
CrAM: A Compression-Aware Minimizer

Alexandra Peste1∗ Adrian Vladu2 Eldar Kurtic1

Christoph H. Lampert1 Dan Alistarh1,3

1Institute of Science and Technology Austria (ISTA) 2CNRS & IRIF 3Neural Magic, Inc.

Abstract
Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization,

before they can be deployed in practical settings. In this work we propose a new compression-
aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order
to produce models whose local loss behavior is stable under compression operations such as
pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single
step, without significant accuracy loss. Experimental results on standard benchmarks, such as
residual networks for ImageNet classification and BERT models for language modelling, show that
CrAM produces dense models that can be more accurate than the standard SGD/Adam-based
baselines, but which are stable under weight pruning: specifically, we can prune models in
one-shot to 70-80% sparsity with reasonable (≤ 1%) accuracy loss, which is competitive with
gradual compression methods. Additionally, we show that CrAM produces sparse models which
perform well for transfer learning, and that it also works for semi-structured pruning patterns
supported by GPU hardware.

1 Introduction
The massive recent progress of deep learning models has been accompanied by an increase in
computational costs (Thompson et al., 2020). In turn, this has led to significant interest in model
compression techniques in order to reduce these costs. For many existing models, compression
techniques such as distillation (Hinton et al., 2015), pruning (Hoefler et al., 2021) and quantization
(Gholami et al., 2021) can usually reduce the number of parameters or FLOPs of a given model by
up to an order of magnitude with relatively little accuracy loss. However, performant compression
still usually requires re-training or fine-tuning the model separately for each compression target,
provided by the user as a target sparsity and/or quantization level. In turn, this compression process
can be cumbersome and error-prone, as it requires additional computation and hyper-parameter
tuning for each run.

In this work, we propose Compression-Aware Minimization (CrAM), a method for training
neural networks, which results in models that are easily compressible one-shot, while still being
highly-accurate. Specifically, CrAM enables training a single (dense) model, which can later be
compressed to different target levels, with minimal or no recalibration. Such flexibility is desirable,
as models can be trained once, and then deployed on multiple devices, with different specifications.
Having a single model that can be easily configured to meet the computational requirements of a

∗Correspondence to: alexandra.peste@ist.ac.at

1

ar
X

iv
:2

20
7.

14
20

0v
3

 [
cs

.L
G

]
 3

1
O

ct
 2

02
2

specific device can both reduce the overall computational cost, and also allow easier customization
to individual devices.

CrAM is loosely-inspired by the recently-introduced sharpness-aware minimizer (SAM) (Foret
et al., 2021), which trains models that potentially converge to flatter minima, leading to better
generalization compared to SGD-type baselines, by biasing the process towards minima of uniformly
low loss. Multiple subsequent works have investigated and improved upon the original SAM algorithm,
by either obtaining better generalization (Kwon et al., 2021), or by reducing the computational costs
of SAM training (Liu et al., 2020; Du et al., 2022a). We are the first to carry over this idea to the
task of obtaining compressible models. Roughly speaking, CrAM works by optimizing not against the
original “dense” model, but over a compression projection applied to the intermediate model iterate,
at every optimization step. Thus, the CrAM update aims to bias optimization towards iterates that
have both low loss and are robust under one-shot compression. Similarly to SAM, CrAM is simple
to implement as part of a regular training loop and has a single scaling hyper-parameter, for which
we provide a well-performing default value. We detail the CrAM algorithm and provide a theoretical
motivation leveraging fundamental results in robust optimization (Danskin, 2012) in Section 3.

To complement our algorithmic contribution, we perform an extensive experimental analysis
of CrAM. We mainly focus on compression via weight pruning, but we also show that CrAM
is compatible with weight quantization. Generally, CrAM models trained on large-scale image
classification or language modelling tasks can improve over the dense baseline performance, while
being very robust to one-shot pruning, at different sparsity levels. For image classification, CrAM can
train a highly-accurate dense ResNet50 model on ImageNet, that can be pruned in one-shot to 80%
and 90% sparsity, and is competitive in terms of accuracy relative to state-of-the-art gradual pruning
methods, following an inexpensive Batch Normalization re-tuning step on a small calibration set.

Moreover, we show that full CrAM training is not necessary for good performance: specifically,
a short CrAM finetuning period is sufficient to substantially improve one-shot pruning accuracy.
For instance, we used CrAM to transfer the standard BERT-base model (Devlin et al., 2019) on
the SQuADv1.1 question-answering task (Rajpurkar et al., 2016), and obtained models that are
both more accurate and more compressible than those obtained with standard optimizers, such as
Adam (Kingma and Ba, 2015) or SAM (Foret et al., 2021). In addition, we noticed that a short
(≤ 2 epochs) finetuning of the sparse model can provide substantial additional improvements: on
the above task, the 80%-sparse CrAM finetuned model reaches higher accuracy than the highly-
competitive gradual pruning methods PLATON (Zhang et al., 2022) and Movement Pruning (Sanh
et al., 2020), at a fraction of the training budget.

Further, CrAM lends itself to several extensions: it can be used with different layer-wise sparsity
distributions, semi-structured N:M sparsity patterns, and one-shot pruning techniques. Sparse
CrAM models can be successfully used for sparse transfer learning, where they can perform better
on a wide range of “downstream” target tasks, even when compared to pruning methods which
adapt to the downstream task (Chen et al., 2021a). Lastly, we also provide evidence that the CrAM
update can produce models that are robust to quantization.

Similar to SAM (Foret et al., 2021), one limitation of our method is the added computational
cost, as it requires an additional backwards pass for the model perturbation. This can be addressed
by only performing limited finetuning via CrAM instead of full retraining, or by only performing a
regular optimization step for a fraction of the time, both of which we show to have a limited impact
on accuracy. Moreover, our approach is also compatible with efficient SAM-type updates (Liu
et al., 2020; Du et al., 2022a). We also provide a well-performing variant of CrAM that uses sparse

2

gradients, which could be leveraged by frameworks with support for sparse back-propagation.

2 Related Work
We describe in this section some of the recent research directions that have inspired the development
of our method, together with existing literature focused on solving similar problems.

Sharpness-Aware Minimization (SAM). The recently introduced SAM optimizer (Foret et al.,
2021) aims to improve the generalization of deep neural networks, by encouraging the minimization of
loss sharpness; this in turn should lead to flatter local minima, with better generalization properties.
The authors show that SAM-trained models have higher validation accuracy compared to vanilla
SGD-type baselines, and their performance continues to improve with prolonged training; this
suggests that SAM models are less prone to overfitting. Moreover, the authors of Foret et al. (2021)
show that SAM models can also be successfully used for transfer learning. One important drawback
of SAM is its computational overhead, as it requires twice as many forward-backward passes through
the network. Subsequent work has focused on reducing computational cost by, for example, reducing
the frequency of the extra gradient steps (Liu et al., 2022), computing the perturbations on a subset
of the parameters (Du et al., 2022a), or by proposing a new trajectory loss to replace the sharpness
definition (Du et al., 2022b). We draw inspiration from properties of the initial SAM method
proposed by Foret et al. (2021). Instead of attempting to minimize the maximum local increase loss
(sharpness), our goal is to minimize the maximum local increase in loss due to compression.

Training prunable networks. The increasing scale of deep neural networks have made their
deployment to edge devices dependent on compression techniques, such as quantization and/or
pruning. While post-training quantization can be an efficient and successful technique for quantizing
models without any retraining (Frantar and Alistarh, 2022), in the case of pruning the gold standard
is still training a separate model for every target sparsity level (Zhu and Gupta, 2017; Singh and
Alistarh, 2020; Evci et al., 2020; Peste et al., 2021); the latter can be an expensive procedure, which
would still rely on powerful computational resources to obtain the sparse models in the first place.
A potential solution would be training a single dense model, which either contains multiple smaller
ones that can be easily deployed, or which is itself prunable at multiple sparsity levels, without
additional retraining. For example, the “once-for-all” (OFA) framework (Cai et al., 2019) can train
a large network that contains multiple specialized sub-nets, adapted to different resource constraint
devices. However, obtaining the large OFA network is extremely expensive, and requires intensive
finetuning to ensure a good performance for the sub-nets. A similar idea that also requires extensive
finetuning has been explored for automatic speech recognition (Wu et al., 2021).

An orthogonal direction is to obtain “slimmable neural networks” (Yu et al., 2019; Yu and Huang,
2019b,a), by training a single model that can be executed at different widths; this is usually achieved
by performing multiple backpropagations using all the predefined widths, at each optimization step,
and by carefully considering the Batch Normalization layers. Related to one-shot pruning, Only
Train Once (OTO) (Chen et al., 2021b) has been proposed as a framework for structured pruning, to
train a large model that is easily slimmable one-shot. While we obtain better results than OTO for
the same sparsity level, the two methods are not directly comparable, since we focus on unstructured
sparsity. Morover, CrAM modifies the optimization step such that the resulting dense model is
both highly accurate, and robust to post-training one-shot pruning, without retraining.

3

Our work is more closely related to Miao et al. (2022); Zimmer et al. (2022), which propose
leveraging Stochastic Frank-Wolfe (SFW) (Reddi et al., 2016) to encourage the weights to lie in
a convex hull spanned by sparse vectors; this would make the model prunable one-shot, without
any finetuning. The methods proposed in Miao et al. (2022); Zimmer et al. (2022) result in highly-
prunable models on relatively-small tasks; specifically, their experimental analysis is limited to image
classification on small datasets and architectures with many redundancies (e.g. VGG-16 (Simonyan
and Zisserman, 2014) on CIFAR-10). CrAM is able to match or outperform these methods in
the same setting: for instance, CrAM can prune VGG-16 trained on CIFAR-10 in one-shot to
95% sparsity without accuracy loss, outperforming SFW by more than 2% Top-1 acuracy. More
importantly, we show that CrAM produces models compressible in one-shot at both ImageNet scale
and BERT language modeling scale. Remarkably, with one-shot pruning CrAM can offer competitive
performance to gradual pruning methods, whether they are designed for CNNs (Kusupati et al.,
2020; Lin et al., 2020) or for language modelling (Sanh et al., 2020; Zhang et al., 2022).

