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Abstract—We consider the problem of multi-agent op-
timization wherein an unknown subset of agents suffer
Byzantine faults and thus behave adversarially. We assume
that each agent i has a local cost function fi, and the
overarching goal of the good agents is to collaboratively
minimize a global objective that properly aggregates these
local cost functions. To the best of our knowledge, we are
among the first to study Byzantine-resilient optimization
where no central coordinating agent exists, and we are the
first to characterize the structures of the convex coefficients
of the achievable global objectives.

Dealing with Byzantine faults is very challenging. For
example, in contrast to fault-free networks, reaching
Byzantine-resilient agreement even in the simplest setting
is far from trivial. We take a step towards solving the pro-
posed Byzantine-resilient multi-agent optimization problem
by focusing on scalar local cost functions. Our results might
provide useful insights for the general local cost functions.

I. INTRODUCTION

Networked multi-agent systems consist of a group of
agents that perform collaborative tasks. The problem
of multi-agent optimization typically assumes that each
agent in the network has a local cost function, and the
overarching goal of the networked agents is to minimize
a global objective that properly aggregates these local
costs. One standard choice of such global objective is
the average of the local cost functions [1].

Multi-agent optimization over adversary-free networks
is well-studied [1]–[3]. In this paper, we study adversary-
prone networks. In particular, we consider the scenario
wherein an unknown subset of agents suffer Byzantine
faults – a canonical fault model in distributed computing
[4] – and thus behave adversarially against the good
agents. Unfortunately, having the average of the local
cost functions as the global objective makes the multi-
agent network extremely vulnerable to Byzantine faults;
the average can be completely controlled by even a
single adversarial agent. Similar observation is made
in [5]. Thus, in our problem, the common goal of the
good agents is to collaboratively minimize a global
objective that properly aggregates the local cost functions
at the good agents. The problem formulation (including
the network model, the Byzantine fault model, and the
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family of desired global objectives) can be found in
Section III. To the best of our knowledge, we are among
the first to study Byzantine-resilient optimization where
no central coordinating agent exists, and we are the first
to characterize the structures of the convex coefficients
of the achievable global objectives.

Dealing with Byzantine faults is very challenging;
in contrast to fault-free networks, reaching Byzantine-
resilient agreement even in the simplest setting is far
from trivial. We take a step towards solving the proposed
Byzantine-resilient multi-agent optimization problem by
focusing on scalar local cost functions. Attempts have
been made to generalize our results to a broader family
of local cost functions [6]. We would like to leave the
general local cost functions as one important future di-
rection. Our contributions can be summarized as follows:
• We propose (in Section III-C) a Byzantine-resilient

multi-agent optimization problem, wherein the
global objective is a convex combination of the
local cost functions at the good agents and the
structure of the convex coefficients is quantified by
a metric named (β, γ)–admissibility (see Definition
1). Notably, our problem formulation is also valid
for general local functions.

• We show in Theorem 1 that no algorithms can
guarantee (β, γ)–admissibility with γ > n− φ− b,
where n is the number of agents, φ is the actual
number of agents suffering Byzantine faults, and b
is the maximum number of Byzantine faults.

• We propose an algorithm that is provably resilient
to Byzantine faults (i.e., Algorithm 1). We char-
acterize the (β, γ) tuples it can guarantee when
the network satisfies certain topological conditions
(in Theorem 3). When the network is a complete
graph (e.g., logically fully connected), Algorithm 1
can guarantee to achieve (β, γ) for β = 1

2(n−φ−b)
and γ = n − φ − b, matching the bound in the
impossibility result in terms of γ. More importantly,
given γ = n − φ − b, the achieved β = 1

2(n−φ−b)
matches the optimal β up to a multiplicative factor
1
2 . The results for complete graphs are summarized
in Fig. 1. Notably, adversary-prone networks with
complete graphs are distributed systems [4].

This paper unifies the results scattered in our unpub-
lished technical reports and the preliminary works [7],
[8]. In particular, the impossibility result first appeared
in [7] (also in [9]) and the algorithm was presented in
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[8] and [10], [11]. In contrast to [8] whose focus is on
complete graphs, we focus on general networks.

