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ABSTRACT

Machine learning models with millions or billions of parameters
are increasingly trained and served on large multi-GPU systems.
As models grow in size and execute on more GPUs, collective com-
munication becomes a bottleneck. Custom collective algorithms
optimized for both particular network topologies and application-
specific communication patterns can alleviate this bottleneck and
help these applications scale. However, implementing correct and
efficient custom algorithms is challenging.

This paper introduces MSCCLang, a system for programmable
GPU communication. MSCCLang provides a domain specific lan-
guage for writing collective communication algorithms and an op-
timizing compiler for lowering them to an executable form, which
can be executed efficiently and flexibly in an interpreter-based run-
time. We used MSCCLang to write novel collective algorithms for
AllReduce and AllToAll that are up to 1.9% and 1.3 faster than
hand-optimized implementations, respectively.
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1 INTRODUCTION

Recent trends in machine learning (ML) point towards model sizes
growing at a much faster rate than a single GPU’s memory capac-
ity and computational power [1, 29]. This necessitates distribut-
ing model parameters across multiple GPUs [9, 25, 39] for both
model training as well as for model inference. The resulting cost of
communication increases as a percentage of total GPU execution
time as models become larger. For instance, training Resnet50 [17]
with ~100MB of parameters spends 3% of the time in communica-
tion [35], while training DeepLight [10] with ~2GB of parameters
spends 79% of its time in communication on the same distributed
system. Therefore, optimizing communication will be critical for
future ML workloads.

Communication kernels in ML workloads support Message Pass-
ing Interface (MPI) collective communication operations, such as
AllReduce, AllGather, and AllToAll [14]. These collectives cooper-
atively exchange data across GPUs using various communication
algorithms [41]. Vendor libraries, like NCCL [27] and RCCL [33],
provide high-performance implementations of a few standard al-
gorithms, namely Ring and Tree. Recent research [4, 6, 44, 45] has
shown the promise of custom algorithms that are tailored for under-
lying interconnection topologies and input sizes. However, these
works do not implement low-level optimizations such as pipelin-
ing, parallelization, and fusion that are necessary for maximizing
performance. Partly to avoid the complexity of implementing such
low-level optimizations, many works [6, 44, 45] compose existing
vendor library implementations; doing so not only incurs the cost of
multiple kernel launches but also loses the opportunity to perform
optimizations that cross kernel boundaries.

This paper proposes Microsoft’s Collective Communication Lan-
guage (MSCCLang) which is a unified system for generating high-
performance implementations of custom communication algorithms.
MSCCLang consists of a domain-specific language (DSL) for speci-
fying communication algorithms, a compiler for generating high-
performance executables from these high-level specifications, and
an efficient runtime for execution. For a given collective communi-
cation algorithm, a developer can explore different implementations
and optimizations in MSCCLang without fearing data races/dead-
locks or writing any C/CUDA code while enjoying the performance
of a hand-written code. Additionally, MSCCLang can automati-
cally check whether an implementation properly implements a
collective before running on hardware. Lastly, the runtime is API-
compatible with NCCL allowing existing ML workloads to eas-
ily convert to MSCCLang, inherit NCCL’s support of diverse set
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GPUs and inter-connections, and safely fall over to NCCL for sce-
narios unsupported in MSCCLang. MSCCLang is publicly avail-
able at https://github.com/microsoft/msccl and https://github.com/
microsoft/msccl-tools.

We evaluate MSCCLang on two distributed GPU systems: a clus-
ter of 8XA100 nodes and a cluster of 16xV100 nodes. We show
that for a given algorithm, MSCCLang implementations match, and
often beat, the performance of a hand-written implementation. This
includes an AllToAll algorithm on multiple nodes that is up to 1.3X
faster than a hand-optimized implementation and Ring AllReduce
algorithm that is up to 1.9 faster than NCCL’s optimized imple-
mentation. Additionally, we make a case for custom collectives by
replacing simple point-to-point communication with a new collec-
tive called AllToNext. Lastly, MSCCLang system is used to serve
a public facing language model on 8xA100 GPUs and training a
large Mixture-of-Experts model for speech, language, and vision on
256xA100 GPUs at Microsoft providing 1.22-1.29x and 1.10-1.89x
speed up, respectively.

2 MSCCLANG EXAMPLE

This section introduces MSCCLang through a running example,
hierarchical AllReduce, and introduces common terminology used
throughout the paper.

Terminology. In a cluster of N nodes or machines with G GPUs
each, the rank of a GPU is identified by a tuple (n, g) where n is the
node index and g is the GPU index within the node, or alternatively
by the integer value n X G + g. We refer to GPUs by their tuple and
single integer ranks interchangeably.

Collectives operate on buffers of data divided into chunks, which
represent contiguous spans of elements with a uniform size. Chunks
are the finest granularity that data is sent with in a collective.

Hierarchical AllReduce. Figure 1 shows the workings of this algo-
rithm. For a topology of N (= 2) nodes and G(= 3) GPUs per node,
the algorithm splits the input buffer into N X G(= 6) chunks. The
algorithm proceeds in four phases. The first phase is an intra-node
ReduceScatter that computes the sum of buffers within a node with
the result “scattered” across the GPUs. In this example, this is done
through a Ring algorithm. GPU 1 sends N chunks (chunk 0 and
chunk 1) to GPU 2 which adds them to its corresponding chunks
before sending them to GPU 0. In the end, GPU 0 has the intra-node
sum of these N chunks, which is shown as lightly shaded in the
figure. Other GPUs have intra-node sum of N other chunks each
by executing a similar ring as shown in the figure.

The second phase is an inter-node ReduceScatter, where GPUs
with the same intra-node index communicate to sum their chunks
across nodes. For instance, GPU 0 (i.e., (0,0)) and GPU 3 (i.e,, (1,0))
use a Ring algorithm to add the intra-node sums of chunk 0 and
chunk 1. The result is scattered with each GPU having one chunk
of the AllReduce result, which is shown as darkly shaded in the
figure. The final two phases are an inter-node AllGather followed
by an intra-node AllGather, both of which follow a similar Ring
algorithm to distribute these chunks to all GPUs.

