantization, we are able to use a
smaller exponent width of 4 instead of 8 while achieving similar
inference accuracy. For training, as we show in Figure 20, via
variable precision BFP, FAST reduces the training time and
power consumption compared to the previously mentioned
training based on floating point or BFP formats.

B. Matrix Computation of DNN Training

Each iteration of DNN training on a mini-batch consists
of a forward pass to compute a loss and a backward pass to
update the DNN weights with gradients computed from the loss.
Figure 3 illustrates all of the matrix computations required for
both forward and backward passes for one convolutional layer
in a CNN (fully connect layers operate in a similar manner).
Both the convolutional view and the corresponding matrix
operation view are presented. During the forward pass, the
input activations (A) are convolved with the layer weights (W )
to compute the output (O) as depicted in Figure 3a. Then, O
will be passed through normalization and a non-linear activation
function, to become the input activations for the next layer.

During the backward pass, two convolutions are performed
at each layer. Figure 3b shows how the output gradients ∇O
are convolved with the transposed weights W T to compute
the activation gradients ∇A, which will be passed to the layer
below. In Figure 3c, the transposed input activations AT are
convolved with the output gradients ∇O in order to compute
the weight gradients ∇W . These weight gradients ∇W are then
added in an elementwise fashion with the weights W in order
to compute the updated weights W ′.

C. Accelerators for DNN Training

Previous work on accelerating the DNN training has focused
on leveraging the sparsity present in weights and activa-
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Fig. 3: The forward and backward pass steps for a single layer
of DNN training represented in a convolution view (middle)
and matrix operation view (right) with matrix dimensionalities
shown. The kernel size of the convolution filters is 1x1 for
presentation simplicity.

tions [11], [33], [44], [45]. TensorDash [33] accelerates the
DNN training process while achieving higher energy efficiency
via eliminating the ineffectual operations resulted from the
sparse input data. Eager Pruning [45] and Procrustes [44]
improve DNN training efficiency by co-designing the training
algorithm with the target hardware platform (“hardware-aware
training”). Insignificant DNN weights are pruned in the
middle of the DNN training process and ineffectual operation
involving zero weights can be eliminated without impacting
the final accuracy. In comparison, our approach applies BFP to
dynamically adjust the precision of DNN training, which is in
orthogonal to these methods which exploit value-level sparsity.

Multi-precision methods of reducing the computation of
DNNs have been explored in the literature. Stripes [26]
multiplies two 16-bit integers by only adding those shifted
multiplicands corresponding to the nonzero bits during DNN
inference. In the work, we use short 2-bit chunks of mantissas,
making a straightforward single clock bit-parallel implemen-
tation efficient compared to a bit-serial approach for DNN
training. Lee et al. [32] proposed using fine-grained mixed
precision (FGMP) of FP8-FP16, which represents some parts
of a tensor in FP8 and other parts in FP16. FAST uses both
2-bit and 4-bit mantissas, and iterates like FGMP on the low-
bitwidth hardware for performing the high-bitwidth arithmetics.
FAST performs an integer MAC for each partial product in a
BFP group, rather than an FP MAC as in FGMP.

III. OVERVIEW OF BFP WITH STOCHASTIC ROUNDING

In this section, we provide an overview of how we use BFP
under stochastic rounding (SR) in FAST to facilitate efficient
and accurate DNN training.

A. Quantization from FP to BFP under Stochastic Rounding

Figure 4 shows this quantization process for converting a
group of three FP values. First, in Figure 4a the largest exponent
in the group is found, which becomes the shared exponent for
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Fig. 4: (a) The max exponent across all values in the group is
found. (b) The mantissas fields are aligned based on differences
to the max exponent. (c) Stochastic noise is added to each
mantissa (for gradients only). (d) The low-order mantissa bits
are truncated to a fixed width.

the group. Then, in Figure 4b, the mantissas of each value are
aligned based on the difference between the exponent of each
value and the max exponent. Next, in Figure 4c, stochastic noise
is added for gradients (critically important for low bitwidth
mantissas). Finally, in Figure 4d, the low-order mantissa bits
are truncated to a specified mantissa bitwidth.

B. Dot Product under FP, INT, and BFP

In this section, we discuss the conversion and computation
costs of dot product (DP) under three number formats (BFP,
INT, and FP). We argue that BFP DP is less costly than FP
DP due to its use of shared exponents, and BFP DP is less
costly than INT DP because the former can achieve the same
accuracy as the latter with a smaller mantissa bitwidth.

Consider the DP of two vectors of length g (e.g., an activation
vector and a weight vector). The DP computation can be
broken into two parts: (Part M) g integer multiplications for
computing g partial products and (Part A) accumulation of g
partial products resulting from part M.

1) FP Conversion Cost (BFP DP versus INT DP): Before
performing BFP DP, we must first convert values in the two FP
input vectors into BFP values. After the DP is computed, we
need to convert the result to FP to add to an accumulation across
BFP groups. This conversion operation is an FP normalization
that involves bit shifts of the mantissa.

For the INT DP, we need to perform similar conversions
between FP and INT. Suppose that We use conventional uniform
quantization (UQ) for the conversion from FP to INT. Since the
scale factor is in FP, the INT conversion cost is much higher
than the BFP conversion. The conversion of the DP result from
INT to FP is an FP normalization, like the conversion of the
BFP DP result to FP.