II. RELATED WORK

Byzantine-resilient consensus: There is a significant
body of work on Byzantine-resilient consensus [12]–
[18]. Readers are referred to [12] for comprehensive
survey. Next we give a brief review on this line of work.

The Byzantine fault-tolerance problem was first intro-
duced in [19], and has been one of the most fundamental
problems in distributed computing for decades. Fisher,
Lynch, and Paterson showed that the fault-tolerant con-
sensus problem cannot be solved in an asynchronous
system [20]. As one way to circumvent this impossibility
result, the notion of approximate consensus was intro-
duced [13], which only requires that processes agree with
each other approximately rather than exactly in finite
time. Reaching approximate consensus is of interest in
synchronous systems as well [13]–[15]. The discussion
in this paper applies to synchronous systems.

For undirected networks, approximate consensus can
be achieved if and only if the network connectivity is at
least 2b+1 and n > 3b [21]; recall that b is the maximum
number of Byzantine faults. For directed networks, a suf-
ficient and necessary condition on the network structures
was characterized in [22]. There has been increasing
interest in designing iterative approximate Byzantine
consensus algorithms wherein only local communication
is allowed [14], [15], [23], [24]. In particular, [24]
studied the convergence rate over complete networks,
and [14], [15] considered arbitrary directed networks and
derived necessary and sufficient topological conditions.
Recently, Byzantine consensus subject to differential
privacy requirements was considered in [25].

All the above work focuses on scalar inputs. Multi-
dimensional inputs have been studied recently [17], [26],
[27]. Complete graphs were considered in [26], [27],
where tight conditions on the number of agents were
identified. Incomplete graphs were studied in [17].

Our work is most relevant to the line of work on
approximate synchronous Byzantine consensus over ar-
bitrary graphs [14], [15]. In our work, in each iteration,
each good agent combines an approximate Byzantine
consensus update with its local gradient descent update.
Intuitively speaking, an approximate consensus update
is used as a mechanism for each of the good agents
to “robustly collect” information from others in the
presence of Byzantine agents. This is in contrast to the
exact Byzantine consensus protocols that are involved
in Blockchains wherein exact Byzantine consensus is
used as a “selection mechanism” to determine among the
multiple blocks proposed which one should be appended
to the blockchain.

Distributed optimization: Our work goes beyond
Byzantine consensus in that the local inputs are func-
tions, and the goal is to reach an agreement on a value
that is a minimizer of some weighted average of these
local cost functions.

Distributed optimization has a long history. The sem-
inal works [28], [29] considered separable global objec-
tives for which the local decision variables at different
agents are allowed to be different. Nedic and Ozdaglar
[1] studied the setting wherein the global objective is
the average of these local cost functions, and the local
variables at the agents are require to reach consensus
asymptotically. Many follow-up works are inspired; see
[30], [31] for comprehensive surveys. Nevertheless, little
attention has been paid to adversary-prone networks.

Multi-agent optimization over adversary-prone net-
works, to the best of our knowledge, was first consid-
ered by Sundaram and Gharesifard [5] and our tech-
nical reports [9]–[11], [32] with different fault mod-
els and global objectives. In contrast to the Byzan-
tine fault model which assumes that a bad agent can
send differently-valued messages to different neighbors,
in [5] an adversarial agent is only allowed to send
identically-valued (broadcast) messages. This difference
is significant as in complete graphs, for the faults in
[5], there exists a consensus algorithm that can tolerate
less than 1

2 of the agents to be faulty; in contrast, it is
well-known that no consensus algorithms can tolerate
more than 1

3 agents to be Byzantine [33]. It might
be enough to consider the fault model in [5] when
the networked agents communicate with each other via
wireless communication. In fact, the more structure on
the adversarial behaviors, the easier to secure multi-agent
optimization. Additionally, [5] considered the family of
global objectives in the form of convex combinations
of the local cost functions at the good agents, and
no additional structures on the convex coefficients are
required. Consequently, the local estimates at the good
agent in [5] are only guaranteed to converge to a convex
combination of the minima of those local functions. In
contrast, in addition to being in the convex hull, we also
characterize a structure of the convex coefficients.