MSCCLang Program. The MSCCLang DSL is embedded in Python
and allows users to write communication algorithms by declara-
tively specifying chunks routes across the GPUs to implement
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a collective. We call such specifications chunk-oriented. Figure 3
shows the code for the hierarchical AllReduce algorithm. When
interpreted as a Python program, the execution mimics the de-
scription in Figure 1. Figure 3a creates the four phases: N and G
instances of intra-node and inter-node ReduceScatter and AllGather,
respectively. Figure 3b implements ReduceScatter and AllGather
using the Ring algorithm. In MSCCLang, a chunk is identified by
its rank and its index into a buffer in the rank, as shown in Line 8
and Line 17. As this chunk is routed across the ring, ReduceScatter
performs reduce at Line 11 while AllGather performs a copy at
Line 20. Section 3 explains the MSCCLang DSL in detail.

MSCCLang Architecture. Figure 2 describes the components of
the MSCCLang framework. Given a MSCCLang program, the MSC-
CLang compiler lowers it into an intermediate representation called
MSCCL-IR which is directly interpreted by MSCCLang’s runtime.
The compiler traces the program to capture the chunk dependen-
cies in a Chunk DAG and performs several optimizations such as
aggregation, instruction fusion, and parallelization. The compiler
then schedules the program onto thread blocks using MSCCLang
DSL directives so that the user may control the optimizations and
scheduling choices. The compiler ensures that distributed execution
correctly implements the chunk-oriented semantics of the input
program with a guaranteed absence of deadlocks and data races.

The MSCCLang runtime executes MSCCL-IR as a single CUDA
kernel and performs additional optimizations such as pipelining
to improve thread block and link utilization. The key advantage
of MSCCLang is that users get algorithmic flexibility to specify
custom communication algorithms in a high-level DSL while still
getting the performance of hand-written kernels.

3 MSCCLANG DSL

The MSCCLang DSL is a chunk-oriented language for specifying
chunk routing through GPUs. The language is embedded in Python
as a traced DSL with a fluent API that gives users flexibility in how
to express algorithms. This section explains the core components
of the MSCCLang DSL for implementing a collective algorithm
by chunk routing. Furthermore, Section 5 discusses scheduling
extensions that further optimize programs.

3.1 Buffers and Chunks

MSCCLang exposes GPU memory as named buffers, three of which
are available on each rank:

e Input is a buffer containing input data.
e Output is an uninitialized buffer for storing output data.
e Scratch is an uninitialized buffer used for temporary storage.

Buffers divide into chunks representing contiguous spans of ele-
ments with a uniform size. The user controls the number of chunks
a buffer divides into, but the size (i.e., number of bytes) is abstract.
The size is known at runtime when the concrete buffers are passed
into the program. Additionally, users can specify that the input and
output buffers are aliased to support in-place collective algorithms.
The purpose of the MSCCLang program is to ensure that the output
buffer on each GPU has the correct chunks for the collective at the
end. Chunks can take three forms:
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Figure 1: Hierarchical AllReduce on 2 nodes each with 3 local GPUs. CLang
1 # ranks = list of ranks involved
2 # offset = offset into the input buffer
1 # N number of nodes 3 # count = num. of chunks sent at each step
Zg E;Gnumbeg of ?PUE DEF node 4 def ReduceScatter(ranks, offset, count):
3 : number of chunks _
4 def HierarchicalAllReduce(N, G): : ?o; ie?ﬁrigtsg(e RY:
5 # intra-node ReduceScatter index = ﬁ% Tr ok
6 for n in range(N): 7 index = offset + r % count =
7 local_ranks = [i+nxG for i in range(G)] s ]E - chunk(ranks[(r('+1)/.,§], in’, index, count)
i 9 or step in range(1, R):
i ReduceScatter(local_ranks, @, N 10 next = ranks[(step+r+1)%R]
10 # inter-node ReduceScatter + AllGather u ¢ = chunk(next, 'in', index, count).reduce(c)
f i G):
1 or g in range(6) 13 def AllGather(ranks, offset, count):

cross_ranks = [ixG+g for i in range(N)]
ReduceScatter(cross_ranks, g*N, 1)
AllGather(cross_ranks, g*N, 1)

# intra-node AllGather

for n in range(N):
local_ranks = [i+n*G for i in range(G)]
AllGather(local_ranks, @, N)

(a) MSCCLang program for hierarchical AllReduce.

R = len(ranks)
for r in range(@, R):
index = offset + r * count

¢ = chunk(ranks[r], 'in', index, count)
for step in range(1, R):

next = ranks[(step+r)%R]

c = c.copy(next, 'in', index, count)

(b) MSCCLang helper functions for Ring ReduceScatter and AllGather.

Figure 3: MSCCLang programs for hierarchical AllReduce.

o Input chunks represent chunks initialized at runtime. The
pair (rank, index) uniquely identifies the input chunk in the
input buffer.

® Reduction chunks result from combining two chunks through
a point-wise reduction (e.g., addition). The list of input chunks
that combine to form a reduction chunk uniquely identifies
it.

o Uninitialized chunks are a unit type that stores uninitialized
data. At the start of the program, the output and scratch
buffers hold uninitialized chunks.

3.2 Collectives

MSCCLang programs are associated with a collective that defines a
precondition and a postcondition. The precondition determines the
starting state of the input buffer in terms of unique input chunks.
The postcondition sets the desired state of the output buffer — for
each index of the output buffer, the postcondition specifies either
an input chunk or a reduction chunk to correctly implement the

collective. Defining a collective’s postcondition allows MSCCLang
to automatically validate that a prospective algorithm is correct.

For example, the precondition of an AllReduce over R ranks
states that each rank’s input buffer contains C unique input chunks:
(06, c; s cg). The postcondition states that all rank’s output buffer
are identical and contain the C reduction chunks:

(ZRyer. SR jer 2R o).