2) Computation Cost (BFP DP versus FP DP): Figure 5
illustrates the dot product between two BFP groups of size g =
4. We see that BFP DP costs substantially less than FP DP for
three reasons. First, for part M, BFP DP just needs to perform
one exponent addition on the shared exponents of the two
input vectors. In contrast, FP DP requires g exponent additions.
Additionally, unlike FP DP, BFP DP does not perform FP
normalization after each of the g multiplications. Finally, for
part A, unlike FP DP, BFP DP does not need to align partial
products, as they are already aligned.
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Fig. 5: The dot product between two BFP groups can be
decomposed into fixed point multiplication between each pair
of values in the groups and exponent addition between the two
shared exponents.

3) Computation Cost (BFP DP versus INT DP): BFP can
have a much smaller mantissa bitwidth m (e.g., m = 4) than INT
(e.g., m = 12) while achieving similar classification accuracy
(Table II). Since the computational complexity of fixed point
multipliers scales in a quadratic fashion with bitwidth, for part
M, BFP DP costs much less than INT due to the reduced m.
But, BFP does incur a relatively small cost compared to INT
for adding the shared exponents between the BFP groups.

C. BFP Exponent and Mantissa Bitwidths

The number of exponent and mantissa bits in BFP play
different roles in determining the amount of quantization error
after conversion from FP to BFP. If the shared exponent
bitwidth is too small, then it may not be able to represent
numbers in the dynamic range of the group. If the mantissa
bitwidth is too small, then some values with smaller exponents
in a BFP group will have all mantissa bits shifted out of range
resulting in data loss (see the third value in Figures 4a and 4b
with m = 2).

Figure 6 presents the distribution of the difference in
exponents between the maximum exponent in a group and
all other exponents for three different group sizes (g = 8,16,32).
The weight, data, and gradient tensors are taken from layer 10
in ResNet-18 at the halfway point of the training on ImageNet
(other layers and DNNs generally follow the same trend). The
difference dictates the amount of shifting required to align
mantissas as depicted in Figures 4b. Large differences lead
to large worst-case quantization errors. When the difference
is larger than the mantissa bitwidth, all bits will be truncated.
Compared to the weights and activations, the gradients have a
much wider exponent disparity, leading to a larger quantization
error. This is why stochastic rounding (SR) for gradient
computations, as depicted in Figure 4c, is essential to achieve
high accuracy when using a low number of mantissa bits. We
notice that the mass of each distribution moves to the right
as the group size g increases, as indicated in the positions of
the red vertical line. Thus, increasing the g value will increase
truncation errors for the same mantissa bitwidth. In this paper,
we set g at 16 unless otherwise stated.

D. Stochastic Rounding (SR) of Gradients in Gradient Descent

In this section, we present an analysis and illustrations on
the working of SR in gradient descent for DNN training.
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Fig. 7: (left) Weight w is updated over 4 iterations using
gradients ∆1,∆2,∆3,∆4 computed in FP32 leading to a decrease
in loss. (right) Suppose that rounding of weight gradients
biases rounding each gradient down to smaller values and thus
smaller ∆ values. Then, these roundings lead to higher loss
over multiple iterations.

The analysis shows that for low-precision BFP with small
mantissa bitwidth m, applying stochastic rounding to gradients,
as illustrated in Figure 4c, can minimize the impact of rounding
on gradient descent performance.

Let E be the training loss of a DNN (e.g., E can be based
on cross entropy). Without loss of generality we assume in
this analysis that the learning rate η is 1. We consider use of
stochastic gradient descent (SGD) to minimize E using multiple
rounds of iterations. Consider any specific parameter w of
the neural network. For each iteration i, the backpropagation
algorithm computes the partial derivative ∇i = − ∂E

∂wi
and

updates w with the following rule:

wi+1 = wi +η∇i or ∆i = η∇i

where η is the learning rate and ∆i = wi+1−wi. We refer
to a collection of multiple iterations over all training data as
an epoch. In Figure 7 (left), we illustrate four iterations of
updating w from its initial value w0 to w1, w2, w3 and w4, using
full-precision floating point numbers FP32 without rounding.

1) Impact of rounding on weight updates: In Figure 7 (right),
we consider the scenario when we perform training iterations
using fixed point integers quantized from FP32. The diagram
illustrates that if the gradient at each of the four iterations is
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Updated values 
for weight w Updated values 

for weight w
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(c)  p(b-a)a b+ aqx =

Fig. 8: (a) Gradient x = 2/3 in quantization decision interval
[0,1]. (b) In FP32, each iteration uses FP32 gradient ∆ to
update w. (c) General decision interval [a,b] under SR. (d)
SR is expected to increment w the same amount as in (b) by
rounding up to 1 twice and down to 0 once.

rounded down, then the total weight increments ∆1+∆2+∆3+
∆4 will be reduced leading to a higher loss, compared to the
FP32 case without rounding. This is because the gradient ∇ at
each red dot corresponding to an iteration is rounded down to
a smaller value, causing a smaller weight increment ∆.

2) Use of stochastic rounding to minimize impact of rounding
on weight updates: We use SR to minimize the impact of
rounding on weight updates and the corresponding reduction
on loss.

Theorem 1: If the gradient ∇ remains the same over iterations,
then SR is expected to yield the same total weight increments
as FP32 without rounding, assuming that the stochastic noise
used by SR is full precision.

The assumption that gradients stay the same is just to
simplify the explanation below. The same argument can derive
the expected increment on a weight w over an iteration based
on the expected gradient value for that iteration, without having
to make the assumption of constant gradients.