Byzantine-tolerant distributed machine learning: An-
other line of work that is relevant to the discussion of this
paper is Byzantine-tolerant distributed machine learning
[34], [35]. The main difference between these papers and
the problem considered here is that they considered the
learning problem under a statistical learning framework.
Specifically, they assumed that the training data is i.i.d.
generated from a unknown distribution, and the learning
goal there is to minimize the population loss, which is
defined in a form of integration -where the integration
is taken over the unknown underlying distribution.
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III. PROBLEM FORMULATION

A. Network Model

A multi-agent network consists of a collection of n
agents/nodes that interact with each other through a
directed communication network G(V, E), where V =
{1, · · · , n} denotes the set of nodes and E denotes the
set of edges. An unknown subset of agents, denoted by
A, are adversarial. This set is chosen by the system
adversary and |A| ≤ b. For ease of exposition, let
φ , |A| . Clearly, φ ≤ b. Additionally, we assume
n ≥ 3b+ 1.

Let Ni be the set of incoming neighbors of agent i
with di , |Ni|. Each agent can send messages to itself.
However, for convenience, we exclude self-loops from
set E , i.e., (i, i) 6∈ E . The specific network structure
under consideration is summarized later in Assumption
1, which ensures Byzantine-resilient consensus.

B. Fault Model

We use Byzantine fault model [4] to capture the
system threat. Byzantine fault model assumes that there
exists a system adversary that can choose a subset
of agents A to compromise and control. While A is
unknown to the good agents, a standard assumption is
that the value of b is common knowledge [4]. We refer
to an agent suffering Byzantine fault as Byzantine agent.

The system adversary is powerful in that it has com-
plete knowledge of the network, including the network
structures, the local program at each good agent, the
current status and running history of the multi-agent
network. The Byzantine agents can collude with each
other and deviate from their pre-specified local programs
to arbitrarily misrepresent information to the good agents
[4]. In particular, Byzantine agents can mislead the good
agents by sending possibly inconsistent messages: letting
mij [t] be the message sent from a Byzantine agent i ∈ A
to a good agent j ∈ V \ A at iteration t, it is possible
that mij [t] 6= mij′ [t] for j 6= j′ ∈ V \ A.

Due to the freedom given to Byzantine agents as well
as the system asymmetry caused by them, dealing with
Byzantine faults is challenging. In particular, it is well-
known that even for complete graphs and scalar local
inputs, no Byzantine-resilient consensus algorithms can
tolerate more than 1

3 of the agents to be Byzantine [33].

C. Byzantine-Resilient Multi-Agent Optimization

Let X ⊆ R be a nonempty, closed and convex set.
We say a function f : X → R is admissible if (i) f is
convex, continuously differentiable, and has L-Lipschitz
gradient, (ii) f has bounded gradient, i.e., |f ′(x)| ≤ L
for each x ∈ X , and (iii) arg minx∈X f(x) is non-empty
and compact (i.e., bounded and closed). Notably, the

bounded gradient assumption holds automatically when
X is compact. In our multi-agent optimization problem,
we assume each agent i has an admissible local cost
function fi. Similar assumptions are adopted in [36].

In fault-free networks (i.e., b = 0) one commonly
adopted global objective [1], [37], [38] is

1

n

n∑
i=1

fi(x). (1)

Unfortunately, when b > 0, the global objective (1) can-
not be minimized. This is because initially the function
fi is the local information known to agent i only, and a
Byzantine agent can lie arbitrarily about fi. Observing
this, we formulate a robust multi-agent optimization as
follows: For a given tuple (β, γ), where β ∈ (0, 1) and
γ ∈ N, the common goal of the good agents is to identify
an output such that

x̃ ∈ arg min
x∈X

∑
i∈V\A

αifi(x) (2)

where

αi ≥ 0,
∑
i∈V\A

αi = 1, and

∑
i∈V\A

1 {αi ≥ β} ≥ γ.