The algorithm, not the collective, determines the number of
chunks and whether the algorithm the input and output buffer alias
each other (i.e. the algorithm is in-place). For example, the hierar-
chical AllReduce algorithm (Figure 3) is an in-place algorithm that
uses N X G chunks. For programmability, MSCCLang automatically
deduces the number of chunks in the scratch buffer based on the
highest scratch indices accessed in the program.

3.3 MSCCLang Operations

Table 1 lists the MSCCLang operations used for manipulating
chunks. The function chunk(rank, buffer, index, count=C)
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Table 1: MSCCLang DSL operations.

Operation Description

chunk(rank, buffer, index, count=1) — c

Returns a reference (rank, buffer, index, count) for the chunks currently in the buffer.

cl.copy(rank, buffer, index) — c2

Copies chunks referenced by c1 into the destination indices. Returns a new reference c2

for the copied chunks.

cl.reduce(c2) — c3

Reduces chunks referenced by c1 and c2 in-place into the indices of c1. Returns a new

reference c3 for the result.

returns a reference to C contiguous chunks currently assigned to
the named buffer starting at index; count has a default value of
one when it is not set. MSCCLang raises an error if the program
accesses an uninitialized chunk.

The copy and reduce operations move chunks between buffers.
Specifically, c1.copy(rank2, buffer, index2) copies the chunks
referenced by c1 to (rank2, buffer2, index2).c1.reduce(c2)
reduces two equal count chunk references c1 and c2. This is an
in-place pointwise operation that overwrites ¢1 with the reduced
chunks. Both the copy and reduce operations return references to
the newly created chunks, which allows fluently chaining copy and
reduce calls.

Programs manipulate references rather than chunks to prevent
operations on stale data. A program can create multiple references
to the same (rank, buffer, index) location potentially referring to
stale chunks that are overwritten by later operations. MSCCLang
only allows the latest reference for any location to be used and
will generate an error otherwise. This enforces a chunk-oriented
coding style with the program always operating on the latest ref-
erence, thereby making MSCCLang programs data race free by
construction.

MSCCLang lets users express operations between buffers uni-
formly with copy and reduce regardless of whether they are on
the same GPU or not. The next section explores how MSCCLang
enables this abstraction.

4 LOWERING MSCCLANG PROGRAMS

This section explains how MSCCLang’s compiler lowers programs
into instructions by first tracing them into a directed acyclic graph
(DAG) of operations, which we call the Chunk DAG, and then
further lowering into an Instruction DAG. Section 5 discusses how
the compiler schedules these instructions into code targeting the
low-level MSCCL-IR for our runtime, as well as the optimization
interface the DSL provides for controlling scheduling decisions.

4.1 Tracing

The compiler traces a program by sequential execution into a Chunk
DAG, which captures the global view of chunk movement and natu-
rally exposes the program’s parallelism. The graph includes source
nodes for all input chunks. Every copy and reduce operation is also
a node, and the edges between nodes are dependencies between
operations that arise from chunk movement (true dependencies)
and reusing buffer indices (false dependencies).

Figure 4 depicts a subset of the Chunk DAG of Figure 3 that
traces chunk 0 across every rank. The Chunk DAG preserves the
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hierarchical structure of the program, with the first two levels of
reduces corresponding to the intra-node ReduceScatter and the the
last reduce corresponding to the inter-node ReduceScatter.

4.2 Instruction Generation

The compiler expands each chunk operation node into instruction
nodes to generate the Instruction DAG. Instructions are either
point-to-point communication primitives or local primitives that
are executed by a single GPU. The instructions are listed below:

send(buffer,index)/recv(buffer,index) sends/receivesfrom
the given buffer at the chunk index to/from the remote GPU.

reduce(srcBuf,srcInd,dstBuf,dstInd) locally applies a pre-
defined reduction operation to the corresponding chunks
and stores the result in the destination.

copy(srcBuf,srcInd,dstBuf,dstInd) performs a local copy of
a chunk from a source location to a destination.

recvReduceCopy (srcBuf,srcInd,dstBuf,dstInd) isa fusedin-
struction that receives a chunk, reduces it with a source
chunk, and locally copies it to the destination. Abbreviated
as rrc.

recvReduceCopySend, recvReduceSend, recvCopySend are addi-
tional fused instructions that performs receive, send, and an
optional reduction of a chunk. Abbreviated as rres/rrs/rcs.

The fused instructions can be implemented by composing send,
recv, reduce, and copy instructions. However, fused implementa-
tions can optimize away global memory accesses as intermediate
values are transferred through GPU registers.

The compiler expands chunk operations differently depending
on whether they are local or remote. A remote copy expands into
a send and a receive instruction, and a remote reduce expands
into a send and a receiveReduceCopy instruction. For local copy
or reduction operations MSCCLang generates only a single lo-
cal instruction. Note that instructions such as receiveCopySend
cannot be generated this way as it requires looking at two chunk
operations.

The compiler connects the two instructions resulting from a
remote operation by a communication edge that indicates that
the receiving side synchronizes with the sender. It also preserves
the original edges of the Chunk DAG as processing edges, which
represent the execution-order dependencies within ranks.

4.3 Instruction Fusion

The initial instruction generation pass only uses a subset of the avail-
able instructions and excludes the fused instructions that combine
areceive and a send. The compiler performs a series of peephole
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MSCCL-IR

Threadblock 1

Connections
send peer: @ o:
receive peer: 1 dep=(tbe, 2)
channel: @ 1: rres('in', 1)
2: recv('in', @)

Instructions
send('in', @)

Instructions

0: send('in', 4)
1: rrs('in', 2)
2: rrc('in', 0)

A
Threadblock 2

Connections
send peer: 5

Connections
send peer: 5
receive peer: 4
channel: @

Instructions
0: send('in', @)
receive peer: 4 dep=(tb1, 2)
channel: 1 1: res('in', 2)
2: r('in', 4)

Figure 4: MSCCLang compilation of the hierarchical AllReduce. A subset of the program for chunk 0 is traced into a Chunk
DAG of operations, lowered into an Instruction DAG of instructions, and scheduled onto thread blocks.

optimizations to combine consecutive base instructions into fused
instructions.

rcs. Rewrites a back-to-back receive and send on the same
chunk into a fused receiveCopySend: If there are multiple sends
dependent on the receive, the send on the longest path in the In-
struction DAG is fused.

rrcs. Rewrites a back-to-back receiveReduceCopy and a send
on the same chunk into a receiveReduceCopySend.

rrs. Is a special case of the previous optimization; if the result
of the rrc is never used locally (i.e. it is later overwritten), the
reduction result does not need to be saved locally and a more
efficient receiveReduceSend instruction is used instead.