To explain Theorem 1, we first consider a simple case where
we quantize a gradient x (= 2/3) in a quantization decision
interval [0,1], as depicted in Figure 8a. Under SR, x is rounded
to 0 and 1 with probability 1/3 and 2/3, respectively, reflecting
the distance of x to each endpoint. Note that over 3 iterations,
x is expected to round down to 0 once and round up to 1 twice.
Figure 8d illustrates that x is rounded to 1, 0 and 1 for iteration
1, 2 and 3, respectively. We note that SR increments w0 by
the same amount (i.e., in Figure 8c ∆1 +∆2 +∆3 = 2) towards
computing to w3, as the FP32 case, as depicted in Figure 8b.

We now explain Theorem 1 by considering a general case,
where we round a gradient x in a decision quantization interval
[a,b], as depicted in Figure 8c. In this case, we express the
weight gradient x as x = p(b− a)/q+ a for some p and q
with 0≤ p < q. (Note that if a = 0, b = 1, and p = 2, q = 3,
then Figure 8d depicts the scenario of Figure 8a.) Using SR,
x (= p(b− a)/q+ a) is rounded to a and b with probability
(b−x)/(b−a) and (x−a)/(b−a), respectively. Note that the
two probabilities sum to 1, as expected. Thus, each iteration is
expected to increment the weight value by a×(b−x)/(b−a)+
b× (x−a)/(b−a) = x, which is the same weight increment
under FP32 without rounding.
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The q value in Figure 8c specifies the precision that SR uses
itself. For example, for Figure 4c, q = 8 since we add in 3
stochastic noise bits before rounding, and 23 = 8.

IV. FAST STRATEGY FOR TRAINING

In this section, we describe our FAST strategy for DNN
training which varies the BFP precision of weights, activations,
and gradients based over the course of training. First, in Sec-
tion IV-A, we provide motivation for progressively increasing
the precision across both training iterations and DNN layers.
Then, in Section IV-B, we propose an approach to adaptively
increase the precision during training.

A. Progressive Precision Changes over DNN Training

Previous literature has demonstrated that adding zero-mean
Gaussian noise to the weight gradient ∇W can reduce overfit-
ting and improve the convergence of DNN training [35]. They
show that decreasing the variance of the noise over iterations
achieves better performance than using fixed Gaussian noise
throughout training. We hypothesis that a similar effect can be
achieved by adjusting the BFP precision of weights, activations,
and gradients from low to high precisions over training. To test
this, we compare two training schemes (using ResNet-20 on
CIFAR-10) that use different strategies for switching the DNN
training precision over time. In the Temporal High-to-Low
scheme, we use FP32 for weights, activations, and gradients
for the first half of training, and low-precision BFP with a
mantissa bitwidth of 3 and group size of 16 for the second
half of training. For the Temporal Low-to-High scheme, we
adopt the opposite approach by using low-precision BFP in the
first half of training and FP32 in the second half of training.
Figure 9 (left) shows the test accuracy of these two schemes
over the training process. The Low-to-High scheme achieves
a higher performance, which indicates that training is more
amenable to low-precision BFP in the early stages.

Additionally, during the backward pass of the training, the
BFP quantization error for the data gradient ∇O will have a
greater impact on the early layers than later layers. We perform
another experiment to show this impact by comparing against
two training schemes. In the Layerwise High-to-Low scheme,

Algorithm 1: Adaptive FAST DNN Training
Input: I is the total number of training iterations.

L is the total number of DNN layers.
Al , Wl , Gl are the activation, weight and gradient
tensor of layer l, respectively.
ε(l, i) is a threshold to determine the BFP precision.
BFP(X ,m) is a BFP quantization function that returns
X under BFP with an m-bit mantissa.

Output: Xq represents the BFP-quantized X.
1 for i← 1 to I do
2 for l← 1 to L do
3 for X ∈ [Al ,Wl ,Gl ] do
4 Compute the relative improvement r(X) for X .
5 if r(X)< ε(l, i) then
6 Set Xq = BFP(X, 2).
7 else
8 Set Xq = BFP(X, 4).

we use FP32 precision for the first ten layers, and low-precision
BFP with a mantissa bitwidth of 3 and group size of 16 for
later 10 layers. For the Layerwise Low-to-High scheme, we
apply the opposite precision setting by switching the training
precision between the first and second half of the DNN layers.
To eliminate the impact on the architectural difference, we
change the structure of ResNet-20 so that the first and the
second halves have the same weight filter layout. The results
shown in Figure 9 (right) indicate that applying low precision
in the early layers works better than later layers.

B. FAST Adaptive Training

Based on the insight of the prior section, we propose
an adaptive training strategy that progressively increase the
BFP precision across both training iterations and layer depth.
Algorithm 1 describes the mechanism of the FAST training
algorithm. FAST supports two precision levels by representing
the BFP mantissas with either 2 bits (low precision) or 4 bits
(high precision). For a given FP tensor X , FAST first evaluates
the relative improvement r(X) , defined by Equation 2, of
using a 4-bit mantissa compared to a 2-bit BFP mantissa.
If the relative improvement of using the higher precision
setting is smaller than a threshold (i.e., r(X) < ε), then a
4-bit mantissa does not offer significant improvement over a
2-bit mantissa. However, if the relative improvement is larger
than the threshold, then using a 4-bit mantissa will significantly
reduce the quantization error compared to a 2-bit mantissa.