Here 1 {αi ≥ β} = 1 if αi ≥ β, and 1 {αi ≥ β} = 0
otherwise. Notably, the above formulation is valid even
for the general setting where X ⊆ Rd for d ≥ 1. A
similar formulation is independently proposed in [39,
Eq. (4) on page 12] under a statistical learning setup.

Characterizing the structure of the convex coefficients
is important despite the fact that different applications
favor different structures on the convex coefficients. In
this paper, we require that sufficiently many coefficients
be not too small, i.e., are nontrivially lower bounded
away from 0. Intuitively, if the coefficient assigned to a
local cost function is not too small, then the information
encoded is utilized in determining the global decision.
Such convex coefficients structure is crucial especially
for the setting where fis are not i.i.d. generated.

Example 1. Suppose that n = 4, A = {4}, X = [−1, 1],
f1(x) = f4(x) = 1

2x
2,

f2(x) =


(x−1)2

2 , x > 1;

0, 0 ≤ x ≤ 1;
1
2x

2, x < 0,

f3(x) =


1
2x

2, x > 0;

0,−1 ≤ x ≤ 0;
(x+1)2

2 , x < −1.

If we can solve (2) for γ ≥ 2 and β > 0, then x̃ = 0.

In Example 1, no matter how the malicious agent
4 lies, eventually each of the good agent agrees on 0.
Notably, since the malicious agent 4 can lie arbitrarily
about its local function. In particular, it could pretend its
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local function is 1
2 (x − 100)2. The good agents cannot

tell whether agent 4 is lying or it is honest but its local
function is indeed 1

2 (x−100)2. To prevent the malicious
agent from arbitrarily controlling the eventual agreement
value, in the problem formulation (2), the summation is
taken over the good agents only.

Example 2 (Vector example). Consider the distributed
state estimation problem wherein each good agent gets
access to some local linear measurement yi of the true
state θ∗ ∈ Rd, i.e., yi = 〈wi, θ∗〉, where wi ∈ Rd is the
local observation vector. Suppose that n = 4, A = {4},
θ∗ ∈ R2, and the local observation vectors of the good
agents are w>1 = [1, 0], w>2 = [0, 1], w>3 = [1, 1], and
w>4 = [1, 1]. Suppose we can solve (2) for γ ≥ 2 and
β > 0. For any such convex coefficients αis, it is easy
to see that

∑3
i=1 αiwiw

>
i is of full rank. Thus, x̃ = θ∗.

We use the following notion to describe the structure
of the convex coefficients.

Definition 1. (β, γ)–admissibility: Given β > 0 and
γ ∈ N, α> = [α1, · · · , αn] is (β, γ)-admissible if:
(1)
∑
i∈V\A αi = 1, αi ≥ 0, for each i ∈ V \ A; and

(2) at least γ elements of α are lower bounded by β.

In this paper, we take a step towards solving the
Byzantine-resilient multi-agent optimization problem in
(2) by focusing on scalar local cost functions. Our results
might provide insights for general local cost functions.

Clearly, the problem in (2) cannot be solved for all
(β, γ) tuples. The following impossibility result was
originally presented in [7] (a preliminary conference
version) and the unpublished technical report [9].

Theorem 1. It is impossible to guarantee that more than
|V \A|− b entries in vector α are non-zero. That is, for
any β > 0, it is impossible to guarantee that α is (β, γ)-
admissible with γ > |V \ A| − b.

Proof of Theorem 1 is omitted here for brevity,
and can be found in [9]. This proof is based on an
indistinguishability argument that is frequently adopted
in distributed computing [4]. Specifically, a collection
of admissible functions that are hard to be dealt with
were constructed. Notably, if additional structures on the
local functions are available, the impossibility results in
Theorem 1 might no longer hold.