Figure 4 depicts the hierarchical AllReduce Instruction DAG
for chunk 0 up to the inter-node ReduceScatter. The compiler has
expanded each operation node into two instruction nodes, with
communication edges connecting a matching send and receive.
Highlighted in green, is a back-to-back rrc and send that is fused
into a rrs instruction.

5 SCHEDULING MSCCLANG PROGRAMS

After a program is lowered into an Instruction DAG, it is scheduled
into a MSCCL-IR program that specifies the program’s execution. At
a high-level this process assigns every instruction to a thread block
that will execute it and every communication edge to a channel
identifying the connection data is transferred through.

MSCCL-IR. MSCCL-IR is a tree data structure ( Figure 4) that
divides a collective into individual GPU programs that are subdi-
vided into thread blocks containing a list of instructions that are
sequentially executed.
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Thread blocks can make two uni-directional connections to a
send peer and a receive peer that are used for sending and receiving
chunks. GPUs are allowed to have multiple redundant connections
to the same GPU that are identified by a channel. Channels are
similar to tags in MPI that identify the route a send takes.

Our design restricts thread blocks to have at most one send
and receive connections so that two thread blocks do not serialize
over the same connection. Similarly, a connection can only have
one sending and receiving thread block. The compiler ensures this
constraint is honored by during scheduling.

5.1 DSL Scheduling Directives

Optimizing a program’s schedule is crucial for extracting perfor-
mance. The MSCCLang DSL provides a set of scheduling directives
so that users can optionally specify optimizations on top of a pro-
gram. These optimizations trade off between parallelization, by
assigning instructions across multiple thread blocks and occupancy
constraints, as each thread block consumes GPU resources.

Channel Directives. A program may use multiple connections
between the same pair of GPUs that are differentiated by their chan-
nels. Programs can specify that an operation utilizes a particular
channel with an optional parameter ch. The code below schedules
two copies between the same pair of GPUs on different channels
which ensures they can execute in parallel:

c.copy(rank, buf, idx, ch=0)
c.copy(rank, buf, idx, ch=1)

In the hierarchical AllReduce, we manually scheduled intra-node
ReduceScatters onto channel 0, the inter-node AllGathers and Re-
duceScatters onto channel 1, and the intra-node AllGather onto
channel 2.
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Chunk Parallelization. An important performance aspect is the
amount of parallelism used for transfers. Chunk parallelization is
an automatic optimization that breaks up a transfer into multiple
smaller transfers that execute in parallel. In the hierarchical AllRe-
duce, we parallelize the intra-node ReduceScatters and AllGathers
using the parallelize modifier:

1 for n in range(N):

local_ranks = [i+n*G for i in range(G)]

with parallelize(N):
ReduceScatter(local_ranks, @, N)

e w o

Parallelizing a code fragment by N has the effect of creating N
parallel instances of the underlying copy and reduce operations,
where each operation operates on 1/N of the data. The compiler
duplicates instruction nodes corresponding to the fragment and
ensures each instances’s channels do not intersect so that instances
execute in parallel.

There are two advantages of chunk parallelization. First, this
enables parallelization of compute heavy aspects of the algorithm
such as reductions. Second, parallelization can increase the utiliza-
tion of high-bandwidth links by allowing multiple thread blocks to
simultaneously use the underlying link. Our experience has shown
that a single thread block in an NVIDIA A100 GPU is not capable of
saturating the bandwidth of its outgoing NVLink. The user should
carefully choose the parallelization factor as increasing it beyond
a certain point will reduce performance due to competition for
bandwidth.

Aggregation. When multiple chunks are transferred from one
GPU to another and these chunks are contiguous, it is sometimes
more efficient to aggregate these chunks in a single network transfer.
Assuming an @ — § communication cost model, each send has a start
up a cost and a per-byte f cost. By aggregating sends, the compiler
amortizes the start up cost. However, aggressive aggregation can
slow down a program. All aggregated chunks must be ready before
the send is executed, so that one delayed chunk blocks the progress
of multiple chunks.

Users specify aggregated sends by passing multi-count chunk
references to copy and reduce operations. For example, Line 8 and
Line 17 indicate that N chunks are should be aggregated into a
single send during the intra-node ReduceScatters and AllGathers.

5.2 Scheduling

Given a program’s Instruction DAG and scheduling directives, the
compiler assigns every instruction node to a thread block and re-
maining edges onto channels. This assignment respects the con-
straints that each thread block can have at most one send and
receive peer. Additionally for correctness, the assignment does
not introduce deadlocks, which are possible due to the sequential
execution order of instructions within a thread block.

Channel Assignment. The compiler assigns every communication
edge according to the user’s scheduling directives. Any remaining
communication edges are assigned to the lowest valid channel
with two exceptions. First, communication edges generated from a
parallelized code fragment are scheduled onto different channels
so that they don’t serialize. Second, a series of fused instructions
share the same channel. The compiler ensures this by assigning the
lowest channel that satisfies all communication edges in the chain.
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Thread Block Assignment. The compiler’s thread block assign-
ment policy implements a greedy heuristic that attempts to schedule
instructions in the order they will be ready. The high level steps of
the routine are as follows:

(1) Assign instruction priority by calculating the depth (maxi-
mum hops from a root node) and reverse depth (maximum
hops to a leaf node) for every instruction in the Instruction
DAG. This prioritizes instructions that are enabled earlier
and have more downstream dependencies respectively.