3 The Compression-Aware Minimizer (CrAM)

3.1 Background

We now give an overview of our method, together with the corresponding algorithm and general-
izations. One of the main goals of CrAM is to train models that are “compressible” in one-shot,
following training, via sparsity or quantization. In what follows, we denote C a compression
operator, for example Top-K, where only the highest K absolute values of a tensor are kept, while
the rest are set to 0. We say that a model is easily compressible if small perturbations do not
affect its performance after compression. To enforce this during training, we optimize against the
perturbation which has the most significant impact on the compressed model. We want to minimize
the “compression-aware” (CrAM) loss, defined as:

LCrAM(θ) = max
‖δ‖≤ρ

L(C(θ + δ)), (1)

where θ is the vector of model parameters, L is the regular cross-entropy loss and δ is a norm-
bounded perturbation. Unless otherwise stated, we employ the `2-norm throughout the rest of the
paper.
We approximate maxδ L(C(θ + δ)) by taking a gradient ascent step in the direction of the current
update, followed by a projection using the compression operator. This is inspired by the iterative hard
thresholding (IHT) algorithm used for optimizing functions under sparse constraints (Blumensath
and Davies, 2008; Foucart, 2011, 2012). To obtain the gradient with respect to the parameters, we
employ a straight-through estimator, by using instead the gradient under the perturbation.

This gives us the following update for minimizing the CrAM loss:

θ̃t = C(θt + ρ · ∇L(θt)) θt+1 = θt − η∇L(θ̃t) . (2)

We note that solely optimizing the CrAM loss cannot offer guarantees for the performance of the
dense model. Alongside improving robustness to compression, maintaining the quality of the dense
model is one of the prerequisites of our method; therefore, we propose to also explicitly optimize
for the performance of the dense model. Specifically, we optimize instead the following composite
CrAM+ loss function:

LCrAM+(θ) = L(θ) + LCrAM(θ) . (3)

4

Algorithm 1 Compression-Aware Minimization (CrAM)
Require: Compression methods C = {C1, C2, . . . , CM}, training data S, training iterations T , learning rate

η, perturbation step size ρ
1: Initialize the weights θ0
2: while t ≤ T do
3: Sample batch x ∈ S
4: Compute loss L(θt;x) and gradient gt = ∇L(θt;x)
5: Uniformly choose a compression method C ∈ C
6: Get perturbed weights θ̃t = C(θt + ρgt)
7: if C = Top-K then
8: LetMt be the linear projection operator onto the support of the largest K coordinates of |θt + ρgt|,

such that θ̃t = Mt(θt + ρgt)
9: g̃t = Mt∇L(θ̃t;x)

10: else
11: g̃t = ∇L(θ̃t;x)
12: end if
13: if use CrAM+ then
14: g̃t ← g̃t + gt

15: end if
16: Update the weights using a gradient descent step: θt+1 = θt − η · g̃t

17: end while
18: return θT

This can be achieved with a simple modification to the CrAM update, at no extra cost,
by simply adding the gradient ∇L(θt), before the next update of the parameters θt+1. For
θ̃t = C(θt + ρ∇L(θt)), the CrAM+ update is the following:

θt+1 = θt − η · (∇L(θ̃t) +∇L(θt)) . (4)

We note that we can add different regularization terms to the objective in Equation 3; for
example, in our experiments we use weight decay, as it is standard for training image classification
models.

3.2 Theoretical Justification of the CrAM Update

To derive the CrAM update, and justify the choices made in designing our training method, we start
from the optimization objective defined in Equation 1. As our goal is to minimize the CrAM loss
LCrAM, we use gradient descent. Using this loss complicates our objective, as it now includes an inner
maximization problem, together with a potentially problematic compression operator. However,
under mild assumptions we can efficiently estimate a “fake” gradient which gives a descent direction.

To do so we rely on a well-known theorem from robust optimization (Danskin, 2012), which allows
one to obtain descent directions for min-max objectives under a broad range of assumptions. Using
Danskin’s theorem (Theorem 1 from Appendix D.1) we obtain that by computing the maximizer of
the inner problem

δ∗ = arg max
‖δ‖≤ρ

L(C(θ + δ)) , (5)

and letting φ = θ + δ∗, which compresses to the extrapolated iterate θ̃ = C(φ), we obtain a descent
direction −∇L(C(φ)). Implementing this approach faces two difficulties – first, to compute the

5

gradient we must back-propagate through the composition of functions L(C(·)), which may cause
trouble since C is not necessarily differentiable; second, and more importantly, it is unclear how to
solve the inner maximization problem.

To address the first issue, we may choose to use a straight-through gradient estimator (Bengio
et al., 2013), which permits us to only backpropagate through L, and use ∇L(θ̃) instead of the true
gradient. To increase precision, in the case where compression is performed via Top-K we interpret
C as a “mask” operator M which zeroes out a subset of coordinates dependent on φ. Since except
for articulation points, Mt is constant and does not change as the argument varies, we approximate
∇L(C(φ)) ≈M∇L(Mφ) = M∇L(θ̃).

To address the second issue, rather than exactly maximizing the inner problem, we instead
seek a good enough maximizer using a standard iterative method. For this, we choose projected
gradient ascent, which provides theoretical guarantees, even when the projection is performed onto
non-convex domains (Peste et al., 2021). For instance, if the compression operator is magnitude
pruning, this becomes the iterative hard thresholding (IHT) method, frequently employed in the
sparse recovery literature (Blumensath and Davies, 2008). Thus, to reach a good iterate within this
specific domain, in practice we perform a single step of (projected) gradient ascent, which matches
the IHT iteration:

θ̃t = C (θt + ρ · ∇L(θt)) . (6)

In Appendix D, we provide a full re-derivation of the CrAM update in Equation 2 under fairly
reasonable assumptions on the objective function, along with a detailed discussion on the necessity
of these assumptions. As a side result, we also obtain a simple re-derivation of the SAM update.

3.3 Implementation Details and Extensions

Multiple compression types. CrAM can be used to train models that are robust to multiple
types of compression operators. This can be enforced by choosing between multiple compression
projections at each CrAM optimization step. Examples include pruning using different sparsity
levels or quantizing at different precisions. We illustrate the general CrAM algorithm which handles
multiple compression operators, and includes the explicit optimization of the dense model, in
Algorithm 1. In our experiments, we found that applying the CrAM+ update with a different
randomly chosen compression at each optimization step typically achieves a good trade-off between
a high dense model accuracy and robustness to multiple one-shot compression schemes post-training.
When optimizing for robustness against sparse perturbations, we use the Top-K operator at each
step, and choose the sparsity level uniformly at random among a set of predefined values.

Addressing the computational overhead of CrAM. Similar to the original SAM update,
CrAM requires twice as many forward-backward passes, compared to a regular training cycle. In the
case of TopK-CrAM, we can reduce this overhead, by making use of the sparsity in the intermediate
updates. Furthermore, we found that using only the gradients from the support of θ̃t in ∇L(θ̃t)
improves both the resulting dense model obtained with TopK-CrAM, as well as its robustness to
one-shot pruning. This observation is motivated by the fact that the straight-through (Bengio et al.,
2013) gradient estimator using the identity function is often times suboptimal (Yin et al., 2019), and
better straight-through estimators can be defined using different functions. As seen in Section 3.2,
we can assume, via Danskin’s theorem (Danskin, 2012), that we can obtain descent directions for
LCrAM(θt) by evaluating ∇L(C(φt)), where φt is the extrapolated point φt = θt + ρ∇L(θt). To

6

evaluate the gradient, we may use a straight-through estimator. For Top-K, C is as an operator Mt

which zeroes out a subset of coordinates dependent on φt. Provided that Mt is constant and does
not change as the argument varies, we can approximate ∇L(C(φt)) ∼Mt∇L(Mtφt). As both the
iterate and gradient estimator are sparse, this implies a theoretical speed-up.

Alternative Updates. We note that alternative compression-aware updates can be derived. For
example, by following similar derivations to those developed for SAM (Foret et al., 2021), we get
θ̃t = C

(
θt + ρ ∇L(C(θt))

‖∇L(C(θt))‖

)
. We call this update Compressed-SAM (C-SAM). We observed that

training with C-SAM can also result in models that are robust to one-shot pruning, but typically the
accuracy of the resulting dense models is lower, compared to training with CrAM. Moreover, training
with C-SAM cannot offer guarantees for the performance of the dense model. While with CrAM we
can optimize the dense model loss for free (i.e. using CrAM+), with C-SAM optimizing for the dense
model explicitly would require a third forward-backward pass at each training step. Additionally, we
examine the importance of the extra gradient step in CrAM, by comparing against simply applying
the Top-K operator to the parameters. We provide an ablation study in Appendix B.1.

Statistics Correction. It is well-known (Hubara et al., 2021; Frantar and Alistarh, 2022) that
pruning weights in a single step at high sparsity levels can have a large negative effect on normalization
layers, due to a mismatch between layer statistics, e.g. the running mean and variance of BatchNorm
layers, computed during training, and those of the pruned model. To correct for this, following prior
work, we keep a subset of randomly chosen 1000 training samples (e.g. for ImageNet one sample per
class), to which we apply standard training augmentations, and which are used post-pruning for
resetting the Batch Norm statistics of the sparse model. We note that this procedure, which we refer
to as BatchNorm Tuning (BNT) is very inexpensive, and does not finetune any other parameters of
the model. Furthermore, during CrAM training on image classification models we only track the
BatchNorm statistics on the dense model, before applying the compression perturbation. In the
case of BERT models, we do not apply any statistics corrections.

4 Experiments
Our experimental validation mainly focuses on sparsity, obtained by applying the Top-K operator,
in the context of CrAM (i.e. TopK-CrAM). We denote the CrAM runs by the sparsity level used
during training. For example, “CrAM-k50” indicates that the Top-K operator with k=50% was
used at each step, while “CrAM-Multi” indicates that the sparsity level is chosen uniformly at
random, at each step, from a set of given values (e.g. CrAM-k{50, 70, 90}). For image classification
experiments, all one-shot pruning results are presented after Batch Norm tuning (BNT) on a subset
of 1000 training samples, i.e. 100 inference steps on batches of size 128, using standard random
augmentations.

