
The Case for Learned Index Structures

Tim Kraska∗

MIT
kraska@mit.edu

Alex Beutel
Google, Inc.

abeutel@google.com

Ed H. Chi
Google, Inc.

edchi@google.com

Jeffrey Dean
Google, Inc.

jeff@google.com

Neoklis Polyzotis
Google, Inc.

npoly@google.com

ABSTRACT

Indexes are models: a B-Tree-Index can be seen as a model to
map a key to the position of a record within a sorted array, a
Hash-Index as a model to map a key to a position of a record
within an unsorted array, and a BitMap-Index as a model to in-
dicate if a data record exists or not. In this exploratory research
paper, we start from this premise and posit that all existing
index structures can be replaced with other types of models, in-
cluding deep-learning models, which we term learned indexes.
We theoretically analyze under which conditions learned in-
dexes outperform traditional index structures and describe the
main challenges in designing learned index structures. Our
initial results show that our learned indexes can have signifi-
cant advantages over traditional indexes. More importantly,
we believe that the idea of replacing core components of a data
management system through learned models has far reaching
implications for future systems designs and that this work
provides just a glimpse of what might be possible.

ACM Reference Format:

TimKraska, Alex Beutel, EdH. Chi, JeffreyDean, andNeoklis Polyzotis.
2018. The Case for Learned Index Structures. In SIGMOD’18: 2018

International Conference on Management of Data, June 10–15, 2018,

Houston, TX, USA. , 16 pages. https://doi.org/10.1145/3183713.3196909

1 INTRODUCTION

Whenever efficient data access is needed, index structures
are the answer, and a wide variety of choices exist to address
the different needs of various access patterns. For example,
B-Trees are the best choice for range requests (e.g., retrieve all
records in a certain time frame); Hash-maps are hard to beat
in performance for single key look-ups; and Bloom filters are
typically used to check for record existence. Because of their
importance for database systems and many other applications,
indexes have been extensively tuned over the past decades to
be more memory, cache and/or CPU efficient [11, 29, 36, 59].

Yet, all of those indexes remain general purpose data struc-
tures; they assume nothing about the data distribution and do
not take advantage of more common patterns prevalent in real
world data. For example, if the goal is to build a highly-tuned
system to store and query ranges of fixed-length records over

∗Work done while the author was affiliated with Google.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4703-7/18/06.
https://doi.org/10.1145/3183713.3196909

a set of continuous integer keys (e.g., the keys 1 to 100M), one
would not use a conventional B-Tree index over the keys since
the key itself can be used as an offset, making it anO(1) rather
than O(logn) operation to look-up any key or the beginning
of a range of keys. Similarly, the index memory size would be
reduced from O(n) to O(1). Maybe surprisingly, similar opti-
mizations are possible for other data patterns. In other words,
knowing the exact data distribution enables highly optimizing
almost any index structure.

Of course, in most real-world use cases the data do not
perfectly follow a known pattern and the engineering effort
to build specialized solutions for every use case is usually too
high. However, we argue that machine learning (ML) opens
up the opportunity to learn a model that reflects the patterns
in the data and thus to enable the automatic synthesis of spe-
cialized index structures, termed learned indexes, with low
engineering cost.

In this paper, we explore the extent to which learnedmodels,
including neural networks, can be used to enhance, or even
replace, traditional index structures from B-Trees to Bloom
filters. This may seem counterintuitive because ML cannot
provide the semantic guarantees we traditionally associate
with these indexes, and because the most powerful ML models,
neural networks, are traditionally thought of as being very
compute expensive. Yet, we argue that none of these apparent
obstacles are as problematic as they might seem. Instead, our
proposal to use learned models has the potential for significant
benefits, especially on the next generation of hardware.

In terms of semantic guarantees, indexes are already to a
large extent learned models making it surprisingly straight-
forward to replace them with other types of ML models. For
example, a B-Tree can be considered as a model which takes a
key as an input and predicts the position of a data record in a
sorted set (the data has to be sorted to enable efficient range
requests). A Bloom filter is a binary classifier, which based on
a key predicts if a key exists in a set or not. Obviously, there
exists subtle but important differences. For example, a Bloom
filter can have false positives but not false negatives. However,
as we will show in this paper, it is possible to address these
differences through novel learning techniques and/or simple
auxiliary data structures.