(2) Create thread blocks by scanning through all instructions per
GPU and creating thread blocks for every unique (send-peer,
receive-peer, channel) tuple.

(3) Sort instructions into a global topological order with respect
to their dependencies with a heap using the priority to order
instructions.

(4) Assign instructions to thread blocks to their matching match-
ing thread block in the topological order. If an instruction
has multiple candidates (e.g. local copies can happen on any
thread block) then the thread block whose latest assigned
instruction is earliest is chosen.

An Instruction DAG is guaranteed to have a global topological
order because it was generated by sequentially tracing a MSCCLang
program. By assigning instructions to thread blocks in a topolog-
ical order that respects communication and processing edges, all
implicit dependencies introduced by thread block sequential exe-
cution cannot produce cycles so that the MSCCL-IR does not have
deadlocks.

Cross Thread block Synchronization Insertion. An instruction’s
dependencies are captured in the Instruction DAG as communica-
tion edges between sends and receives, and processing edges that
indicate execution order within a rank. The MSCCL-IR program
must respect this order to be correct and data race free. While com-
munication edges implicitly synchronize because receives block
until a send, certain processing edges need explicit synchronization.

Instructions within a thread block are executed sequentially,
and thus any processing edges between them are already satisfied.
However, instruction across thread blocks execute out-of-order.
Processing edges between different thread blocks are explicitly pre-
served in the MSCCL-IR file as cross thread block dependencies.
Instructions with cross thread block dependencies have a dep mod-
ifier which identifies the instruction(s) that must execute before.

6 MSCCLANG RUNTIME

The MSCCLang runtime executes program by directly interpreting
MSCCL-IR programs. The runtime is an extension of NCCL, and it
inherits infrastructure for establishing point-to-point (P2P) connec-
tions over various inter-connects including NVLink, PCle, shared
host memory, InfiniBand (IB) and TCP. All MSCCL-IR generated
by our compiler is guaranteed to be correct, but some programs
might only be performant for a range of buffer sizes. Therefore, the
runtime dynamically selects the right algorithm to invoke based on
user configurable size ranges and falls back to NCCL'’s built-in algo-
rithms otherwise. This allows a user to hyper-optimize MSCCLang
programs to a specific use case.
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1 struct Instruction {

2 int step, opCode, srcOff, dstOff, count;

3 void *srcPtr, *xdstPtr;

4 int depBid[D], depStep[D];

5 bool hasDep; };

6

7 MSCCLang_interpreter(Instructions instrs[N]) {
8 int bid=blockIdx.x; int tid=threadIdx.x;

9 // chunk tiling

10 for (int t=0; t < chunkSize; t += tileSize){

11 // instruction loop

12 for (int s=@; s<N; s++) {

13 auto instr = instrs[s];

14 // check for dependencies

15 if (tid < D)

16 wait(semaphore[instr.depBid[tid]], instr.depStep[tid]);
17 // select the instruction

18 switch (instr.opCode) {

19 case SEND:

20 send(instr.srcPtr+instr.srcOff, instr.count*tileSize);
21 case RECV:

22

23

24 // set the semaphore if necessary

25 if (instr.hasDep) {

26 thread_fence(); sync_threads();

27 if (tid==0) set(semaphore[bid], s);

28 113}

Figure 5: MSCCLang interpreter

6.1 Point-to-Point Connections

Remote Buffers. NCCL abstracts different kinds of interconnects
from CUDA code by providing intermediate buffers of constant
size of b bytes for sends to write to and receives to read from.
These buffers are subdivided into s FIFO slots which allows s sends
to finish without waiting for receives (1 < s < 8). MSCCLang
compiler prevents a schedule with more than s outstanding sends
to avoid deadlocks. By default, 512KB < b < 5MBand 1 < s < 8
(exact values are defined by the protocol, explained later).

Remote buffers are allocated on different memories depending on
the inter-connection type. For NVLink or PCle connections within
a node, buffers are allocated on the receiving GPU. For cross-node
IB connections, two buffers are allocated with one on the sending
GPU and another on the receiving GPU. The IB driver transfers data
between the buffers via GPUDirect RDMA [26], with a CPU helper
thread initiating RDMA transfers. Other types of interconnects
involve host memory, but we omit their description as they are not
used on our evaluation systems.

Channels. As explained in Section 5, each P2P connection in
NCCL requires a channel, which is an internal NCCL data structure
that distinguishes different P2P connections between the same pair
of GPUs.

Protocols. NCCL implements three communication protocols,
Simple, LL128, LL, that trade off latency and bandwidth. Simple has
the highest bandwidth and latency, LL has the lowest bandwidth and
latency, and LL128’s performance is in-between [27]. The protocol
also defines the remote buffer size and the number of slots. The
user may set a desired protocol in the DSL, which is stored in the
MSCCL-IR.

6.2 Interpreter

Initialization. In the initialization phase of the runtime, an MSCCL-
IR program is parsed and stored in the GPU memory. When the
runtime invokes the interpreter for a given program, it concurrently
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Figure 6: Order tiles occupy intra-node and inter-node links
in the hierarchical AllReduce. The top shows a naive sequen-
tial execution while the bottom shows the pipelined execu-
tion MSCCLang implements.

launches all the required thread blocks with a cooperative kernel
launch [8]. Note that all thread blocks must execute at the same
time due to potential cross thread block dependencies between
them. Consequently, the compiler can only generate IRs that do
not have more thread blocks than the available Streaming Multi-
processors (SMs). The connections needed by the thread blocks in
every program (Figure 4) are also created.