IV. PRELIMINARIES

A. Projection

Let Dist (x,X ) be the distance of x from set X , i.e.,

Dist (x,X ) = inf
y∈X
|x− y|. (3)

We use PX [x] to denote the projection of the point x onto
the set X , i.e., PX [x] = arg minz∈X |z − x| . Recall

from Section III-C that X ⊆ R is a nonempty, closed and
convex set. In our analysis, we use the non-expansiveness
property of projection, i.e.,

|PX [x]− PX [y]| ≤ |x− y| ∀x, y ∈ R. (4)

B. Valid Global Objectives

Definition 2. For a given tuple (β, γ), let C(β, γ) be the
collection of functions defined as follows:

C(β, γ) ,

{
p : p =

∑
i∈V\A

αifi, αi ≥ 0,
∑
i∈V\A

αi = 1

and
∑
i∈V\A

1 {αi ≥ β} ≥ γ

}
. (5)

We refer to the functions in C(β, γ) as (β, γ)–valid
global objectives. Define X(β, γ) as

X(β, γ) , ∪p∈C(β,γ) arg min
x∈X

p(x). (6)

Lemma 1. If β ≤ 1
|V\A| and γ ≤ |V\A|, the set X(β, γ)

is convex and closed.

Lemma 1 is proved in our full version [40]. The
following quantity is used in proving Lemma 1: Define

X̄(β, γ) , ∪p∈C(β,γ) arg min
x∈R

p(x). (7)

We first show that X̄(β, γ) is convex and closed. The
proof of Lemma 1 then follows easily by carefully
examining two cases: (1) X̄(β, γ) ∩ X = ∅ and (2)
X̄(β, γ) ∩ X 6= ∅.

To show an algorithm solves (2) for a given tuple
(β, γ), it is enough to show the convergence of the local
estimates at the good agents to set X(β, γ). Notably, by
requiring a common output at the good agents in (2), we
implicitly require consensus among the good agents.

C. Byzantine Consensus

In this subsection, we briefly review some relevant
definitions and results on Byzantine consensus.

Definition 3. [23] For a given G(V, E), a reduced
graph H is a subgraph obtained by removing all the
Byzantine agents along with their edges; and (ii) by
removing any additional up to b incoming edges of each
good agent.

Denote the collection of all such reduced graphs by
R(G) with |R(G)| , τ .

Definition 4. A source component S of a given graph
is the collection of agents each of which has a directed
path to every other agent in the graph.

Notably, a graph has at most one source component.
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Theorem 2. [23] Byzantine-resilient consensus with
scalar inputs can be achieved on G(V, E) if and only if
every reduced graph has a non-empty source component.

Throughout this paper, we assume that G(V, E) satis-
fies the following assumption so that Byzantine-resilient
consensus with scalar inputs can be achieved.

Assumption 1. Every reduced graph of G(V, E) has a
non-empty source component.

As stated in Theorem 2, the graph condition in
Assumption 1 is both necessary and sufficient for
Byzantine-resilient consensus. A similar necessary and
sufficient graph condition is assumed by Sundaram and
Gharesifard [5] but is stated for the restricted fault model
wherein, in each iteration, a malicious agent can send
only identically-valued messages to its neighbors. As a
result of this difference, the graph condition in Theorem
2 is more restrictive than the graph condition stated in
[5]. Note that Assumption 1 immediately implies that
di ≥ 2b + 1 for all i ∈ V [23]. Otherwise, we might
be able to find an isolated node in a reduced graph of
G(V, E), contradicting Assumption 1.

V. BYZANTINE-RESILIENT GRADIENT DESCENT
OVER NETWORKS

We present a collaborative gradient descent method,
formally described in Algorithm 1 for a good agent;
a Byzantine agent may deviate from Algorithm 1 by
sending out malicious and possibly inconsistent mes-
sages. In Algorithm 1, the good agents exchange both
local estimates and local gradients with others. Though
exchanging local gradients might not be necessary, it
simplifies the exposition of our results.

In Algorithm 1, the maximum number of Byzantine
faults b and the sequence of stepsizes {λ[t]}∞t=1 are
known to each good agent as a priori. Here, the stepsizes
used satisfy the following conditions: (1) λ[t] ≥ λ[t+ 1]
for t ≥ 1, (2)

∑∞
t=1 λ[t] =∞, and (3)

∑∞
t=1 λ

2[t] <∞.
In iteration t ≥ 1, a good agent i sends its local estimate
xi[t−1] and the local gradient f ′i(xi[t−1]) to its outgoing
neighbors. Define Dxi [t] and Dgi [t] as

Dxi [t] , set of estimates received from Ni,
Dgi [t] , set of received gradients ∪ {f ′i(xi[t− 1])}.