To allow for an incrementally increasing BFP precision
across both layer depth and training iterations, the threshold
ε(l, i) is set to vary with the layer depth l and training iteration
i based on the following equation:

ε(l, i) = α−β
i
I
−β

l
L

(1)

where I and L are the total number of training iterations and
DNN layers, respectively. α and β are the hyperparameters
that specify the offset and the slope of the threshold function.
Equation 1 sets ε(l, i) to decrease gradually with both training
iteration and layer depth, so that higher precisions will be
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Fig. 10: Major components of the FAST system.

used as the training iteration and layer depth grow. We define
the relative improvement r(X) of using higher-precision BFP
(m = 4) compared to low-precision BFP (m = 2) as follows:

r(X) =
∑n |BFP(Xn,4)−BFP(Xn,2)|

∑n |BFP(Xn,2)|
(2)

where Xn denotes the nth element of X, and BFP(X ,m)
represents the quantized Xn with an m-bit mantissa. The
numerator of r(X) reflects the total difference between the
BFP values with high-precision and low-precision mantissas
across each element of X. These difference is further divided
by the summation of magnitudes of the BFP-quantized values
so that the scale of r(X) will be consistent across different
training iteration and DNN layers. Finally, the numerator
and denominator of r(X) are computed by summing the
BFP-quantized numbers across each element, which can be
implemented with low hardware cost. The expensive division
operation is only performed once between the two sums.

V. FAST SYSTEM

The major components of the proposed FAST system are
shown in Figure 10. We use a 2D systolic array (Section V-A)
to perform the matrix multiplications for both the forward and
backward passes of DNN training. The systolic array contains
systolic cells of FAST MAC (fMAC), discussed in Section V-B,
which support variable precision BFP. The memory subsystem
has three SRAMs used to store weights, activations, and
gradients, respectively. When performing matrix multiplication,
the systolic array data generator is used to skew input for
data synchronization in the systolic array. The accumulator is
used to buffer partial accumulations across multiple tiles (for
matrices that are larger than the systolic array). The output of
the accumulator is passed to the BFP generator (Section V-C),
which converts groups of FP values into BFP groups.

A. Systolic Array Operations

To support matrix transposition required during the back-
ward pass of training (See Figure 3), we have developed a
systolic array that can perform matrix multiplication involving
a transposed matrix operand without explicit transposition.
This allows for no extra data copying and thus reduces the
implementation overhead of the matrix transposition operation.

Multiplier

Adder 
tree
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FP generator

... x
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+
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Fig. 11: The design of FAST MAC (fMAC).
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Refer to Figure 3 for matrix notation.

In Figure 12, we illustrate how this systolic array operates for
each of the forward and backward pass matrix operations given
in Figure 3. For clarity, we show each systolic cell with single
INT values instead of a BFP group.

To compute output O for each layer (Figure 12a), the weights
W are first pre-stored in systolic cells. Then, the activation
A enters the systolic array from bottom and the output O
exits the systolic array from the right side (refer to Figure 3).
During the backward pass, to compute the activation gradients
∇A (Figure 12b), W is also pre-stored in the systolic array.
However, unlike the forward pass, with A entering from below,
the output gradients ∇O enter the systolic array from left and
the activation gradients ∇A are produced at the top of systolic
array. By changing the side that input enters the systolic array
while keeping the orientation of W fixed, we can compute
∇O×W T = ∇A without explicitly transposing W .

Finally, to compute the weight gradients ∇W (Figure 12c),
the systolic array is reconfigured to be accumulation stationary.
During the computation, the input activation A and output
gradient ∇O will enter the systolic array from left and below,
respectively, and the weight gradients ∇W are computed and
accumulated within each systolic cell. At the end of this
computation, the accumulated gradient in each systolic cell
will sum with the weight W to generate the updated weight W ′,
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which is then stored back in the weight SRAM. For optimizer
like Adam [28], additional hardware is required to compute
the first and second moments for the weight updates.

B. Design of FAST MAC for BFP

Each cell in the systolic array implements a fMAC, which
perform the DP between two BFP groups. Figure 11 shows the
design of a fMAC for a group size g= 4. A DP consists of fixed-
point multiplications between each pair of BFP mantissas for
values in the groups, which are performed by the multipliers in
the fMAC. The output generated by each multiplier is summed
using the adder tree. The FP generator takes the fixed point
summation from the adder tree to create the FP mantissa. The
shared exponents of the two BFP groups are added together
to create the FP exponent (refer to Figure 5). The resulting FP
value is adding to the FP accumulator which stores the partial
result spanning across many BFP groups.

Additionally, the fMAC can be reconfigured to support the
different operations of DNN training described in Section V-A
which may require matrix transposition. To compute the output
O during the forward pass (Figure 12a), the BFP shared
exponent and mantissas of W are first pre-stored in the fMAC
using the E0 and M0 ports, respectively. Then, the activation A
enter the fMAC via the same E0 and M0 ports to perform the
DP computation. The output O generated by this computation
exits to the right neighbor via output port Y0. To compute the
activation gradient ∇A during the backward pass (Figure 12b),
W is pre-stored in the same fashion, and the BFP output
gradients ∇O are passed into the multipliers via the E1 and
M1 input ports, with the output ∇A exiting to the neighbor
above via Y1. Finally, to compute the weight gradients ∇W
(Figure 12c), the output gradients ∇O and input activation A
enter the fMAC using the ports M1, E1 and M0, E0, respectively.
The accumulator output ∇W then loops back to be summed
with the pre-stored FP weights W .