Instruction Data Structure. The execution engine for MSCCLang
runtime is an efficient interpreter written in CUDA shown in Fig-
ure 5 which runs a list of instructions on each thread block. Line 1
shows the elements of an instruction: step is the instruction in-
dex in an array, opcode identifies the instruction type, srcPtr and
dstPtr are the input and output pointers, and srcOff and dstOff
are their corresponding offset, respectively. The pointers can be
one of input, output, or scratch buffers, and offset is the chunk
index into the buffer. count is the number of consecutive chunks
this instruction will execute on (see aggregation in Section 2). Last
arguments are for cross thread block synchronizations: depBid
and depStep. These two arrays are a list of thread block IDs and
instruction steps, respectively, that this instruction is dependent
on. hasDep is a boolean flag indicating whether there are other
instruction dependent on this instruction.

Pipelining. The outer-most loop in the interpreter is the pipelin-
ing loop shown in Line 10 of Figure 5. As described in Section 6.1,
the remote buffers for each P2P connection have a fixed size. There-
fore, if the size of a chunk is larger than a remote buffer slot, it is
split into multiple tiles such that it fits in a slot.

Rather than serially process each tile within a chunk, the inter-
preter pipelines execution for performance. Consider the hierarchi-
cal AllReduce in Figure 1. It starts with an intra-node ReduceScatter
followed by inter-node ReduceScatter and AllGather, and ends with
an intra-node AllGather. If the interpreter serially executes each
chunk’s tile, the inter-node communication links are not utilized
during intra-node phases and vice versa (Figure 6). Instead, the
interpreter pipelines execution of the tiles by processing tile 1, then
processing tile 2, etc., so that both the inter-node and intra-node
links are utilized concurrently.

Pipelining improves performance by increasing link and SM
utilization in the system. Users may configure MSCCLang’s tile size
for more aggressive pipelining. However, as tile sizes reduce, the
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Figure 7: Network topology of an NDv4 node. 8 A100 GPUs
are fully connected to each other through NVLinks to 6
NVSwitches (NVLinks shown for two GPUs). Every pair of
GPUs shares a PCle switch to 2 InfiniBand NICs for commu-
nication outside the node.

performance benefit of pipelining decreases due to the increased
startup cost of executing more sends.

Instruction Loop. The inner-most loop in the interpreter in Line 12
decodes instructions in the input MSCCL-IR and executes them
in-order. There is a list of switch-case statements in Line 18 that
decides which instructions to execute.

Cross Thread Block Synchronization. Cross thread block synchro-
nization is not naturally supported in CUDA. However, the inter-
preter runs all thread blocks concurrently, which allows thread
blocks to synchronize via semaphores stored in global memory.
Each thread block has a semaphore (semaphore[bid]) in Figure 5
that is initialized to 0. When an instruction hasDep is set (Line 25),
a CUDA __syncthreads and a __threadfence is issued to flush
the caches and then the semaphore is set to the running step s
(Line 27). If this instruction is dependent on instructions from other
thread blocks, all semaphores for dependent thread blocks wait to
be set (Line 16).

7 EVALUATION

We evaluate MSCCLang by implementing classic and custom algo-
rithms for the commonly used collectives AllReduce and AllToAll
We optimize each algorithm’s schedule for various GPU system
configurations and input sizes. All our programs require less than
30 lines of code, and took between 15 minutes to an hour to write
and manually optimize.

Experimental Setup. Experiments are performed on two GPU
clusters: Azure ND A100 v4-series (NDv4) and NVIDIA DGX2s.
Each NDv4 (Figure 7) contains 8 NVIDIA A100 GPUs connected by
12 third-generation NVLinks to 6 NVSwitches for a total of 600 GB/s
bi-directional bandwidth. For cross-node communication, each pair
of GPUs within a node share a single PCleSwitch that connects to
2 HDR InfiniBand NICs, each running at 25 GB/s bandwidth.
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Each DGX2 node contains 16 NVIDIA V100s divided into two
boards of 8 GPUs. GPUs on each board are connected by 6 second-
generation NVLinks to 6 NVSwitches, and every NVSwitch is con-
nected by 8 NVLinks to its counterpart NVSwitch on the other
board. For cross-node communication each pair of GPUs share
a single PCIleSwitch that is connected to 1 HDR InfiniBand NIC
running with 25 GB/s bandwidth.

MSCCLang is built on top of NCCL-2.8.4-1 [27]. When appli-
cable, we compare against collectives implemented in NCCL or
expert hand-optimized implementations. For custom algorithms
and collectives for which hand-optimized CUDA implementations
were previously not available, we provide best effort hand-written
kernels. All experiments are averaged over 50 iterations after a
warmup period of 20 iterations. Each algorithm’s optimizations are
tuned for the two systems. We analyze results for the A100 system
since similar trends are seen on the V100 system and discuss certain
exceptions.

7.1 AllReduce

AllReduce is an MPI collective that globally reduces input buffers
across GPUs and replicates the results to all GPUs. We implemented
three AllReduce algorithms that target single-node and multi-mode
systems.

7.1.1  Ring AllReduce. A Ring AllReduce with R ranks, divides each
rank’s input buffer into R chunks. Ranks are logically connected in
aring, and each chunk traverses the ring twice starting from the
corresponding rank. The first traversal reduces all corresponding
chunks and the second traversal copies the result to all ranks. We
implement our ring with a ReduceScatter followed by an AllGather
from Figure 3b using a list of all ranks in the node, an offset of 0,
and a count of 1 for the parameters.

Our ring implementation distributes a single logical ring across
multiple channels by varying the channel of copy and reduce oper-
ations. We tune the number of channels per ring, parallelization,
and protocol for the system. While examining NCCL’s codebase,
we found and experimentally validated that NCCL’s Ring schedule
is roughly equivalent to scheduling a logical ring onto one channel,
parallelizing the entire program 24 times, and varying the protocol
based on the buffer size.

We compare our Ring implementations against NCCL’s Ring
implementation in Figure 8a. The MSCCLang Ring implementation
outperforms NCCL by up to 1.9x when the buffer size is between
32KB and 3MB. Distributing a logical ring across multiple chan-
nels enables better overlapping of sends and receives resulting in
performance gains. However, this distribution uses more resources
thus limiting the chunk parallelization. For buffer sizes greater than
32MB, more parallelization is required, and the best MSCCLang con-
figurations matched NCCL'’s performance by scheduling a logical
ring onto one channel and parallelizing the program 24 times.