Note that the definitions of Dxi [t] and Dgi [t] are slightly
different: Dxi [t] does not contain the local estimate, and
Dgi [t] contains the local gradient. Due to the fact that a
Byzantine agent can send differently-valued messages to
different outgoing neighbors [4], [21], even in complete
graphs it is possible that

Dxi [t] 6= Dxj [t], and Dgi [t] 6= Dgj [t], ∀i 6= j ∈ V \ A.

Algorithm 1: Byzantine-resilient gradient de-
scent (local program at agent i ∈ V \ A)

Input: b and {λ[t]}∞t=1;
Initialization: Set xi[0] to an arbitrary value in
X .

for t = 1, . . . do
- Compute the local gradient f ′i(xi[t− 1]);
- Send (xi[t− 1], f ′i(xi[t− 1])) to its
outgoing neighbors;

- Dxi [t]← set of estimates received from
incoming neighbors;

- Dgi [t]← set of received gradients
∪{f ′i(xi[t− 1])} ;

- x̃i[t]← Average(Trim(Dxi [t])∪{xi[t− 1]});
- g̃i[t]←
1
2 (max{Trim(Dgi [t])}+ min{Trim(Dgi [t])});

- Compute xi[t]← PX [x̃i[t]− λ[t]g̃i[t]];
end

Function Trim(·)
Input: Multi-set D of size ≥ 2b+ 1;
- Sort the elements in D in a non-decreasing
order (breaking ties arbitrarily);

- Remove the smallest b elements and the largest
b elements;

Output: Trimmed set D (after 2b elements were
removed in the previous step).

If agent i does not receive a message from an incoming
neighbor in iteration t, it must be true that this incoming
neighbor is Byzantine. Thus, a default value is assumed
for such missing messages. An algorithmic function,
named Trim(·), is used in our gradient descent method,
and its description can be found in Algorithm 1. Trim(·)
takes a multi-set of size at least 2b + 1 as input,
and removes the b largest and the b smallest elements
(breaking ties arbitrarily). Note that in Algorithm 1,
the averaging strategies used to compute x̃i and g̃i are
also slightly different. In particular, x̃i is the average
of di − 2b + 1 elements in Trim(Dxi [t]) ∪ {xi[t− 1]},
and g̃i is the average of the max and min elements in
Trim(Dgi [t]), where the local gradient may possibly be
trimmed away. As can be seen later, these averaging
strategies ensure some desired structures on x̃i and g̃i,
respectively.

With the computed x̃i[t] and g̃i[t], the local estimate
xi is updated via a projected gradient descent update in
the last step of the for loop in Algorithm 1:

xi[t]← PX [x̃i[t]− λ[t]g̃i[t]] .
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Theorem 3 (main result). Suppose Assumption 1 holds.
Let |Ni ∩ A| , φi, γ̃ , mini∈V\A(di + 1 − φi − b),

and β̃ , min
{

1
2maxi∈V\A(di+1−φi−b) ,

1
n−φ

}
. Then

limt→∞Dist
(
xi[t], X(β̃, γ̃)

)
= 0 for i ∈ V \ A.

Notably, Assumption 1 implies that maxi∈V\A(di +
1− φi − b) > 0.

VI. MAIN ANALYSIS

In this section, we provide a proof sketch of Theorem
3. All the missing detailed proofs can be found in the
full version [40]. The proof of Theorem 3 consists of
two parts: achievability of consensus (Section VI-A) and
convergence to set X(β̃, γ̃) (Section VI-B).

A. Achievability of Consensus

Define the projection error as

ei[t] = PX [x̃i[t]− λ[t]g̃i[t]]− (x̃i[t]− λ[t]g̃i[t]) . (8)

Thus, the update of xi in Algorithm 1 can be written as

xi[t] = x̃i[t]− λ[t]g̃i[t] + ei[t]. (9)

It turns out that the projection error diminishes over time.