To support BFP DP with variable precision, each DP is
processed in 2-bit mantissa chunks as shown in Figure 13.
Here, the mantissas bitwidths for two operands (X and Y )
are 4 bits and 2 bits, respectively. In the first round, the
fMAC computes the dot product between Y and the first 2-bit
chunk of the X (X1). The partial accumulation result is then
buffered for subsequent processing. In the second round, the
fMAC computes the dot product between Y and the second
2-bit chunk of X (X2) in order to finish the DP computation.
More iterations are required for higher mantissa bitwidth. For
example, multiplying a pair of BFP numbers with 4-bit and
4-bit mantissas translates to 4

2 ×
4
2 = 4 rounds. To account for

the difference in exponent magnitude between two chunks, the
BFP exponent of the second 2-bit chunk (X2) is decremented
by two. Note that this decrement is performed by the BFP
converter when it generates each 2-bit chunk, and therefore
fMAC is agnostic to these exponent difference across chunks.

C. BFP Converter

The BFP converter, shown in Figure 14, takes a group of
FP values and converts them into BFP following the process

fMAC

First round
Y

1 0 0 1 1
fMAC

1 0 0 1 1 0 1X

X1 X2

Y

X

Second round

1 0 0 1 1 0 1

0 1 0 0 1

Fig. 13: Variable precision fMAC operations.
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outlined earlier in Figure 4. The comparator consists of compare
and forward (C&F) blocks arranged in a tree structure. Each
C&F block takes a pair of FP exponents and forwards the
larger exponent to the next tree level. The largest exponent
will be output and used as the shared exponent (Figure 4a).
Then, a group of subtractors calculate the differences between
the shared exponent and each exponent in the group. The
shift blocks, which are implemented using Barrel shifters [39],
perform right shifts on each FP mantissa based on the exponent
difference for each value (Figure 4b). Then, to perform
stochastic rounding (Figure 4c), a group of 8-bit random binary
streams produced by the linear feedback shift register (LFSR)
are summed with the mantissas. Finally, the low-order bits
of the BFP mantissas are truncated (Figure 4d). The BFP
exponents and BFP mantissas will also be delivered to the
improvement computation block which computes the relative
improvement as defined in Equation 2.

D. Memory Layout for BFP Values

We have developed an efficient storage format for variable
precision BFP, where the shared exponent and BFP mantissas
are stored separately. Figure 15 provides an example for m =
4 and g = 2. The 2-bit chunks across all the mantissas in a
group are saved in the same memory entry for efficient access
during DP computation. The first 2-bit chunks of each BFP
mantissa (Figure 15a) are stored together in the same memory
entry (Figure 15b), followed by the second 2-bit chunks which
are saved in the next memory entry.

Under this storage scheme, each BFP group will be repre-
sented by e+g× m

2 ×3 bits, where e is the bitwidth of the BFP
exponent, g is the group size, m

2 is the number of 2-bit chunks
in an m-bit mantissa. An additional bit is required per mantissa
to represent the sign, leading to 3 bits per mantissa. In our
hardware system, e and g are set to be 3 and 16, respectively,
and m is 2 or 4 based on the current precision. This leads to an
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average of 3.2 (m = 2) and 6.2 (m = 4) bits to store each value,
which significantly reduces the storage overhead compared
with other formats we evaluate in Section VI. All outputs from
the BFP converter (Figure 14) are stored in BFP with 4-bit
mantissas divided into two 2-bit chunks. If Algorithm 1 selects
the 2-bit mantissa, then the low-order 2-bit chunk is discarded.

E. Training Workflow

Figure 16 summarizes the overall workflow of DNN training
using the FAST system. During the forward pass (Figure 16a),
the filter weights W in BFP format are first loaded and saved
into each fMAC (step 1). Next, the BFP activations A are
loaded from data SRAM into the systolic array (step 2). Each
systolic cell (fMAC) performs a partial DP for two BFP groups,
followed by FP accumulation spanning across many BFP
groups. The output O is then delivered to the BFP converter
(step 3), which converts these values back into BFP format
and stores them in the data SRAM for subsequent processing
(step 4). Additionally, the activations A must also be kept in
the data SRAM for the backward pass (Figure 16b-c).

To compute the activation gradients ∇A (Figure 16b), the
weights W are again pre-stored into systolic array (step 1).
Then, the output gradients ∇O are delivered to the systolic
array from the left (step 2). The results ∇A are produced at the
top of systolic array and are converted into BFP format (step
3) before being saved into the gradient SRAM (step 4). To
compute ∇W (Figure 16c), the input activation A and the output
gradient ∇O are delivered to the systolic array concurrently
(step 2). The results ∇W are produced within each systolic
cell and then they are used to generate the updated weight W ′.

Finally, the updated weights W ′ are converted into BFP and
stored in weight SRAM (step 3).

VI. TRAINING EVALUATION OF FAST

In this section, we evaluate FAST’s training performance
for DNNs. In Section VI-A, we visualize the FAST precision
adaptation over the course of training to show how FAST is able
to achieve faster training time by staying in a low-resolution
regime for a large portion of training. Next, in section VI-B,
we compare the accuracy performances of DNNs trained under
BFP against other commonly used FP and INT formats. We
also compare against three fixed BFP settings that do not
change over the course of training: LowBFP uses (e=3, m=2)
for all DNN weights, data, and activations, MidBFP uses (e=3,
m=3), and HighBFP uses (e=3, m=4). Finally, in Section VI-C,
we evaluate the performance of fixed BFP settings to show the
relative advantage of using FAST. All the CNNs are trained
with ImageNet for 60 epochs (120000 iterations). We use the
hyperparameter settings from the PyTorch website [2].