4.1 ImageNet Experiments

General Setup. We use a standard setup for training our ImageNet/ResNet50 models, similar
to Foret et al. (2021), which we describe in Appendix A. To match the number of backpropagation
steps of CrAM, we additionally train the dense baseline for twice as many epochs. We have found
that ρ = 0.05 recommended by the authors of SAM (Foret et al., 2021) is a good value for CrAM,

7

and we have kept it for all our ImageNet experiments. As stated, after one-shot pruning, we
perform BNT on a subset of 1000 training samples (e.g. one per class), with standard augmentations.
We show in Appendix B.3 that the accuracy after BNT is extremely stable, w.r.t. the choice of
calibration set.

Dense 50 60 70 80
Sparsity (%)

55

60

65

70

75

Va
lid

at
io

n
Ac

c.
 (

%
)

[ImageNet/ResNet50] Validation accuracy of one-shot pruned models

Baseline-2x
SAM
CrAM-k50
CrAM+k70
CrAM+Multi

Figure 1: One shot pruning results, after BNT. Results are averaged
across 10 independent BNT trials using randomly chosen calibration
sets of 1000 samples.

Model Sparsity
80% 90%

CrAM+-Multi 75.8 74.8
WoodFisher 76.7 75.3
AC/DC 76.2 75.2
STR 76.1 74.3
DPF 75.1 74.6

Table 1: One shot pruned (+BNT)
CrAM+-Multi models vs. existing
pruning methods.

Results for one-shot pruning. We validate the robustness to post-training compression of
models trained through different versions of CrAM, by testing their accuracy after one-shot pruning,
at different sparsity levels. We train models using CrAM-k50, CrAM+-k70 and CrAM+-Multi,
where for the latter we choose uniformly at random, at each step, among 50%, 70% or 90% global
sparsity levels. Using CrAM+ is crucial for preserving the dense model accuracy, at higher sparsities
(≥ 70%) during training; however, when training with low sparsities (e.g. CrAM-k50), the resulting
dense model is slightly better than the baseline. For both CrAM+-k70 and CrAM+-Multi we use
sparse gradients for the Top-K model perturbation, as described in Section 3.2. This improved
substantially the accuracy after one-shot pruning, as well as the resulting dense model. Additionally,
this could offer training-time speed-up compared to, for example, using dense gradients or training
with SAM, with the right framework support. We include an ablation study on the effects of sparse
gradients in Appendix B.2.

The results from Figure 1 show that CrAM models are substantially more robust to one-shot
pruning, compared to standard SGD or SAM training. CrAM models do not lose accuracy at
lower sparsity (e.g. at 50% for all or 70% for CrAM+-k70 and CrAM+-Multi). Moreover, as
shown in Table 1, the results at higher sparsity (80% and 90%) levels are competitive with those
obtained by gradual pruning, such as WoodFisher (Singh and Alistarh, 2020) or methods that
prune during training– STR (Kusupati et al., 2020), DPF (Lin et al., 2020), or AC/DC (Peste
et al., 2021). We emphasize that CrAM requires a single round of training (albeit with twice as
many forward-backward passes, compared to regular SGD), while standard pruning methods require
training separately for each target sparsity, sometimes from a pretrained model (e.g. WoodFisher).

In addition to global magnitude, CrAM can be used successfully with uniform magnitude pruning;
we show additional results in Appendix B.4, as well as evidence that CrAM models are robust to
sparse distributions different from those used during training.

Results for N:M sparsity patterns. We show the robustness of CrAM on semi-structured
N:M sparsity patterns, which can provide practical speed-ups (Mishra et al., 2021). CrAM+ models

8

trained using N:M sparsity preserve the dense model’s accuracy (77.3%), and do not lose accuracy
after pruning one-shot (+BNT) to 2:4 (77.0%) or 4:8 (77.2%) patterns. This is competitive with
state-of-the-art methods for training N:M sparse models Zhou et al. (2021). We provide a full
discussion in Appendix B.5.

Finetuning with CrAM. To reduce the computational overhead of CrAM-training, we investi-
gate whether a dense model’s robustness to pruning can be improved with only a short finetuning
using CrAM. This approach is inspired by Andriushchenko and Flammarion (2022), who showed that
similar benefits to full SAM training can be obtained when SAM is used only in the final training
phase. We finetune pretrained ImageNet ResNet18 and ResNet50 models, from the Torchvision
library, using CrAM+-k70 and CrAM+-Multi, both with sparse gradients for the pruned perturba-
tion. We perform finetuning for 10 epochs, starting from a learning rate of 0.005, which is decayed
using a cosine learning rate scheduler, at each epoch. For CrAM+-Multi we randomly select at
each step a sparsity level in the range 50%-90%. For comparison, we also finetuned using SGD
with momentum or using SAM, under the same hyperparameters. We report in Tables 2 and 3 the
validation accuracy for the dense models, and after one-shot pruning at 50%-80% sparsity levels.
Finetuning with CrAM+ preserves or outperforms the baseline accuracy, and results in good sparse
models after one-shot pruning, at moderate sparsity levels (up to 70%). Results improve with longer
finetuning: after 20 epochs, the CrAM+-Multi model can be pruned one-shot to 70% sparsity, with
≤ 1% drop in accuracy, compared to the baseline.

Model Dense Sparsity
50% 60% 70% 80%

Baseline 69.8 68.4 66.6 62.4 50.4
Dense 70.4 68.9 67.0 62.3 50.1
SAM 70.5 69.2 67.4 63.4 52.2

CrAM+-k70 70.3 69.5 68.8 69.0 65.0
CrAM+-Multi 70.4 69.7 69.2 68.3 66.7

CrAM+-Multi-20 70.6 69.9 69.6 69.0 67.6

Table 2: (ImageNet/ResNet18) Accuracy after fine-
tuning for dense models, and after one shot pruning

Model Dense Sparsity
50% 60% 70% 80%

Baseline 76.1 75.1 73.4 69.5 54.3
Dense 76.8 75.4 73.6 69.0 53.1
SAM 76.9 75.8 74.3 70.5 57.8

CrAM+-k70 76.8 75.9 75.5 75.4 72.0
CrAM+-Multi 76.7 75.9 75.6 75.0 73.5

CrAM+-Multi-20 76.8 76.1 75.7 75.5 74.4

Table 3: (ImageNet/ResNet50) Accuracy after fine-
tuning for the dense models, and after one shot pruning

Sparse Transfer Experiments. We additionally test how well the sparse models obtained
through one-shot pruning after CrAM training on ImageNet transfer across different tasks. The
setup is very similar to Salman et al. (2020); Kornblith et al. (2019), where transfer is performed
across 12 benchmark tasks. Following Iofinova et al. (2022), we use full finetuning of the non-zero
weights, with fixed masks, and reinitialize the dense classification layer. We compare dense and
the one-shot pruned CrAM-k50 and CrAM+-Multi models trained on ImageNet/ResNet50 to the
corresponding ones obtained from SGD or SAM. We consider the one-shot pruned models before
BNT. In addition, we compare the transfer performance of these one-shot pruned models with
standard pruning methods used in the literature, such as lottery-tickets (LTH-T) (Chen et al.,
2021a), AC/DC (Peste et al., 2021), STR (Kusupati et al., 2020) or WoodFisher (Singh and Alistarh,
2020), using the same hyperparameters as Iofinova et al. (2022). For these pruning methods, we
use public finetuned models on the downstream tasks provided by Iofinova et al. (2022). For each
model and sparsity level, we aggregate the results over all tasks, measuring the relative increase
in error of the sparse models, compared to the dense baseline (Iofinova et al., 2022). The results

9

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
Average Relative Increase in Error across Sparsities

0 80 90
Sparsity (%)

0

20

40

60

80
Re

la
ti

ve
 In

cr
ea

se
 in

 E
rr

or
 (

%
)

Baseline Baseline 2x SAM CrAM-k50 CrAM-Multi+ LTH STR AC/DC WoodFisher

Figure 2: Average relative increase in error, relative to dense, on 12 tasks, between models pruned one-shot,
or obtained from pruning methods, at different sparsities. Lower is better. All models were pretrained on
ImageNet/ResNet50. For better visibility, error bars indicate 70% confidence intervals.

in Figure 2 show that one-shot pruned CrAM models transfer well. In fact, both CrAM-k50 and
CrAM+-Multi models transfer better than LTH-T at 80% sparsity, although pruning is performed in
one-shot. Also, CrAM+-Multi at 90% sparsity has a similar transfer performance to AC/DC models,
and gives better results compared to the other pruning methods used for comparison (LTH-T or
STR), with the exception of the second-order WoodFisher method, which is the best performing
method across both 80% and 90% sparsity. Compared to the standard pruning methods used for
comparison, CrAM has the added advantage that it produces an accurate dense model, and both
80% and 90% models from a single ImageNet run.

Quantization. In addition to pruning, we provide evidence that CrAM can be adapted to
quantization. Namely, a short finetuning using a quantization version of CrAM (i.e. where the
compression operator C is quantization instead of Top-K) on pretrained ImageNet models can
preserve their accuracy with respect to the baseline, after symmetric per-channel 4 bits quantization,
while also boosting the accuracy of the dense model. More details can be found in Appendix B.6.

4.2 Experiments on Language Modelling

In addition to image classification, we also successfully apply CrAM to language models. We
demonstrate that CrAM produces models that are more compressible and accurate than the ones
obtained with standard optimizers like Adam (Kingma and Ba, 2015) and SAM (Foret et al., 2021).
Also, we show that CrAM models are even competitive with gradual pruning methods, which usually
require a higher computational budget to produce accurate sparse models for each sparsity target
independently.

General setup. We focus on the standard benchmark for compression methods: the BERT-
base (Devlin et al., 2019) model on the span-based question-answering task SQuADv1.1 (Rajpurkar
et al., 2016). We consider the short fine-tuning setup (1-3 epochs) of the pretrained BERT-base
model on a downstream task. Following the community standards (e.g. Sanh et al. (2020), Kurtic

10

et al. (2022)) we sparsify weights of the encoder part, and make use of the Top-K operator at each
step to impose uniform sparsity distribution over all layers.