Proposition 1. For each i ∈ V \ A and each t ≥ 1, the
projection error ei[t] satisfies |ei[t]| ≤ λ[t]L.

Without loss of generality, assume that agents indexed
from 1 through n−φ are good agents, and agents indexed
from n−φ+ 1 to n are Byzantine faulty. Let x ∈ Rn−φ
be the vector that stacks the local estimates of the good
agents with x[t] being these estimates at the end of
iteration t, and xi[t] = xi[t] for i ∈ V \ A. Similarly,
let g̃[t] ∈ Rn−φ be the vector that stacks the aggregated
gradients adopted by the good agents at iteration t (i.e.,
g̃i[t],∀ i ∈ V \ A), and let e[t] ∈ Rn−φ be the vector
that stacks the projection errors (defined in (8)) at the
good agents at iteration t.

It was shown in [23] that when G(V, E) satisfies the
condition in Assumption 1, the update of x ∈ Rn−φ can
be written compactly in a matrix form:

x[t] = M[t]x[t− 1]− λ[t]g̃[t] + e[t], (10)

where M[t] is a row-stochastic matrix, and its depen-
dency on t arises from the fact that the Byzantine agents
can behave differently from iterations to iterations. In
particular, x̃i[t] can be written as a convex combination
of xj [t− 1]s at agent i’s good incoming neighbors, i.e.,

x̃i[t] =

n−φ∑
j=1

Mij [t]xj [t− 1]. (11)

The adjacency matrix H of a reduced graph H ∈
R(G) is defined as

Hij =

{
1, if i = j or edge (i, j) is contained in H;
0, otherwise.

Henceforth, with a little abuse of terminology and no-
tation, we do not distinguish a reduced graph and its
adjacency matrix. The matrix M[t] in (11) satisfies: for
every t ≥ 1, there exists a reduced graph H[t] such that

M[t] ≥ ξH[t], (12)

where ξ , 1
2(dmax +1−2b) , and dmax , maxi∈V di.

Let Φ(t, r) , M[t]M[t − 1] . . .M[r] be a backward
product, Φ(t, t) , M[t] and Φ(t, t + 1) , I. Equation
(10) can be expanded out as

x[t] = Φ(t, 1)x[0]−
t∑

r=1

λ[r]Φ(t, r + 1)g̃[r]

+

t∑
r=1

Φ(t, r + 1)e[r]. (13)

Proposition 2. [15, Proof of Theorem 1] Suppose
Assumption 1 holds. Then for i, j, ` ∈ V \A, and r ≤ t,
it holds that |Φi`(t, r)−Φj`(t, r)| ≤ θd

t−r+1
ν e, where

ν , τ(n− φ) and θ , 1− ξν .

Recall that |R(G)| = τ and |A| = φ ≤ b.

Lemma 2. For all i, j ∈ V \ A and for each t ≥ 1,

|xi[t]− xj [t]| ≤ (n− φ)θd
t
ν e max

`∈V\A
|x`[0]|

+ 2L(n− φ)
t∑

r=1

λ[r]θd
t−r
ν e.

The second term in the above upper bound concerns
the convolution of an exponentially convergent sequence
with a convergent sequence. It is well-known that

L(n− φ)
t∑

r=1

λ[r]θd
t−r
ν e → 0 as t→∞.

A proof was given in our technical report [11] for com-
pleteness. Thus, an immediate consequence of Lemma 2
is the achievability of asymptotic consensus.

Corollary 1. For all i, j ∈ V \ A, |xi[t] − xj [t]| →
0, as t→∞.

In addition, a convergence rate of |xi[t]− xj [t]| for
i, j ∈ V \A can be obtained by plugging in the specific
choice of stepsizes {λ[t]}∞t=1, such as λ[t] = 1

t ∀ t ≥ 1.
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B. Convergence Analysis

Lemma 3. At each iteration t, for each i ∈ V \ A,
there exists a valid function pit =

∑
i∈V\A α

it
j fj in

C(β̃, γ̃), where
{
αitj
}
j∈V\A are the (β̃, γ̃)–admissible

convex coefficients, such that

g̃i[t] =
∑

j∈V\A

αitj f
′
j(xj [t− 1]). (14)

In (14), the local cost functions are evaluated at
different estimates. Moreover, the valid function involved
in Equation (14) is time-varying, and the local gradients
at different good agent is might correspond to different
valid functions ps. This is because that the Byzantine
agents might behave maliciously.