For Transformers, we use the 12-layer model with 12 heads
and a hidden size of 768. The Transformer is trained using
the Adam optimizer with a learning rate of 10−4, β1 = 0.9
and β2 = 0.999. The batch size is set to 16. We train on the
IWSLT14 German-English dataset [1] for 150 epochs. Finally,
we train YOLOv2 [41] on the PASCAL VOC2012 [18] dataset
with 120 epochs using a batch size of 64. We apply the SGD
optimizer with a initial learning rate of 10−3, dividing it by
10 at 60 and 90 epochs, the weight decay and momentum are
set to 0.0005 and 0.9. The α and β FAST hyperparameters in
Equation 1 are set to 0.6 and 0.3 for all the DNNs.

A. FAST Precision Adaptation

In this section, we visualize the precision changes during
the training of a DNN using the FAST-Adaptive algorithm
(Algorithm 1). Since the weights W , activations A, and gradients
G independently determine their BFP precision, there are
23 = 8 possible precision settings per layer using two different
BFP resolutions (m = 2 and m = 4). In the figure, we have
ordered these settings based on their computational costs when
deployed in the FAST system (discussed next in Section VII).
For instance, (W , A, G) of (4, 2, 2) has a slightly lower
computational cost than (2, 2, 4) due to how the gradients are
used multiple times during the backward pass (see Figure 3).
Figure 17 shows the BFP precisions of 5 layers in ResNet-18
on ImageNet change over the course of training under FAST.
As expected, we observe that the BFP precision grows across
both layer depths and training iterations.

B. Comparing Number Formats

Table II shows the validation accuracies for different DNN
models trained using a wide range of number formats. The IEEE
754 32-bit FP (FP32) generally achieves the best performance
(accuracy or BLEU) across all models. We find that bfloat16,
Nvidia Mixed-Precision (MP), MSFP-12 and HFP8 are able to
achieve similar performance as the baseline FP32 model for
all DNNs. Additionally, the HighBFP setting is also able to
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Model FP32 bfloat16 Nvidia MP INT8 INT12 MSFP-12 LowBFP MidBFP HighBFP HFP8 FAST
ResNet-18 68.60 68.55 68.57 65.53 68.51 68.13 63.10 68.10 68.57 68.53 68.52
ResNet-50 75.17 75.12 75.16 71.01 75.03 74.79 72.10 73.98 75.13 75.07 75.11

MobileNet-v2 68.27 68.22 68.28 65.97 68.16 68.11 64.42 66.93 68.20 68.11 68.17
VGG-16 69.74 69.71 69.70 64.50 69.33 69.32 64.10 69.08 69.79 69.62 69.78

Transformer 35.41 35.39 35.42 29.18 35.27 35.33 34.22 35.40 35.43 35.38 35.40
YOLOv2 73.36 73.32 73.35 61.12 73.07 72.93 65.37 71.04 73.30 72.88 73.28

TABLE II: The validation accuracy (CNNs), test BLEU (Transformers) and test mAP
(YOLOv2) for number formats outlined in Figure 2.

Component Area Power
Systolic array 47.79% 15.61 W
BFP converter 4.56% 1.77 W
Accumulator 6.63% 2.19 W
Systolic array data generator 0.68% 0.69 W
Memory subsystem 40.34% 3.37 W

TABLE III: Area and power break-
down of the FAST system.
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Fig. 17: FAST progressively increases the BFP preci-
sion across both layer depth and iterations during the
training process.
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achieve comparable accuracy. HighBFP with m = 4 represents
a substantial saving compared to FP32 with m = 23. The
LowBPF and MidBFP settings with m = 2 and m = 3 loss
4− 5% and 1− 2% in accuracy across all CNNs compared
to the FP32 baseline. The INT-8 setting has an even larger
reduction in accuracy, losing 4-6% compared to the baseline,
even though it has more mantissa bits over HighBFP. For fixed
point to achieve a similar level of performance as the baseline
FP model requires an INT-12 with 11 mantissa bits. As we
note in Section VII, fixed point multipliers used to perform
this computation incur cost quadratically with the mantissa
bitwidth, making large mantissa bitwidths costly to implement.
By comparison, our FAST-Adaptive approach can achieve a
comparable performance to FP32 across all the DNNs.

C. BFP Hyperparameter Sensitivity

In this section, we investigate the impact of the group size
g and mantissa bitwidth m on the DNN training accuracy.
Figure 18 shows the validation accuracy on ResNet-18 for
different BFP configurations settings. The three curves represent
different group size configurations (i.e., g = 8, g = 16, and
g = 32) and the x-axis corresponds to varying the number of
mantissa bits (i.e., m = 2, m = 3, m = 4 and m = 5) for each
group size. For a given mantissa bitwidth, a smaller group size
(e.g., g = 8) is generally able to achieve a higher accuracy than
a larger group size (e.g., g = 32). However, a smaller group
size has some additional implementation overhead due to more
FP exponent additions as each shared exponent spans fewer
elements in a smaller group. Overall, we observe that a group
size of g = 16 with m = 4 produce the optimal performance,
and we use this setting as our baseline for FAST training.