Robustness to one-shot pruning. We fine-tune the models with Adam, SAM, and several
variants of CrAM and test their robustness to one-shot pruning with the standard magnitude pruner.
To identify the optimal set of hyper-parameters we run a grid search (please see Appendix C for
more details) and pick the one with the best one-shot performance at 50% sparsity target. For a
fair comparison, we allow Adam to fine-tune for twice as many epochs as SAM and CrAM. The
results presented in Table 4 suggest that CrAM models are more robust to one-shot pruning while
still being able to match or even outperform the dense accuracy obtained with other optimizers.

Comparison with gradual pruning methods. We investigate whether CrAM models can be
competitive with models produced by gradual pruning methods, which progressively prune smaller
fractions of weights and fine-tune the model for many epochs. We adopt the CrAM+-Multi model
from Table 4 and prune it in one-shot with the standard magnitude pruner, but also with the
state-of-the-art BERT-pruning method called oBERT (Kurtic et al., 2022). Since one-shot pruning
to high sparsity targets can severely impact the model’s performance, we also investigate whether
short fine-tuning (for at most 2 epochs) on top of it can bridge the gap towards full accuracy recovery.
In Table 5 we present the results and compare against the following gradual pruning methods: `0
regularization (Louizos et al., 2018), Magnitude (Zhu and Gupta, 2017), Movement (Sanh et al.,
2020), Soft-Movement (Sanh et al., 2020) and PLATON (Zhang et al., 2022). For details regarding
hyper-parameters, please see Appendix C. As can be seen from the results, one-shot pruned CrAM
models are competitive with gradual pruning methods, which they outperform by huge margins
when additionally fine-tuned for a few epochs. It is worth emphasizing that the competitive results
obtained with two different one-shot pruners, magnitude and oBERT, suggest that CrAM models
are indeed robust and compatible with pruning techniques different from the ones they have been
trained with. We provide in Tables 19 and 18 from Appendix C inference speed-up numbers for the
sparse BERT models, and evidence that models become more robust to pruning even when CrAM
is not used at every optimization step.

Model Dense Sparsity
50% 60% 70% 80%

Adam 88.7 80.0 32.5 9.6 8.1
SAM 88.5 81.0 33.4 10.1 7.3

CrAM+-k50 88.9 88.3 84.6 25.3 8.3
CrAM+-k60 88.7 88.1 87.8 75.7 10.2
CrAM+-k70 88.8 87.8 87.0 86.9 33.9
CrAM+-k80 88.4 86.9 85.5 84.9 84.7
CrAM+-Multi 88.7 88.3 88.1 86.8 82.5

Table 4: (SQuADv1.1/BERT-base) Vali-
dation F1 score of models after fine-tuning
with the corresponding optimizer and ap-
plying one-shot magnitude pruning.

Model Pruning Sparsity
50% 60% 70% 80%

`0 regularization gradual 84.6 83.9 82.8 81.9
Magnitude gradual 87.0 86.7 86.5 84.8
Movement gradual 83.0 82.8 81.9 82.0

Soft-Movement gradual 85.8 N.A. 84.6 N.A.
PLATON gradual 87.2 86.9 86.7 86.1

CrAM+-Multi
one-shot magnitude 88.3 88.1 86.8 82.5
one-shot oBERT 88.7 88.1 87.5 84.9

one-shot oBERT + fine-tune 88.7 88.4 88.1 87.4

Table 5: (SQuADv1.1/BERT-base) Validation F1 score of the
CrAM+-Multi model after one-shot pruning with magnitude
and oBERT pruners. We additionally fine-tune the one-shot
oBERT-pruned model and compare it with gradual pruning
methods.

11

4.3 Detailed Comparisons with Other Methods

We now perform a detailed comparison between CrAM and gradual pruning methods, or similar
methods that train a prunable dense model. Since most of the other methods present experiments
and are tuned on CIFAR-10 (Krizhevsky et al., 2009), we perform the comparison on this dataset
as well. Specifically, we compare CrAM with existing state-of-the-art gradual pruning methods (Lin
et al., 2020) on ResNet20 (He et al., 2016), or with similar methods that train prunable networks
(Miao et al., 2022; Zimmer et al., 2022) on VGG-16 (Simonyan and Zisserman, 2014) and ResNet18.
All hyperparameters for CrAM are discussed in Appendix A, together with a comparison between
CrAM and one-shot pruning from dense baselines in Appendix B.7.

Comparison with Gradual Methods. We present results for CrAM+-Multi, trained with
sparse intermediate gradients, where at each optimization step we select the sparsity level uniformly
at random among values in the interval [30%− 90%]. The results in Table 6 show that the dense
model obtained by training with CrAM+-Multi is highly accurate, and also very robust to one-shot
pruning, even at high sparsities (e.g. 90%). Remarkably, our results for one-shot pruning (+BNT)
are usually competitive with those obtained by other methods which train sparse models separately,
for each sparsity target, for example through DPF (Lin et al., 2020). The exception is at 95%
sparsity, where DPF substantially outperforms CrAM; however, this is expected, since CrAM was
not explicitly trained for such high sparsity, unlike DPF.

Architecture Model Dense Sparsity
50% 70% 80% 90% 95%

ResNet20 CrAM+-Multi 93.2 ± 0.1 93.1 ± 0.1 92.8 ± 0.2 92.3 ± 0.1 90.1 ± 0.2 76.5 ± 1.1
DPF N/A N/A 92.4± 0.1 92.2± 0.2 90.9 ± 0.1 88.0 ± 0.3

VGG-16
CrAM+-k95 94.2 ± 0.1 94.2 ± 0.1 94.2 ± 0.1 94.1 ± 0.1 94.0 ± 0.1 94.1 ± 0.1

SFW N/A 93.1 93.1 93.1 93.1 92.0
DPF N/A N/A N/A N/A N/A 93.9 ± 0.2

Table 6: (CIFAR10) Test accuracy (%) for CrAM after one shot pruning (+BNT). CrAM+ is competitve
with state of the art pruning method DPF, up to 90% sparsity on ResNet20, and 95% sparsity on VGG-16.
DPF requires retraining for each target sparsity. The results for the dense model trained with CrAM+, as
well as after one-shot pruning (+BNT), outperform the similar method SFW (Miao et al., 2022), which also
trains a dense model that can be pruned at different sparsity levels post-training.

Comparison with One-shot Methods. We compare against other methods for training prun-
able models, such as Miao et al. (2022); Zimmer et al. (2022). Both these methods are based on
Stochastic Frank-Wolfe (SFW) (Reddi et al., 2016), which is used to encourage the parameters
to lie in the convex hull spanned by sparse vectors, with directions given by the gradients. We
compare CrAM against SFW on CIFAR10, using ResNet18 (He et al., 2016) and VGG-16 models,
which is the same experimental setup employed in Miao et al. (2022) and Zimmer et al. (2022).
Note that Miao et al. (2022); Zimmer et al. (2022) use the “ImageNet” variant of the ResNet18
model, which is substantially larger than the ResNet20 used for our previous experiments (11M vs.
0.3M parameters). We train CrAM+-k95 with sparse intermediate gradients, for 180 epochs (same
as Miao et al. (2022)), using SGD with momentum and weight decay, and a cosine learning rate
schedule. We use BNT after pruning at each desired sparsity level.

12

On both ResNet18 and VGG16, we obtain dense models that do not lose accuracy compared to
the baseline: 94.2% (CrAM+-k95) vs. 93.9% (dense) on VGG16 and 95.7% (CrAM+-k95) vs. 95.4%
(dense) on ResNet18. Furthermore, on ResNet18 we maintain the model accuracy after pruning
one-shot at 96% sparsity (95.4%, after BNT) and have a 1.3% drop at 98% sparsity (94.4% Top-1),
which is higher than Miao et al. (2022) and Zimmer et al. (2022), which obtain ≤ 93% accuracy
at 95% sparsity. We show a numerical comparison for VGG-16 in Table 6: CrAM+-k95 preserves
model accuracy even at 95% sparsity, which is competitive with the DPF gradual method, while
SFW produces models that have lower accuracy even at higher density. We note that CrAM has
higher training costs than SFW, but requires much less hyper-parameter tuning, and leads to higher
accuracies. Moreover, similar to Zimmer et al. (2022), our method uses BNT, while Miao et al.
(2022) do not suggest that they are using it. However, the cost of BNT is minimal; even without
BNT, our method preserves accuracy at up to 80% sparsity (please see Appendix B.7), leading to
better results than Miao et al. (2022); Zimmer et al. (2022).

5 Conclusions and Future Work
In this work, we proposed a new method for training neural networks, CrAM, which results in models
that are both highly accurate, and easily-compressible. Our extensive experimental analysis on large
scale image classification (ImageNet/ResNets) and language modelling (SQuADv1.1/BERT-base)
focuses on compression methods based on pruning, and shows that CrAM models can be pruned
one-shot at a wide range of sparsity levels, while resulting in sparse models that are competitive
with existing gradual pruning methods. Furthermore, we show that one-shot pruned CrAM models
can transfer better to downstream tasks, compared to some of the existing pruning methods. While
we focus on pruning as the main compression operator, we also give encouraging evidence that the
CrAM update can be successfully adapted to other compression projections, such as quantization,
and we plan to investigate this more closely in future work. Furthermore, we would like to explore
whether prolonged CrAM-training would further enhance both the performance of the resulting dense
model, as well as its robustness to one-shot compression. Finally, we are interested in leveraging in
the CrAM update different methods developed for reducing the computational complexity of SAM,
in order to improve the efficiency of our method.

Acknowledgements
AP, EK, DA received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML).
AV acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grant
ANR-21-CE48-0016 (project COMCOPT).

References
Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International Conference on Machine Learning (ICML), 2022.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

13

Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations. Journal
of Fourier analysis and Applications, 14(5-6):629–654, 2008.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network
and specialize it for efficient deployment. International Conference on Learning Representations
(ICLR), 2019.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, and
Zhangyang Wang. The lottery tickets hypothesis for supervised and self-supervised pre-training
in computer vision models. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021a.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. In Conference on Neural Information Processing Systems (NeurIPS), 2021b.