To show Algorithm 1 solves (2), it is enough to show
the local estimates at the good agents converge to set
X(β̃, γ̃). Towards this goal, we introduce an auxiliary
estimate sequence {z[t]}∞t=1, defined as follows:

z[t] = xjt [t], where jt ∈ arg max
j∈V\A

Dist
(
xj [t], X(β̃, γ̃)

)
.

By this definition, there is a sequence of agents {jt}∞t=1

associated with the auxiliary sequence {z[t]}∞t=1.

Lemma 4. The auxiliary estimate sequence {z[t]}∞t=1

is asymptotically trapped in set X(β̃, γ̃), i.e.,
limt→∞Dist

(
z[t], X(β̃, γ̃)

)
= 0.

Lemma 4 immediately implies Theorem 3.
Next we provide a high level sketch of the proof of

Lemma 4. It can be shown that

Dist
(
z[t], X(β̃, γ̃)

)
≤ max
i∈V\A

Dist
(
xi[t− 1]− λ[t]g̃jt [t], X(β̃, γ̃)

)
.

By Lemma 3, there exists a valid global objective
function pjtt =

∑
k∈V\A αkfk ∈ C(β̃, γ̃) such that

g̃jt [t] =
∑

k∈V\A

αkf
′
k(xk[t− 1]). (15)

Let j′t ∈ arg maxi∈V\ADist
(
xi[t− 1]− λ[t]g̃jt [t], X(β̃, γ̃)

)
.

We have

Dist
(
z[t], X(β̃, γ̃)

)
≤ inf
y∈X(β̃,γ̃)

∣∣∣xj′t [t− 1]− λ[t]
(
pjtt
)′

(xj′t [t− 1])− y
∣∣∣

+ λ[t]L max
i,j∈V\A

|xi[t− 1]− xj [t− 1]| . (16)

By Lemma 2, we know the second term in the right-
hand side of (16) is controllable. It remains to push a
recursion out of (16). Towards that, we need to consider
several different cases. In particular, to ease exposition,
a notion of resilient points is introduced. Detailed proof
can be found in our full version [40].

VII. DISCUSSION

In this paper, we studied multi-agent optimization
over adversary-prone networks. We introduced a metric,
named (β, γ)–admissibility, to quantify the “quality” of
a global objective. We took a step towards solving the
proposed Byzantine-resilient multi-agent optimization
problem by focusing on scalar local cost functions. Un-
fortunately, even for this simple setting, an impossibility
result (i.e., Theorem 1) was shown. We presented an
algorithm that is provably robust to Byzantine faults for
a certain range of (β, γ) assuming that the communi-
cation network satisfies Assumption 1, which ensures
Byzantine-resilient consensus can be achieved. For the
special case when the network is complete, our results
achieved the optimality implied by the impossibility
result in Theorem 1, summarized in Fig. 1.

1 n− φ− b n
0

1
2(n−φ−b)

1
n−φ−b

βγ = 1

impossible
possible

?

γ

β

Fig. 1: Achievability of (β, γ) for complete graphs

Open problems:
• In this paper, we assumed Assumption 1. It would

be interesting to investigate the minimal conditions
on the communication graphs, and to study the
trade-off between the (β, γ)–admissibility and the
graph structures.

• We focused on asymptotic convergence. A finite-
time convergence rate would be of highly practical
interests.

• In our algorithm, for ease of analysis, both local
estimates and local gradients are exchanged. Di-
rectly exchanging gradients might not be necessary
because this gradient information, in a sense, is
contained in agents’ local estimates. It would be
interesting to see whether it is possible to relax the
requirement on gradient exchanges, and to quantify
the gain in exchanging gradients, if any.
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