VII. HARDWARE EVALUATION OF FAST

In this section, we evaluate the hardware performance of the
FAST system described in Section V. We have synthesized our
system using the Synopsys Design Compiler [5] with 45nm
NanGate Open Cell Library [6] and CACTI [4]. CACTI is used
to simulate the performance of the memory subsystem and
Synopsys Design Compiler is used for all other subsystems
shown in Figure 10. For our FPGA evaluation, we use a Xilinx
VC707 FPGA evaluation board. The FAST system contains
a 256× 64 systolic array of fMAC cells. Gradient SRAM,
weight SRAM and data SRAM each consist of 128 16kB
memory banks. The FAST system runs at 500 MHZ. Table III
summarizes the area and power breakdowns of FAST.

A. Evaluation of fMAC

We evaluate the efficiency of our fMAC design by comparing
it against FP and INT MAC designs. For FP MACs, we
implement them with bfloat16, FP16 and HFP8. FP16 is used
by Nvidia MP. An FP MAC performs multiply-accumulate
operations between two FP numbers followed by a 32-bit FP
accumulation. For INT MACs, we implement them with 8-bit
(INT-8) and 12-bit (INT-12) variants. Refer to Figure 2 for
details on each number format. Two floating point formats are
used by HFP8 during training: 4-bit exponent/3-bit mantissa
for the forward pass and 5-bit exponent/2-bit mantissa for the
backward pass. For a hardware cost comparison to FAST, we
implement a MAC that supports a 4-bit exponent/2-bit mantissa,
so that the hardware cost is strictly less than either floating
point format used by HFP8. Since a single fMAC performs a
BFP DP across two groups of g = 16 numbers, we use g = 16
for all other MAC designs for a fair comparison.

Table IV provides an ASIC evaluations in terms of area and
power consumption and FPGA resource consumption for all
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Fig. 20: The normalized training time and energy cost comparisons under different number formats, which are color coded as
in Figure 19. N/A means the target accuracy is never reached for a given setting.

MAC designs. Area consumption is normalized by the area
of our fMAC design. The fMAC achieves a superior area and
power consumption compared to the other MAC designs. The
main advantage of the fMAC over the INT MAC designs
is the significantly reduced mantissa bitwidth, leading to a
substantial reduction in cost of the fixed point multipliers.
When comparing fMAC to the FP MACs, the expensive FP
accumulator is amortized over the group for fMAC instead of
between each pair of elements for FP MACs.

B. Training Speedup of FAST Strategies

In this section, we evaluate the performance of the FAST
system by comparing against the other DNN training systems
implemented with systolic arrays using different number
formats. We configure each system for a given number format
to have the same total area as our FAST system. Specifically,
with the same area, we are able to fit a DNN training system
with a systolic array of 245×245 HFP8 (4-bit exponent and
2-bit mantissa) MACs, 230×230 MSFP-12 MACs, 210×210
INT-12 MACs, 180×180 bfloat16 MACs and 150×150 FP16
MACs, respectively. Note that our FAST system contains a
256×64 fMAC systolic array, and each fMAC can perform
multiply-accumulate operations for 16 BFP numbers within
one cycle. The design for other major components (i.e.,
accumulator, numerical converter, systolic array data generator
and memory subsystem) of the baseline DNN systems are
modified according to a given MAC design. For example, for
bfloat16, a bfloat16 converter is used instead of a BFP converter.
All designs run at a 500MHz clock frequency.

We use Time-to-Accuracy (TTA) [12] as the evaluation
metric to compare different approaches. Figure 19 shows the
TTA for ResNet-18 models trained under various number
formats to achieve a validation accuracy of 68% on ImageNet.
The training time is normalized by the FAST-Adaptive model
which achieves 68% the fastest. Some settings that were unable
to achieve 68% validation accuracy, such as INT8 and LowBFP,
were omitted. The results are measured by performing a single
round of forward pass and backward pass with a input mini-
batch of size 256. The evaluation results are generated based
on the computation required for all convolutional and fully
connected layers. Normalization and Activation layers are not
considered in the cost analysis of this paper. Prior work suggests
that activations and batch normalization take less than 5% of

TABLE IV: ASIC area and power comparison and FPGA
resource consumption for different MAC designs.

ASIC FPGA
MAC Design Area Power LUT FF
fMAC 1× 0.885mW 269 140
16× INT-8 3.8× 2.241mW 498 195
16× HFP8 4.1× 2.406mW 527 220
16× INT-12 5.6× 2.920mW 730 273
16× bfloat16 9.6× 3.869mW 1305 684
16× FP16 10.6× 4.474mW 1514 753

total running time [19], and a small amount of power relative
to the systolic array and other components [37], [40].

Generally, we see that FP32 is significantly slower than
reduced/mixed precision formats such as bfloat16 and Nvidia
MP. However, the floating point accumulations required for
each MAC using these formats introduces overhead compared
to fixed point of BFP formats. The MSFP-12 achieves the best
performance of all prior work. Our proposed FAST schemes
outperform MSFP-12 by more than 2× by using lower mantissa
and exponent bitwidths and switching to a higher precision in
the later stage of training.

Figure 20 depicts the normalized training time and energy
cost for all evaluation DNNs to reach a target accuracy or
BLEU. We note that performance trend and performance gain
of FAST-Adaptive are consistent across models, with prior
reduced/mixed precision formats outperforming FP32 by a
factor of 2-3× and our proposed BFP formats achieving an
additional 2-3× improvement.