John M Danskin. The theory of max-min and its application to weapons allocation problems,
volume 5. Springer Science & Business Media, 2012.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural networks.
International Conference on Learning Representations (ICLR), 2022a.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent YF Tan, and Joey Tianyi Zhou. Sharpness-aware
training for free. Conference on Neural Information Processing Systems (NeurIPS), 2022b.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning (ICML), pages
2943–2952. PMLR, 2020.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. International Conference on Learning Representations
(ICLR), 2021.

Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM Journal on
Numerical Analysis, 49(6):2543–2563, 2011.

Simon Foucart. Sparse recovery algorithms: sufficient conditions in terms of restricted isometry
constants. In Approximation Theory XIII: San Antonio 2010, pages 65–77. Springer, 2012.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Conference on Neural Information Processing Systems (NeurIPS),
2022.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A sur-
vey of quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630,
2021.

14

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research (JMLR), 2021.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accelerated
sparse neural training: A provable and efficient method to find N: M transposable masks.
Conference on Neural Information Processing Systems (NeurIPS), 2021.

Eugenia Iofinova, Alexandra Peste, Mark Kurtz, and Dan Alistarh. How well do sparse ImageNet
models transfer? In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better ImageNet models transfer better? In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2661–2671,
2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal BERT surgeon: Scalable and accurate second-order pruning
for large language models. arXiv preprint arXiv:2203.07259, 2022.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin,
William Leiserson, Sage Moore, Bill Nell, Nir Shavit, and Dan Alistarh. Inducing and exploiting
activation sparsity for fast inference on deep neural networks. In International Conference on
Machine Learning (ICML), pages 5533–5543, 2020.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning (ICML), pages 5544–5555. PMLR, 2020.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. ASAM: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on
Machine Learning (ICML), 2021.

Robert Lang. A note on the measurability of convex sets. Archiv der Mathematik, 47(1):90–92,
1986.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario

15

Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor
Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community library
for natural language processing. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 175–184, Online and Punta
Cana, Dominican Republic, November 2021. Association for Computational Linguistics. URL
https://aclanthology.org/2021.emnlp-demo.21.

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. International Conference on Learning Representations (ICLR), 2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Toward a theory of optimization for over-parameterized
systems of non-linear equations: the lessons of deep learning. arXiv preprint arXiv:2003.00307,
2020.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l_0 regularization. International Conference on Learning Representations (ICLR), 2018.

Lu Miao, Xiaolong Luo, Tianlong Chen, Wuyang Chen, Dong Liu, and Zhangyang Wang. Learn-
ing pruning-friendly networks via Frank-Wolfe: One-shot, any-sparsity, and no retraining. In
International Conference on Learning Representations (ICLR), 2022.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

NeuralMagic. Deep Sparse: A fast CPU inference engine, 2021.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. AC/DC: Alternating Com-
pressed/DeCompressed Training of Deep Neural Networks. Conference on Neural Information
Processing Systems (NeurIPS), 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. In EMNLP, 2016.

Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic Frank-Wolfe methods
for nonconvex optimization. In 2016 54th annual Allerton conference on communication, control,
and computing (Allerton), pages 1244–1251. IEEE, 2016.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adver-
sarially robust ImageNet models transfer better? Conference on Neural Information Processing
Systems (NeurIPS), 2020.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by
fine-tuning. Conference on Neural Information Processing Systems (NeurIPS), 2020.

16

https://aclanthology.org/2021.emnlp-demo.21

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sidak Pal Singh and Dan Alistarh. WoodFisher: Efficient second-order approximation for neural
network compression. Conference on Neural Information Processing Systems (NeurIPS), 2020.

Kwong Meng Teo. Nonconvex robust optimization. PhD thesis, Massachusetts Institute of Technology,
2007.

Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F Manso. The computational
limits of deep learning. arXiv preprint arXiv:2007.05558, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Zhaofeng Wu, Ding Zhao, Qiao Liang, Jiahui Yu, Anmol Gulati, and Ruoming Pang. Dynamic
sparsity neural networks for automatic speech recognition. In ICASSP, 2021.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. International
Conference on Learning Representations (ICLR), 2019.

Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture search for channel numbers.
arXiv preprint arXiv:1903.11728, 2019a.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019b.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
International Conference on Learning Representations (ICLR), 2019.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
importance. In International Conference on Machine Learning, pages 26809–26823. PMLR, 2022.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning N: M fine-grained structured sparse neural networks from scratch.
International Conference on Learning Representations (ICLR), 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

Max Zimmer, Christoph Spiegel, and Sebastian Pokutta. Compression-aware training of neural
networks using Frank-Wolfe. arXiv preprint arXiv:2205.11921, 2022.

17

https://www.aclweb.org/anthology/2020.emnlp-demos.6

Appendix

A Image Classification Hyperparameters
Hyperparameters for CIFAR10 experiments We train ResNet20 models for 200 epochs,
using SGD with momentum and weight decay, and a cosine learning rate scheduler, with a learning
rate warm-up of 5 epochs. Additionally, we trained the baseline model for twice as many epochs,
to match the number of backpropagation steps of SAM and CrAM. To determine the value of
the hyperparameter ρ, we performed a grid search over values in the range 0.01 − 0.2, using a
90%− 10% train-validation split and found 0.1 and 0.2 to be the best values for SAM and CrAM,
respectively (i.e. achieving highest validation accuracy). After finding the best value of ρ for each
model configuration, we retrained using the entire training set, and starting from 3 different random
seeds, and report the final accuracy after 200 epochs of training. We follow a very similar training
recipe and hyperparameter search for ResNet18 and VGG experiments, but train instead for 180
epochs.

Hyperparameters for ImageNet experiments For our ImageNet experiments, we use stan-
dard data augmentation, and we train the models using SGD for 100 epochs, with batch size 512,
momentum 0.9, and weight decay 0.0001. The learning rate is linearly increased for the first 5
epochs until it reaches a maximum value of 0.2, after which it is decreased at each epoch, using
a cosine scheduler. To determine the value of the hyperparameter ρ, we search over a small grid,
by training 90% of ImageNet using CrAM-k50, and using the remaining 10% of the dataset for
validation. We have found ρ = 0.05 to give good results for CrAM-k50, in terms of validation
accuracy of the dense model, and we have kept this value for all our other CrAM experiments. For
SAM, we also use ρ = 0.05, which is the standard value recommended by Foret et al. (2021).

B Additional Image Classification Experiments

B.1 Ablation Study for Alternative Updates

Comparison between CrAM and C-SAM. We investigate the importance of individual
components from the CrAM update by comparing against other similar updates, on the CIFAR10
dataset, using a ResNet20 model. One such update can be obtained by following closely the
derivations for SAM (Foret et al., 2021). We assume ‖δ‖ ≤ ρ, define h(x) := L(C(x)) (with C the
Top-K operator), and the loss max‖δ‖≤ρ h(θ + δ). By using a first-order Taylor approximation of
h(θ + δ) around θ, together with the quadratic constraint for δ, we obtain δ = ρ ∇L(C(θ))

‖∇L(C(θ))‖ . This
enables us to define the compressed-SAM (C-SAM) update as:

C-SAM: θt+1 = θt − η∇L
(
C

(
θt + ρ

∇L(C(θt))
‖∇L(C(θt))‖

))
. (7)

We observed that C-SAM training benefits from using sparsified gradients, for both the in-
termediate interpolation step, as well as in the final weight update. Namely, we always use the
approximation: ∇L(C(φ)) ≈ Mφ · ∇L(Mφ · φ) for parameter φ, where Mφ is the Top-K mask of
φ. To determine the value of the interpolation step ρ in C-SAM and CrAM, we perform a grid
search over a 90-10% train/validation of CIFAR10; we re-run from 3 different seeds, using the best

18

configurations and the entire training set, and report the test accuracy after 200 epochs of training.
For fairness, we compare C-SAM with CrAM, and not CrAM+, and for both we use sparsified
gradients.

The results in Table 7 show that C-SAM can be more robust at higher sparsity levels, but with
the cost of an accuracy drop for the dense models. Moreover, the dense model can be improved
using CrAM+ with no additional cost, whereas for C-SAM such a modification would require a
computational overhead.

Method Dense 50% Sparse 60% Sparse 70% Sparse 80% Sparse 90% Sparse
CrAM-k50 92.8 ± 0.1 92.8 ± 0.1 92.7 ± 0.0 92.0 ± 0.1 89.7 ± 0.2 73.5 ± 2.4
C-SAM-k50 92.6 ± 0.3 92.6 ± 0.3 92.5 ± 0.3 92.0 ± 0.2 90.6 ± 0.2 81.0± 1.0
CrAM-k70 92.4 ± 0.2 92.4 ± 0.2 92.4 ± 0.2 92.3 ± 0.2 91.6 ± 0.1 81.1 ± 1.3
C-SAM-k70 91.4 ± 0.0 91.4 ± 0.0 91.4 ± 0.0 91.3 ± 0.1 91.0 ± 0.1 85.3 ± 0.5
CrAM-Multi 92.6 ± 0.2 92.5 ± 0.2 92.4 ± 0.4 92.3 ± 0.2 91.9 ± 0.2 90.5 ± 0.2
C-SAM-Multi 92.5 ± 0.2 92.5 ± 0.1 92.6 ± 0.2 92.5 ± 0.2 92.1 ± 0.2 91.0 ± 0.2

Table 7: (CIFAR10/ResNet20) Comparison between CrAM and C-SAM. Test accuracy for the dense models
and sparse models after one-shot pruning. We report the best value between the accuracy before and after
BNT with 1000 training samples.