In terms of performance, we observe that every CPU al-
ready has powerful SIMD capabilities and we speculate that
many laptops and mobile phones will soon have a Graphics
Processing Unit (GPU) or Tensor Processing Unit (TPU). It is
also reasonable to speculate that CPU-SIMD/GPU/TPUs will
be increasingly powerful as it is much easier to scale the re-
stricted set of (parallel) math operations used by neural nets
than a general purpose instruction set. As a result the high

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

489

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

cost to execute a neural net or other ML models might actu-
ally be negligible in the future. For instance, both Nvidia and
Google’s TPUs are already able to perform thousands if not
tens of thousands of neural net operations in a single cycle [3].
Furthermore, it was stated that GPUs will improve 1000× in
performance by 2025, whereas Moore’s law for CPUs is essen-
tially dead [5]. By replacing branch-heavy index structures
with neural networks, databases and other systems can ben-
efit from these hardware trends. While we see the future of
learned index structures on specialized hardware, like TPUs,
this paper focuses entirely on CPUs and surprisingly shows
that we can achieve significant advantages even in this case.

It is important to note that we do not argue to completely re-
place traditional index structures with learned indexes. Rather,
the main contribution of this paper is to outline and

evaluate the potential of a novel approach to build in-

dexes, which complements existing work and, arguably,

opens up an entirely new research direction for a decades-

oldfield.This is based on the key observation thatmanydata

structures can be decomposed into a learnedmodel and

an auxiliary structure to provide the same semantic guaran-
tees. The potential power of this approach comes from the fact
that continuous functions, describing the data distribu-

tion, can be used to build more efficient data structures

or algorithms. We empirically get very promising results
when evaluating our approach on synthetic and real-world
datasets for read-only analytical workloads. However, many
open challenges still remain, such as how to handle write-
heavy workloads, and we outline many possible directions
for future work. Furthermore, we believe that we can use the
same principle to replace other components and operations
commonly used in (database) systems. If successful, the core
idea of deeply embedding learned models into algorithms and
data structures could lead to a radical departure from the way
systems are currently developed.

The remainder of this paper is outlined as follows: In the
next two sections we introduce the general idea of learned
indexes using B-Trees as an example. In Section 4 we extend
this idea to Hash-maps and in Section 5 to Bloom filters. All
sections contain a separate evaluation. Finally in Section 6 we
discuss related work and conclude in Section 7.

2 RANGE INDEX

Range index structure, like B-Trees, are already models: given
a key, they “predict” the location of a value within a key-
sorted set. To see this, consider a B-Tree index in an analytics
in-memory database (i.e., read-only) over the sorted primary
key column as shown in Figure 1(a). In this case, the B-Tree
provides a mapping from a look-up key to a position inside
the sorted array of records with the guarantee that the key
of the record at that position is the first key equal or higher
than the look-up key. The data has to be sorted to allow for
efficient range requests. This same general concept also ap-
plies to secondary indexes where the data would be the list of

BTree

Key

pos

pos - 0 pos + pagezise

……

pos

pos - min_err pos + max_er

……

Model
(e.g., NN)

(b) Learned Index(a) B-Tree Index

Key

Figure 1: Why B-Trees are models

<key,record_pointer> pairs with the key being the indexed
value and the pointer a reference to the record.1

For efficiency reasons it is common not to index every sin-
gle key of the sorted records, rather only the key of every
n-th record, i.e., the first key of a page. Here we only assume
fixed-length records and logical paging over a continuous
memory region, i.e., a single array, not physical pages which
are located in different memory regions (physical pages and
variable length records are discussed in Appendix D.2). In-
dexing only the first key of every page helps to significantly
reduce the number of keys the index has to store without any
significant performance penalty. Thus, the B-Tree is a model,
or in ML terminology, a regression tree: it maps a key to a
position with a min- and max-error (a min-error of 0 and a
max-error of the page-size), with a guarantee that the key
can be found in that region if it exists. Consequently, we can
replace the index with other types of ML models, including
neural nets, as long as they are also able to provide similar
strong guarantees about the min- and max-error.