VIII. CONCLUSION

The FAST system proposed in this paper uses block floating
point (BFP) to support low-precision arithmetic to reduce DNN
training time, power consumption, and hardware requirements.
With FAST, we exploit an observation that earlier layers and
training iterations can afford larger error margins, making them
amenable to efficient low-precision computation.

We empirically demonstrate a 2-6× speedup in training
over prior work based on mixed-precision or BFP number
systems while achieving similar accuracy. FAST’s superior
performance is due to our architectural choice of using the BFP
number system, use of stochastic rounding in BFP, and modular
fMAC design to support multiple precisions. This work shows
that variable precison BFP with stochastic rounding offers a
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promising strategy in speeding up training and improving its
efficiency. As DNN training is now often distributed across
multi-chip systems [3], [25], future work is to study how well
FAST could scale in such a multi-chip deployment.
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P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Dawnbench: An end-to-
end deep learning benchmark and competition,” Training, vol. 100, no.
101, p. 102, 2017.

[13] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neu-
ral networks with low precision multiplications,” arXiv preprint
arXiv:1412.7024, 2014.

[14] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems, 2015, pp. 3123–
3131.

[15] B. Darvish Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers, K. Ovtcharov,
A. Vinogradsky, S. Massengill, L. Yang, R. Bittner, A. Forin, H. Zhu,
T. Na, P. Patel, S. Che, L. Chand Koppaka, X. SONG, S. Som,
K. Das, S. T, S. Reinhardt, S. Lanka, E. Chung, and D. Burger,
“Pushing the limits of narrow precision inferencing at cloud scale
with microsoft floating point,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
10 271–10 281. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248–255.

[17] M. Drumond, T. Lin, M. Jaggi, and B. Falsafi, “Training dnns with
hybrid block floating point,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18.
Red Hook, NY, USA: Curran Associates Inc., 2018, p. 451–461.

[18] M. Everingham and J. Winn, “The pascal visual object classes challenge
2012 (voc2012) development kit,” Pattern Analysis, Statistical Modelling
and Computational Learning, Tech. Rep, vol. 8, p. 5, 2011.

[19] B. Fleischer, S. Shukla, M. Ziegler, J. Silberman, J. Oh, V. Srinivasan,
J. Choi, S. Mueller, A. Agrawal, T. Babinsky, N. Cao, C.-Y. Chen,
P. Chuang, T. Fox, G. Gristede, M. Guillorn, H. Haynie, M. Klaiber,
D. Lee, S.-H. Lo, G. Maier, M. Scheuermann, S. Venkataramani,
C. Vezyrtzis, N. Wang, F. Yee, C. Zhou, P.-F. Lu, B. Curran, L. Chang,
and K. Gopalakrishnan, “A scalable multi- teraops deep learning processor
core for ai trainina and inference,” in 2018 IEEE Symposium on VLSI
Circuits, 2018, pp. 35–36.

12

https://paperswithcode.com/sota/machine-translation-on-iwslt2014-german
https://paperswithcode.com/sota/machine-translation-on-iwslt2014-german
https://github.com/pytorch/examples/blob/master/imagenet/main.py
https://github.com/pytorch/examples/blob/master/imagenet/main.py
https://tesla-cdn.thron.com/static/SBY4B9_tesla-dojo-technology_OPNZ0M.pdf?xseo=&response-content-disposition=inline%3Bfilename%3D%22tesla-dojo-technology.pdf%22
https://tesla-cdn.thron.com/static/SBY4B9_tesla-dojo-technology_OPNZ0M.pdf?xseo=&response-content-disposition=inline%3Bfilename%3D%22tesla-dojo-technology.pdf%22
https://tesla-cdn.thron.com/static/SBY4B9_tesla-dojo-technology_OPNZ0M.pdf?xseo=&response-content-disposition=inline%3Bfilename%3D%22tesla-dojo-technology.pdf%22
https://github.com/HewlettPackard/cacti
https://github.com/HewlettPackard/cacti
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
http://www.nangate.com/?page_id=2325
http://www.nangate.com/?page_id=2325
https://www.researchgate.net/publication/224567215_Single-Event_Effects_on_Ultra-Low_Power_CMOS_Circuits
https://www.researchgate.net/publication/224567215_Single-Event_Effects_on_Ultra-Low_Power_CMOS_Circuits
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf


[20] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A configurable
cloud-scale dnn processor for real-time ai,” in Proceedings of the
45th Annual International Symposium on Computer Architecture,
ser. ISCA ’18. IEEE Press, 2018, p. 1–14. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00012

[21] “Bfloat16: The secret to high performance on cloud tpus,”
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-
the-secret-to-high-performance-on-cloud-tpus, Google, accessed:
2021-03-29.

[22] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference
on Machine Learning, 2015, pp. 1737–1746.

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low precision
weights and activations,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 6869–6898, 2017.

[24] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[25] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,
and D. Patterson, “A domain-specific supercomputer for training deep
neural networks,” Communications of the ACM, vol. 63, no. 7, pp. 67–78,
2020.

[26] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on.
IEEE, 2016, pp. 1–12.

[27] S. Kapur, A. Mishra, and D. Marr, “Low precision rnns: Quantizing rnns
without losing accuracy,” arXiv preprint arXiv:1710.07706, 2017.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.
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