7.1.2  All Pairs AllReduce. One advantage of MSCCLang is the
ability to explore different algorithms easily. All Pairs is an algo-
rithm we developed while exploring algorithmic optimizations for
AllReduce that targets small buffer sizes. This algorithm uses two
communication steps: each rank gathers a chunk from every rank,
computes the sum, and broadcasts the chunk to every other rank.
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# N: number of nodes
# G: number of GPUs per node
def alltoall(N, G):
for n in range(N):
for g in range(G):
for m in range(N):
for i in range(G):
c = chunk((m,1i),
9 if n==m:
10 c.copy((n,g), 'out', (m,i))
1se:

L N T

tin', (n,g))

11 else: .
12 c.copy((m,g), 'sc', (n,i))
13

14 # Coalesced IB send

15 c = chunk((m,g), 'sc', n*xG, sz=G)

16 c.copy((n,g), 'out', m*G)

Figure 9: MSCCLang Two-Step AllToAll.

Since we do not have a CUDA baseline to compare against, we
plot the speedup of MSCCLang’s All Pairs against NCCL’s Ring
algorithm in Figure 8a.

The speedups provided by All Pairs are driven by algorithmic
and scheduling optimizations. Ring and All Pairs exchange the
same volume of data, but All Pairs has better latency because it
uses 2 communication steps compared with Ring’s 2R — 2 steps. For
buffer sizes from 1KB to 1MB, All Pairs is up to 1.8% faster than
NCCL, depending on the number of instances used to optimize the
program.

7.2 Hierarchical AllReduce

The final AllReduce algorithm we analyze is a Hierarchical AllRe-
duce algorithm described in Section 2. Figure 8c plots the speedup
of the Hierarchical AllReduce implemented in MSCCLang against
NCCL. Depending on the input size, we apply different optimiza-
tions to the same base algorithm. For small sizes we are up to
1.4% faster than NCCL. For large buffers, greater than 1GB, our
implementation is up to 11% than NCCL.

In red, we plot the speedup of same algorithm implemented with
NCCL collectives. The implementation is significantly slower than
the MSCCLang’s and NCCL’s implementation due to the overhead
of multiple kernel launches and lack of cross-kernel optimizations.
Using MSCCLang optimizations to execute the algorithm in a sin-
gle kernel and pipeline thread blocks significantly improved the
algorithm’s performance such that it is faster than NCCL’s imple-
mentation for a large range of buffer sizes.

7.3 Two-Step AllToAll

AllToAll is an MPI collective that transposes a buffer of data between
GPUs such that chunk i on GPU j ends up on GPU i at index j,
and is commonly implemented as a set of point-to-point sends
and receives between all GPUs. Because each GPU exchanges data
with every other GPU, AllToAll is a very communication intensive
collective.

On AllToAlls spanning 10s to 100s of nodes, the naive implemen-
tation requires only one communication step, but sends many small
chunks to other nodes over IB which is expensive due to the high
overhead costs of IB. We implement a Two-Step AllToAll algorithm
that aggregates cross-node sends, reducing the total overhead cost
of the IB sends. The algorithm is described in Figure 9, and we
used MSCCLang’s default scheduling with 1 instance and tuned
the protocol for the buffer size.
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Figure 10: AllToNext cross node send on a system with (N =
2,G = 3) GPUs. Sends over NVLink are shown in blue and
sends over IB are shown in red.

We compare the performance of our implementation against a
hand-optimized CUDA implementation of the Two-Step algorithm
in Figure 8e. At large sizes the MSCCLang implementation is up
to 1.3% faster than the hand-optimized implementation. Note, at
smaller sizes between 2MB-64MB there are large fluctuations in
speedup caused by congestion in the IB network which is shared
with other cloud tenants; however the general trends show that
MSCCLang’s optimizations improve performance.

For reference, we also plot NCCL'’s performance relative to the
hand-optimized implementation. In general, both Two-Step imple-
mentations provide significant improvements over NCCL. However,
for larger buffer sizes, greater than 512MB the hand-optimized Two-
Step implementation is slower than NCCL, while the MSCCLang
implementation is 20% faster.

The hand-optimized version is implemented using point-to-point
primitives exposed by NCCL, but lacks scheduling decisions made
by the compiler that divides communication across multiple par-
allel thread blocks. The MSCCLang seamless handles aggregating
chunks in the scratch buffer (Line 12), while the handwritten im-
plementation requires a separate kernel that copies and contigu-
ously arranges chunks in a scratch buffer for the aggregated IB
send resulting in extra synchronization overhead. Furthermore, the
MSCCLang implementation is much more succinct and requires
only 15 lines of code while the hand optimized kernel requires
roughly 70 lines of code.

7.4 Custom Collectives: AllToNext

A key feature of MSCCLang is the ability to implement new col-
lective communication patterns quickly and efficiently. We demon-
strate this on a new collective called AllToNext. This collective
involves R GPUs, where GPU i sends a buffer of data to GPU i + 1,
with the last GPU sending nothing. This communication pattern
exists in applications that process data in a pipelined fashion across
multiple GPUs. In a naive implementation of AllToNext, every
GPU directly sends its buffer to the next GPU. However, on a dis-
tributed system made up of multiple nodes with heterogeneous
links, throughput is bottlenecked by the low-bandwidth inter-node
network links. Furthermore, on a nodes with multiple network
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links this will only use one link, wasting inter-node bandwidth. For
example, in an A100 node, there are 8 IB links but a single send can
only utilize 1 link.