Importance of extra-gradient step. Furthermore, we explore the importance of the extra-
gradient step in the CrAM update. Notably, we investigate whether not using the extra-gradient
achieves a similar effect to CrAM training. The removal of the extra gradient step would correspond
to the following equation:

Top-K: θt+1 = θt − η∇L(C(θt)) . (8)

Since the compression we use in our experiments is the Top-K sparsification, we simply call this
update “Top-K”. This update has been previously studied in Lin et al. (2020), where the dense
gradients, computed with respect to the sparse parameters, are used in the model updated. Generally,
we have experienced training instability using this update, particularly at high sparsity. However,
incorporating the optimization of the dense model, as well as sparsified gradients for the compressed
parameters, greatly improved the stability and overall quality of the resulting models. These changes
resulted in an update close to CrAM+ and of the same computational complexity, which will be
referred to as Top-K+:

Top-K+ : θt+1 = θt − η(∇L(θt) +M
θ̃t
· ∇L(θ̃t)), (9)

where θ̃t = C(θt) and M
θ̃t

is its mask after applying Top-K.
The results of the comparison between CrAM+ and Top-K+ are presented in Table 8 and show

that CrAM models tend to have higher accuracy for the dense models, and are more robust to
one-shot pruning at high sparsity (e.g. CrAM+ and Top-K+ trained with 50% or 70% sparsity, and
one-shot pruned to 80% and 90% sparsity).

The comparison between CrAM and C-SAM or Top-K shows that, although all methods can
achieve good results with one-shot pruning, CrAM-trained models have the best trade-off between
preserving (or improving) the dense model accuracy, while having good performance after one-shot
pruning, at different sparsity levels.

19

Method Dense 50% Sparse 60% Sparse 70% Sparse 80% Sparse 90% Sparse
CrAM+-k50 93.1 ± 0.1 93.1 ± 0.1 93.0 ± 0.1 92.3 ± 0.2 89.2 ± 0.2 71.1 ± 1.5
Top-K+-k50 92.7 ± 0.1 92.6 ± 0.0 92.6 ± 0.1 91.6 ± 0.1 86.5 ± 0.3 56.7 ± 1.0
CrAM+-k70 92.8 ± 0.3 92.7 ± 0.2 92.7 ± 0.1 92.7 ± 0.0 91.9 ± 0. 80.8 ± 1.4
Top-K+ 92.7 ± 0.1 92.4 ± 0.2 92.3 ± 0.2 92.4 ± 0.1 91.0 ± 0.3 72.6 ± 2.8

CrAM+-Multi 93.2 ± 0.1 93.2 ± 0.1 93.0 ± 0.1 92.8 ± 0.2 92.4 ± 0.1 90.1 ± 0.2
Top-K+-Multi 92.5 ± 0.1 92.4 ± 0.1 92.3 ± 0.1 92.2 ± 0.2 91.7 ± 0.2 90.0 ± 0.2

Table 8: (CIFAR10/ResNet20) Comparison between CrAM+ and Top-K+. Test accuracy for the dense
models and sparse models after one-shot pruning. For all sparse results we report the best value between the
accuracy before and after BNT with 1000 training samples.

B.2 Importance of Sparse Gradients

For all our image classification experiments, we observed an improvement in the robustness to post-
training one-shot pruning, when using a different straight-through estimator for the gradient∇θL(θ̃t),
where θ̃t = C(θt + ρ∇L(θt)). Namely, instead of by-passing the Top-K operator in the gradient,
and estimating ∇θtL(θ̃t) ≈ ∇θ̃t

L(θ̃t), we can assume instead that the masks Mt of θ̃t change very
little during training. This would allow us to use the approximation ∇θtL(θ̃t) ≈ Mt · ∇θ̃t

L(θ̃t).
Please see Section 3.2 and Appendix Section D for more details. Training both CrAM and CrAM+

with this new approximation for the CrAM loss gradient (which will be referred to as “sparse
gradient”) led to an improvement in the robustness to one-shot pruning, particularly at higher
sparsity levels. Furthermore, our intuition that the masks are fairly constant during training is
also confirmed experimentally: on CIFAR10/ResNet20, trained with CrAM+-k70, the difference
between consecutive θt masks was lower than 0.6%. Interestingly, using sparse gradient under the
same setup, encouraged more diversity in the masks, with the difference between them at later
training stages increasing to around 2%. We speculate this could be a potential reason for the
improved robustness to pruning. Another aspect observed on CIFAR10 experiments is that using
sparse gradients tends to decrease the dense model accuracy, when training CrAM at lower sparsity;
for example, the dense model for CrAM-k50 reached 93.4% accuracy, which decreased to 92.8%
when using sparse gradients. For this reason, on ImageNet we only experimented with the dense
version of CrAM-k50. Nonetheless, using sparse gradients improved the robustness to pruning in
all cases. For a better illustration of all these effects, we provide the results obtained with these
different versions of CrAM on ImageNet, in Table 9 for one-shot unstructured global magnitude
pruning and in Table 10 for semi-structured N:M pruning.

B.3 Variability of Batch Norm Tuning Results

We emphasize that CrAM relies on a small calibration set of training samples to correct the Batch
Norm statistics, namely running mean and variance, after pruning, particularly at high sparsity.
We call this procedure Batch Norm Tuning (BNT). To ensure that the accuracies we report for
sparse models are stable under the choice of the calibration set, we perform 10 independent trials
of BNT, on 10 randomly chosen subsets of 1000 training samples, for each model and for different
sparsity levels. The results of this experiment are presented in Table 11, which also contains the
“raw” numbers used in Figure 1. Notice that the accuracy after one-shot pruning and BNT is very
stable, with respect to the choice of the calibration set. In particular, for the CrAM+ model, the

20

Model Dense Sparsity
50% 70% 80% 90%

CrAM-k70 75.7 76.3 76.3 73.4 53.2
CrAM+-k70 77.3 77.3 76.8 73.9 51.9

CrAM+-k70 (SG) 77.3 77.2 77.2 76.3 62.1
CrAM-Multi 75.2 75.2 75.2 74.5 73.3
CrAM+-Multi 76.4 76.4 76.1 74.9 73.1

CrAM+-Multi (SG) 77.3 77.2 77.0 75.8 74.8

Table 9: (ImageNet/ResNet50) Dense and one-shot
pruning (+BNT) results. CrAM+ with sparse gradi-
ents (SG) improves the accuracy of the dense model,
and its robustness to one-shot pruning.

Model Dense Sparsity Pattern
2:4 4:8

CrAM-N:M 75.2 76.0 76.2
CrAM+-N:M 77.1 76.1 76.6

CrAM+-N:M (SG) 77.3 77.0 77.2
SR-STE - 77.0 77.4

Table 10: (ImageNet/ResNet50) Dense and
semi-structured one-shot pruning (+BNT) results.
CrAM+-N:M with sparse gradients (SG) improves
the accuracy of the dense model, and its robustness
to N:M pruning.

standard deviation is ≤ 0.1% across all sparsity levels considered. We also report the “raw” one-shot
pruning accuracy (i.e. before BNT) for CrAM models in Table 12.

Model Dense Sparsity
50% 60% 70% 80% 90%

Baseline 77.22 75.87 ± 0.09 73.82 ± 0.07 68.86 ± 0.08 51.96 ± 0.27 8.57 ± 0.11
SAM 77.35 76.47 ± 0.04 75.11 ± 0.1 71.87 ± 0.07 60.20 ± 0.13 18.25 ± 0.18

CrAM-k50 77.48 77.3 ± 0.07 76.61 ± 0.05 74.77 ± 0.08 68.23 ± 0.11 33.04 ± 0.16
CrAM+-k70 77.32 77.22 ± 0.05 77.1 ± 0.05 77.15 ± 0.05 76.3 ± 0.08 61.92 ± 0.11
CrAM+-Multi 77.31 77.21 ± 0.06 77.03 ± 0.04 76.97 ± 0.04 75.8 ± 0.05 74.78 ± 0.06

Table 11: (ImageNet/ResNet50) Validation accuracy for the dense models, and after one-shot pruning using
global magnitude pruning, followed by BNT on 1000 samples. The results for one-shot pruning are the mean
accuracies, and their standard deviations, when BNT is performed on 10 different random calibration sets, of
1000 training samples each.

B.4 Results with Uniform Sparsity

In this section we show that CrAM models can be trained to be robust to different sparsity
distributions, such as uniform. We train CrAM+-Multi models for ImageNet/ResNet50 under the
same setup as in Section 4.1, but applying instead the Top-K operator at uniform sparsity across all
prunable parameters (i.e. excluding BatchNorm and biases), while keeping the first and last layers
dense. The resulting dense model achieves 77.1% accuracy, while one-shot uniform pruning at 80%
and 90% sparsities gives, after BNT, 75.6% and 75.1% accuracy, respectively. Moreover, this model
is also robust to one-shot pruning using global magnitude (e.g. 75.5% accuracy at 80% sparsity).
Conversely, CrAM+-Multi trained with global magnitude is robust to one-shot pruning using uniform
magnitude (e.g. 77.0% and 75.9% accuracy at 70% and 80% sparsity, respectively). This suggests
that CrAM-trained models can be robust to one-shot pruning using sparsity distributions different
from the ones used during training.

21

Model Dense Sparsity
50% 60% 70% 80% 90%

Baseline 77.22 74.35 68.9 46.36 2.0 0.1
SAM 77.35 75.02 70.4 52.8 3.66 0.11

CrAM-k50 77.48 75.91 73.54 63.05 13.59 0.16
CrAM+-k70 77.32 77.03 76.6 76.3 72.6 3.6
CrAM+-Multi 77.31 76.07 74.73 75.8 72.39 52.99

Table 12: (ImageNet/ResNet50) Validation accuracy for the dense models, and after one-shot pruning using
global magnitude, before BNT.

B.5 CrAM for N:M Sparsity Patterns

In this section, we show our full results regarding the robustness of CrAM models against semi-
structured N:M sparsity patterns, where out of each block of M weights, N are sparse. In particular,
the 2:4 pattern is supported on modern Ampere NVIDIA architectures, where it has been shown
to provide speed-ups (Mishra et al., 2021). We train CrAM+ models with the N:M pattern, by
randomly choosing at each optimization step between the 2:4 or 4:8 projections; this model will
be referred to as “CrAM+-N:M”. Similar to the previous experiments, we also use sparse gradients
for the pruned model perturbation and have found this to have a positive impact on the one-shot
pruned models. In Table 13 we show the one-shot pruning results (after BNT with 1000 samples).
Note that CrAM+-N:M models do not lose accuracy when they are pruned one-shot using the 2:4
and 4:8 patterns, which is competitve with state-of-the-art methods for training N:M sparse models,
such as SR-STE (Zhou et al., 2021); however, SR-STE requires a different training run for each
sparsity profile. The CrAM+-N:M model is also robust to one-shot pruning using unstructured
patterns, at moderate sparsity levels; for example, the results in Table 14 show that models trained
with CrAM+-N:M can be pruned one-shot to 70% sparsity with a minor accuracy loss, compared to
the dense baseline.

Model Dense 2:4 4:8
Dense 77.2 66.5 69.6
SAM 77.4 69.6 72.0

CrAM-k50 77.5 72.2 73.4
CrAM+-N:M 77.3 77.0 77.2

SR-STE - 77.0 77.4

Table 13: (ImageNet/ResNet50) Validation accu-
racy (%) after one-shot pruning (+BNT) using semi-
structured 2:4 and 4:8 patterns.

Top-K 50% 70%
Global 77.3 76.5
Uniform 77.3 76.5

Table 14: (ImageNet/ResNet50) Validation accu-
racy (%) for CrAM+-N:M after one-shot pruning
(+BNT), using unstructured sparsity

B.6 Results on Quantization

We have shown through previous experiments that CrAM can be successfully used with the Top-K
operator to obtain models that preserve or improve the dense baseline’s accuracy, while also being
robust to post-training one-shot pruning, to multiple sparsity levels. In this section we show
encouraging evidence that CrAM can also be adapted to work with quantization. Specifically, we
use CrAM+ where the compression operator C is the symmetric per-channel weight quantization

22

to 4 bits (round to nearest integer), and finetune pretrained Torchvision ResNet18 and ResNet50
ImageNet models, for 10 epochs, using the same hyperparameters as in the previous experiments for
sparsity. The results in Table 15 show that CrAM-finetuned models are more robust to symmetric
per-channel 4 bits quantization, compared to models finetuned with SAM or with the dense baseline.

Model ResNet18 ResNet50
Dense 4 Bits Dense 4 Bits

Baseline 69.8 66.2 76.1 74.1
SAM 70.5 67.1 76.9 74.8

CrAM+-4Bits 70.1 69.3 76.7 75.8

Table 15: (ImageNet) Validation accuracy (%) for the dense models, and after symmetric per-channel 4 bits
quantization. All quantization results are after BNT.

B.7 Comparison With Other Methods on CIFAR10

In this section we provide additional results accompanying those presented in Section 4.3. Namely,
we provide comparison between one-shot pruning CrAM+-Multi vs. standard dense baselines (SGD,
SAM), and we provide numbers before and after BNT for sparse models on VGG-16 and ResNet18.

In Table 16 we show the accuracy of the dense baseline, SAM and CrAM+-Multi (the same
from Section 4.3) on ResNet20, before and after one-shot pruning at different sparsities. The results
after one-shot pruning are presented after BNT over a random subset of 1000 train samples, over
100 batches. We note there are small variations in the results after BNT, due to the choice of the
random calibration set. These variations are small (±0.1/0.2%) for CrAM+-Multi models, across
all sparsity levels considered, but they are larger for the one-shot pruned dense baselines at high
sparsity (e.g. 80% and 90%). Moreover, the accuracy before BNT is still high for CrAM at lower
sparsity levels (e.g. 91.9% at 70% sparsity), but it degrades at high sparsity (e.g. 50.5% at 90%
sparsity). We believe that this is only due to the BatchNorm statistics, which are adapted to the
dense model during training, but they no longer reflect the distribution shift after weight pruning.
This is confirmed by the fact that 90% sparse models improve to over 90% test accuracy after only
a few iterations of BNT, and are very robust to the choice of the calibration set.

Model Dense Sparsity
50% 60% 70% 80% 90%

Baseline 93.0 ± 0.1 92.2 ± 0.0 91.0 ± 0.3 88.0 ± 0.2 78.0 ± 1.1 45.8 ± 3.0
SAM 93.5 ± 0.1 92.8 ± 0.2 92.4 ± 0.0 90.7 ± 0.3 85.2 ± 0.4 54.6 ± 1.7

CrAM+-Multi 93.2 ± 0.1 93.2 ± 0.1 93.1 ± 0.1 92.9 ± 0.1 92.4 ± 0.1 90.3 ± 0.1

Table 16: (CIFAR10/ResNet20) Test acc. (%) for the dense models, and after one-shot pruning (+BNT).
The baseline is the model after SGD training. For all models we apply one-shot pruning at different sparsity
(+BNT), but no additional retraining. Results are averaged across 3 runs from different seeds.

Moreover, we show the extended results of CrAM+-k95 discussed in Section 4.3, before and after
BNT, on ResNet18 and VGG-16. From Table 17 we can see that one-shot pruning CrAM+-k95
without BNT preserves accuracy up to 80% sparsity, after which BNT is required to correct the
BatchNorm statistics. Remarkably, the VGG-16 models at 97% and 98% sparsity have very low

23

accuracy, which is improved greatly by BNT. Furthermore, also in this highly sparse regimes the
accuracy is very robust with respect to the choice of the calibration set for BNT.

Architecture BNT Sparsity
50% 80% 90% 93% 95% 97% 98%

ResNet18 No 95.7±0.1 95.3±0.2 93.6±0.7 92.0±1.4 89.8±2.2 81.4±6.3 48.7±5.8
Yes 95.6±0.0 95.7±0.0 95.5±0.1 95.5±0.1 95.5±0.1 95.2±0.0 94.5±0.3

VGG-16 No 94.2±0.1 93.9±0.2 86.7±1.6 48.5±1.7 19.8±15.4 16.0±10.2 12.4±4.1
Yes 94.2±0.1 94.2±0.1 94.0±0.1 94.0±0.2 94.1± 0.1 93.8±0.2 93.0±0.2

Table 17: (CIFAR10) Test accuracy (%) for the sparse models obtained with one-shot-pruning from
CrAM+-k95, before and after BNT. Results are averaged across 3 runs from different seeds.

C Language Models - reproducibility and hyperparameters
To ease reproducibility of our results, we conduct all of our experiments with the popular open-source
libraries: Transformers (Wolf et al., 2020), and SparseML (Kurtz et al., 2020). We use the publicly
available datasets via Lhoest et al. (2021), and focus on the BERT-base (Devlin et al., 2019) as it is
one of the most commonly used language models. It is composed of 12 identical transformer layers
with 110M parameters. Following community standards, we prune all weights of the encoder part
(85M) and report sparsities relative to this number.

General setup. Our SQuADv1.1 fine-tuning recipe with Adam, SAM and CrAM mostly follows
the already established hyper-parameters (Devlin et al., 2019; Wolf et al., 2020): start from
the pretrained bert-base-uncased (available for download at https://huggingface.co/bert-base-
uncased), batch-size=16, max-sequence-length=384, doc-stride=128.

Adam, SAM, and CrAM optimization. For other hyper-parameters we conduct a grid search
for each optimizer independently over the following values: learning-rate ∈ {3e−5, 5e−5, 8e−5};
num-train-epochs ∈ {2, 3} for SAM and CrAM, and num-train-epochs ∈ {2, 3, 4, 6} for Adam (we
allow 2x more epochs for fairness to SAM and CrAM); label-smoothing-factor ∈ {0.0, 0.1, 0.2}.
We freeze the embedding layer in all experiments. To determine the value of the hyperparameter ρ,
we performed a grid search over values in the range 1e−4 to 1e−1. For each optimizer we pick the
set of hyperparameters that produces the best results after one-shot magnitude pruning to 50%
sparsity, and they are as follows:

• Adam: num-train-epochs=2, learning-rate=8e−5, label-smoothing-ratio=0.1

• SAM: num-train-epochs=2, learning-rate=8e−5, label-smoothing-ratio=0.0, ρ=0.01

• CrAM (all runs use the same hyperparameters): num-train-epochs=3, learning-rate=8e−5,
label-smoothing-ratio=0.2, ρ=0.005

At each CrAM optimization step we apply Top-K (i.e. magnitude) sparsification over all layers
uniformly.

24

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

One-shot pruning. We apply one-shot pruning with two different pruners: magnitude and
oBERT. For one-shot magnitude pruning we impose uniform sparsity distribution over all layers. For
one-shot oBERT pruning we adopt the suggested set of hyper-parameters by authors, which we briefly
describe here for completeness: 1024 gradients, dampening 1e−7, block-size 50, 4 recomputations,
global sparsity distribution over all layers. For more details please refer to the oBERT paper (Kurtic
et al., 2022).

Sparse fine-tuning of one-shot pruned models. We fine-tune one-shot oBERT-pruned models
with the fixed sparsity mask and Adam optimizer. To identify the best set of hyperparameters for fine-
tuning of the sparse model, we conduct a grid search over the following parameters: learning-rate
∈ {3e−5, 5e−5, 8e−5, 1e−4}, num-train-epochs ∈ {1, 2}, label-smoothing-ratio ∈ {0.0, 0.2},
warmup-ratio ∈ {0.0, 0.1}. We freeze the embedding layer and employ early-stopping technique to
prevent overfitting.

Speed-ups of pruned BERT-base models. In Table 19 we present speed-ups of our pruned
models in the sparsity-aware CPU inference engine DeepSparse (Kurtz et al., 2020; NeuralMagic,
2021) (version 1.0.2). We consider two different scenarios and report speed-ups relative to the dense
model benchmarked in the same environment.

Robustness to one-shot pruning. In Table 18 we present results for runs where CrAM is not
used at every optimization step, and demonstrate that even in this setup the obtained models are
still more robust to pruning compared to the models fully fine-tuned either with Adam or SAM
optimizers reported in Table 4.

Model Dense Sparsity
50% 60% 70% 80%

p(Adam) = 0.0 88.7 88.3 88.1 86.8 82.5
p(Adam) = 0.1 87.6 87.4 87.4 86.5 84.0
p(Adam) = 0.3 87.5 87.5 87.2 86.5 83.6
p(Adam) = 0.5 87.8 87.7 87.2 86.4 83.0
p(Adam) = 0.8 87.0 87.1 86.8 85.2 79.1

Table 18: (SQuADv1.1/BERT-base) Validation F1
score of models optimized with CrAM+-Multi where
at each step with probability p(Adam) the standard
Adam step is applied instead of the CrAM+-Multi
step.