We designed the AllToNext algorithm specifically to address this
problem by utilizing all available IB links in a node. Within a node,
GPUs directly send their buffers to the next GPU; when transferring
across a node (Figure 10), all GPUs within the nodes cooperatively
send the buffer to utilize all IB links. Specifically, on a scaled down
A100 system (N = 2,G = 3), when GPU (0, 2) sends to GPU (1,0),
it will divide its buffer into G = 3 chunks and scatter it among all
GPUs in node 0. Each GPU (0, g) directly sends its chunk to the
corresponding GPU on the next node (1, g), and finally all chunks
will be gathered back onto GPU (1, 0).

Figure 8g plots the speedup of AllToNext on 3XA100 nodes
against a handwritten CUDA baseline where each GPU directly
sends its entire buffer to the next GPU using NCCL'’s send and re-
ceive primitives. When sending small buffers, AllToNext performs
worse than baseline due to overhead from the extra communication
steps. For larger buffers however, AllToNext begins to show im-
provement over the baseline, and is ultimately up to 14.5% for alarge
buffers. The best performing selection of r depends buffer sizes. For
small buffer sizes, less parallelization provide better performance,
as the benefit from parallelizing communication doesn’t offset the
cost of initializing extra resources. As the buffer sizes increase, pro-
grams with more parallelization produce larger speedups as the
initialization overhead is amortized over more communication.

7.5 SCCL Comparison

SCCL [4] is an automatic collective communication algorithm gen-
erator which similarly considers both latency and bandwidth of
each link for optimal solution. SCCL implements these algorithms
from scratch using its own point-to-point communication protocol
that works for GPUs interconnected with NVLinks only. The focus
of SCCL is mostly on generating custom algorithms while the fo-
cus of MSCCLang is on implementing any custom algorithm for
any interconnection such as InfiniBand, shared host memory, or
NVLinks.

Figure 11 compares the performance of (1,2,2) AllGather algo-
rithm from SCCL on DGX-1 8xV100 GPUs (see Table 4 from Section
5.4 in [4]) using SCCL and MSCCLang implementations. It is clear
that MSCCLang implementation is faster for small sizes thanks to
LL protocol, but Simple protocol is not as performant as SCCL pro-
tocol for middle sizes. The reason is that SCCL implementation uses
a direct copy from source to destination for point-to-point commu-
nication while MSCCLang protocols use FIFO slots for intermediate
buffers as explained in Section 6.1. This means that SCCL protocol
has less memory footprint than MSCCLang Simple protocol and
therefore, it is more efficient. SCCL direct copy protocol can also
be implemented in MSCCLang Simple protocols, but we leave it for
future work.

7.6 End-to-End Results

Custom algorithms generated by MSCCLang are used by Azure
OpenAl to accelerate Copilot. These algorithms speed up the GPU
time by 20%. MSCCLang is also used for training a large Mixture-of-
Experts model [28] for speech, language, and vision on 256xXA100
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Figure 11: (1,2,2) AllGather algorithm from SCCL on DGX-1
8xV100 GPUs.

GPU providing 1.10-1.89x speed up depending on the model archi-
tecture when using the Azure Container for PyTorch [32].

8 RELATED WORK

Optimizing Collectives. The message passing interface (MPI) [11]
is a popular abstraction for communication primitives. Efficient
algorithms for implementing these primitives is a long-studied
research area [5, 31, 41]. Prior works have included optimizing al-
gorithms for specific topologies like mesh, hypercube, or fat-tree [2,
3, 37] and for clusters of shared-memory processors [34, 40, 42, 43].
Motivated by recent ML workloads, Horovod [38] implements col-
lective primitives by using NCCL locally in node and MPI across
nodes. Others such as BlueConnect [7] and PLink [24] exploit the
hierarchical network topology of a cloud system or a data center
to improve the performance of collective primitives. Recent work
focuses on automatically generating new collective algorithms, ei-
ther by packing trees [44] or using a constraint solver to generate
pareto-optimal algorithms [4]. In contrast, this work focuses on a
high-level language for specifying these algorithms and efficiently
running them on state-of-the-art accelerators.

In-network aggregation is another direction to accelerate re-
duction based communication primitives using custom hardware.
Mellanox Scalable Hierarchical Aggregation and Reduction Proto-
col (SHArP) [13] is one of the techniques available in InfiniBand
switches. Other programmable switches including SwitchML [36]
and ATP [22] also share the similar idea to offload GPU reduction
to network switches in order to accelerate AllReduce in deep learn-
ing workloads. Apart from switches, BluesMPI [16], ACCL [18]
and BytePS [21] also offload communication primitives to Smart-
NIC, FPGA, and spare CPU nodes, respectively. Those works all
introduce extra hardware thus increase bandwidth limit for primi-
tives, while MSCCLang focuses on software stack only to program
and optimize collective communication algorithms within existing
hardware.

Recent works [15, 20, 30, 46] have shown the advantage of over-
lapping computation and communication when optimizing dis-
tributed ML workloads. While our focus here is on specifying com-
munication collectives, extending MSCCLang to further specify the
scheduling of computation is an interesting future work.
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Dataflow Languages. The chunk-oriented programming style
of MSCCLang is motivated by dataflow programming languages.
The design of the language is particularly influenced by declar-
ative coordination languages such as Linda [12] and Concurrent
Collections [19]. Rather than use explicit tuples, MSCCLang uses
implicit chunk identifiers to coordinate multiple ranks. Cilk [23]
also influenced the aspect of MSCCLang where the deterministic
semantics of the program is specified by the sequential semantics
of the host language.

9 CONCLUSION

MSCClLang is a novel software system designed for implementing
GPU collective communications. MSCCLang provides a domain spe-
cific language for flexible collective implementations and a compiler
for lowering the DSL to low-level representation that is efficiently
executed by an optimized runtime. We evaluated MSCCLang by
implementing the common collectives AllToAll and AllReduce on
different GPU systems that outperform the state-of-the-art GPU
collective library. Additionally, we introduce a custom collective,
AllToNext, that demonstrates the flexibility to develop new col-
lectives that are not in the standard MPI interface. We believe the
programmability of MSCCLang will empower ML researchers to
optimize existing or explore new collectives in their GPU work-
loads.
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