Model 4-cores, batch-size=1 16-cores, batch-size=128
Throughput
(items/sec) Speed-up Throughput

(items/sec) Speed-up

Dense 4.0 1.0x 14.2 1.0x
50% sparse 4.5 1.1x 18.0 1.3x
60% sparse 5.2 1.3x 21.8 1.5x
70% sparse 6.3 1.6x 26.0 1.8x
80% sparse 8.0 2.0x 31.9 2.3x

Table 19: (SQuADv1.1/BERT-base) Speed-ups of
pruned BERT-base models relative to the dense
model, benchmarked with the sparsity-aware infer-
ence engine DeepSparse (version 1.0.2) (Kurtz et al.,
2020; NeuralMagic, 2021) in two different scenarios
on AMD EPYC 7702 64-Core Processor.

D Theoretical Support for the CrAM Update
In this section, we attempt to formally derive a generic training method whose purpose is to provide
compressible models, which perform well even after being compressed. To understand why we can
hope to achieve such guarantees, we first take a brief detour to the area of robust optimization.

25

D.1 Robust Optimization

Generally, practical training methods are based on versions of stochastic gradient descent attempting
to minimize a loss function L(θ). However, θ might turn out to be a bad solution as the landscape of
L in its neighborhood could contain large changes in value. To address this issue, one may attempt
to flatten L such that it is less sensitive to sharp drops in value localized around a very small region.
To this extent, a standard robustification can be defined by

L̃(θ) = max
‖δ‖≤ρ

L(θ + δ) , (10)

which makes the value of L̃(θ) take that of the largest value of L given by perturbation of θ within
a ball of radius ρ. While this robustified function may seem well suited to generic training tasks, it
is a priori unclear that it is amenable to optimization.

However, under certain conditions, we can efficiently optimize L̃ by using a classical theorem in
robust optimization due to Danskin (Danskin, 2012).
Theorem 1. (Danskin) Let C ⊆ Rm be a compact set, let a function φ : Rn × C → R such that
φ(·,y) is continuously differentiable for every fixed y ∈ C and ∇xφ(x,y) is continuous on Rn × C,
and let ψ : Rn → R be defined as

ψ (x) = max
y∈C

φ (x,y) .

Then ψ is locally Lipschitz continuous, directionally differentiable, and its directional derivatives
satisfy

dψ (x; d) = max
y∈C∗

d>∇xφ (x,y) .

where C∗ (x) is the set of maximizers

C∗(x) =
{

y∗ : φ (x,y∗) = max
y∈C

φ (x,y)
}
.

In particular, if for some x ∈ Rn the set C∗(x) = {y∗x} is a singleton, then ψ is differentiable at x
and

∇ψ(x) = ∇xφ(x,y∗x) .
This shows that, under certain assumptions, we can obtain directional derivatives for L̃ (θ) by

simply maximizing L(θ + δ) over δ ∈ B2(ρ).
Corollary 2. Let L̃ be defined as in Equation (10), and define

C∗(θ) =
{

δ : ‖δ‖ ≤ ρ, L(θ + δ) = max
‖δ∗‖≤ρ

L(θ + δ∗)
}
,

and let δ ∈ C∗(θ). Provided that L(θ) is continuously differentiable, and θ is not an articulation
point for L̃, −∇L(θ + δ) is a descent direction for L̃(θ) as long as it is nonzero.

Proof. Let h = ∇L(θ + δ). We apply Danskin’s theorem for φ(θ, δ) = L(θ + δ) and C = B2(ρ).
This shows that

dL̃(θ; h) = sup
δ∈C∗(θ)

h>∇L(θ + δ) ≥ h>∇L(θ + δ) = h>h ≥ 0 .

Provided that θ is not an articulation point for L̃, we also have that dL̃(θ;−h) = −dL̃(θ; h) ≤ 0,
which concludes the proof.

26

D.1.1 From Robust Optimization to SAM

Per Corollary 2, to obtain a descent direction it suffices to maximize L(θ + δ) over the set of
perturbations satifying ‖δ‖ ≤ ρ. In general, even when the underlying function L is convex, this
may be a difficult problem. Instead, one may simply attempt to obtain a good local maximizer of
L in a bounded region around θ. The simplest possible way to do so is by performing a step of
gradient ascent, which can be regarded as a proxy for the maximization subproblem. Using this
step, we immediately obtain the iteration:

θ̃t = θt + ρ

‖∇L(θt)‖
∇L(θt) , θt+1 = θt − η∇L(θ̃t) , (11)

which recovers the extrapolated SAM gradient step from Foret et al. (2021).
There is exhaustive research that has previously been done on robust optimization methods.

For a comprehensive reference, we point the reader to Teo’s PhD thesis (Teo, 2007).

D.2 Robust Optimization for Compressible Models

With the robust optimization framework in mind, we are ready to attempt implementing a similar
scheme which exhibits robustness to compression.

To motivate the method, let us consider the post-training compression. After training the model
to weights to θT we apply a one-shot compression method C over some perturbation θT + δ of the
weights. This captures several iterative methods for compression, such as iterative pruning, where
changes in weights are alternated with one-shot pruning methods.

If our goal is to make the loss after compression robust within a small neighborhood of pertur-
bations δ, we can establish as a formal objective to minimize the robustified loss

LCrAM (θ) := max
δ:‖δ‖≤ρ

L (C (θ + δ)) , (12)

for some magnitude ρ of allowed perturbations. In our case we will focus on the case where these
are bounded in `2 norm, but this can be easily extended to other choices of the domain. Just as
before, we can now attempt to minimize LCrAM, or find a near-stationary point, by gradient descent.
Using the robust optimization framework we may attempt to optimize it using Corollary 2 after
replacing L(·) with L(C(·)).

Naturally, this poses some obstacles in our case. The main one is the fact that it is not true
that L(C(θ)) will generally be continuously differentiable, so the conditions required to obtain
descent directions via an inner maximization loop are not satisfied. However, we can show that
under certain conditions, continuous differentiability fails only at a set of points of measure 0.

Definition 1. Let S be a countable set, let {Pi}i∈S be a covering of Rn with convex sets, and let
S(x) denote the family of indices from S for which x ∈ Pi. Let a family of projection operators
{Πi}i∈S, such that for any x the projections {Πi(x)}i∈S(x) all map to the same point. We call a
projective compression operator with respect to {Πi}i∈S a mapping C : Rn → Rn such that

C(x) = Πi(x) , for any i ∈ S(x) .

For example, in the case of the Top-k compression operator, we can define a projection for each
subset A of coordinates of cardinality k. We say that given a vector x, the set A ∈ S(x) iff the
largest k coordinates of x in absolute value (with ties broken lexicographically) are supported in A.

27

Lemma 3 (Continuously differentiable functions induce few singularities after compression). Let
L : Rn → R be a continuously differentiable function, and let C be a projective compression operator.
Then the function g(x) := L(C(x)) is continuously differentiable everywhere except at a set of points
of measure 0. Furthermore, so is the robustified function LCrAM(x) := max‖δ‖≤ρ L(C(x + δ)).

Proof. First we note that the boundary of any convex set has measure zero by standard arguments
in convex analysis (Lang, 1986). Since a countable union of sets of measure zero has measure zero,
it follows that the union of the boundaries of Pi’s has measure zero. Now since L is continuously
differentiable, within any set Pi, we have that g(x) = L(Πi(x)), and hence it remains continuously
differentiable. Therefore the only region for which we can not argue about continuous differentiability
is the complement of the union of interiors of Pi’s, (∪iintPi)c ⊆ ∪i∂Pi which is a set of measure
zero. Since g is well-behaved almost everywhere, all that remains to argue is that this is the same
case with LCrAM.

For any fixed direction ∆θ, we define the mapping

M(θ) = ∆θ>∇g(θ) ,

and its robustification

M̃(θ) = max
‖δ‖≤ρ

M(θ + δ) = max
‖δ‖≤ρ

∆θ>∇g(θ + δ) .

Hence the directional derivative w.r.t. ∆θ of LCrAM(θ) is discontinuous only when M̃(θ) is discon-
tinuous. Finally, we note that this almost never happens, as M is continuous almost everywhere,
and thus so must be M̃ . Thus, all directional derivatives are continuous except at a set of measure
0, which concludes the proof.

Finally, just like in the previous case, maximizing L(C(θ + δ)) over small perturbations is
generally intractable. So we instead consider obtaining a good enough maximizer via a standard
iterative method which has shown good performance in practice. More precisely we consider
the projected gradient ascent method, which provides strong theoretical guarantees, even when
the projection is performed onto non-convex domains (Peste et al., 2021). In the case where
the compression operator represents magnitude pruning, this corresponds to the iterative hard
thresholding (IHT) method, frequently employed in the sparse recovery literature.

To reach a good iterate within this specific domain we instead perform a single step of (projected)
gradient ascent, which matches the IHT iteration:

θ̃t = C (θt + ρ · ∇L(θt)) . (13)

We have therefore obtained a re-derivation of the CrAM update in Equation 2.

28

	1 Introduction
	2 Related Work
	3 The Compression-Aware Minimizer (CrAM)
	3.1 Background
	3.2 Theoretical Justification of the CrAM Update
	3.3 Implementation Details and Extensions

	4 Experiments
	4.1 ImageNet Experiments
	4.2 Experiments on Language Modelling
	4.3 Detailed Comparisons with Other Methods

	5 Conclusions and Future Work
	A Image Classification Hyperparameters
	B Additional Image Classification Experiments
	B.1 Ablation Study for Alternative Updates
	B.2 Importance of Sparse Gradients
	B.3 Variability of Batch Norm Tuning Results
	B.4 Results with Uniform Sparsity
	B.5 CrAM for N:M Sparsity Patterns
	B.6 Results on Quantization
	B.7 Comparison With Other Methods on CIFAR10

	C Language Models - reproducibility and hyperparameters
	D Theoretical Support for the CrAM Update
	D.1 Robust Optimization
	D.1.1 From Robust Optimization to SAM

	D.2 Robust Optimization for Compressible Models