At first sight it may seem hard to provide the same guar-
antees with other types of ML models, but it is actually sur-
prisingly simple. First, the B-Tree only provides the strong
min- and max-error guarantee over the stored keys, not for all
possible keys. For new data, B-Trees need to be re-balanced,
or in machine learning terminology re-trained, to still be able
to provide the same error guarantees. That is, for monotonic
models the only thing we need to do is to execute the model for
every key and remember the worst over- and under-prediction
of a position to calculate the min- and max-error.2 Second, and
more importantly, the strong error bounds are not even needed.
The data has to be sorted anyway to support range requests,
so any error is easily corrected by a local search around the
prediction (e.g., using exponential search) and thus, even al-
lows for non-monotonic models. Consequently, we are able
to replace B-Trees with any other type of regression model,
including linear regression or neural nets (see Figure 1(b)).

Now, there are other technical challenges that we need to
address before we can replace B-Trees with learned indexes.
For instance, B-Trees have a bounded cost for inserts and

1Note, that against some definitions for secondary indexes we do not consider
the <key,record_pointer> pairs as part of the index; rather for secondary
index the data are the <key,record_pointer> pairs. This is similar to how
indexes are implemented in key value stores [12, 21] or how B-Trees on modern
hardware are designed [44].
2The model has to be monotonic to also guarantee the min- and max-error for
look-up keys, which do not exist in the stored set.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

490

look-ups and are particularly good at taking advantage of
the cache. Also, B-Trees can map keys to pages which are
not continuously mapped to memory or disk. All of these are
interesting challenges/research questions and are explained
in more detail, together with potential solutions, throughout
this section and in the appendix.

At the same time, using other types of models as indexes
can provide tremendous benefits. Most importantly, it has
the potential to transform the logn cost of a B-Tree look-
up into a constant operation. For example, assume a dataset
with 1M unique keys with a value from 1M and 2M (so the
value 1,000,009 is stored at position 10). In this case, a simple
linear model, which consists of a single multiplication and
addition, can perfectly predict the position of any key for a
point look-up or range scan, whereas a B-Tree would require
logn operations. The beauty of machine learning, especially
neural nets, is that they are able to learn a wide variety of
data distributions, mixtures and other data peculiarities and
patterns. The challenge is to balance the complexity of the
model with its accuracy.

For most of the discussion in this paper, we keep the simpli-
fied assumptions of this section: we only index an in-memory
dense array that is sorted by key. This may seem restrictive,
but many modern hardware optimized B-Trees, e.g., FAST
[44], make exactly the same assumptions, and these indexes
are quite common for in-memory database systems for their
superior performance [44, 48] over scanning or binary search.
However, while some of our techniques translate well to some
scenarios (e.g., disk-resident data with very large blocks, for
example, as used in Bigtable [23]), for other scenarios (fine
grained paging, insert-heavy workloads, etc.) more research is
needed. In Appendix D.2 we discuss some of those challenges
and potential solutions in more detail.

2.1 What Model Complexity Can We
Afford?

To better understand the model complexity, it is important to
know how many operations can be performed in the same
amount of time it takes to traverse a B-Tree, andwhat precision
the model needs to achieve to be more efficient than a B-Tree.

Consider a B-Tree that indexes 100M records with a page-
size of 100. We can think of every B-Tree node as a way to
partition the space, decreasing the “error” and narrowing the
region to find the data. We therefore say that the B-Tree with
a page-size of 100 has a precision gain of 1/100 per node and
we need to traverse in total loд100N nodes. So the first node
partitions the space from 100M to 100M/100 = 1M , the second
from 1M to 1M/100 = 10k and so on, until we find the record.
Now, traversing a single B-Tree page with binary search takes
roughly 50 cycles and is notoriously hard to parallelize3. In
contrast, a modern CPU can do 8-16 SIMD operations per cycle.

3There exist SIMD optimized index structures such as FAST [44], but they can
only transform control dependencies to memory dependencies. These are often
significantly slower thanmultiplications with simple in-cache data dependencies
and as our experiments show SIMD optimized index structures, like FAST, are
not significantly faster.

Thus, a model will be faster as long as it has a better precision
gain than 1/100 per 50 ∗ 8 = 400 arithmetic operations. Note
that this calculation still assumes that all B-Tree pages are in
the cache. A single cache-miss costs 50-100 additional cycles
and would thus allow for even more complex models.

Additionally, machine learning accelerators are entirely
changing the game. They allow to run much more complex
models in the same amount of time and offload computation
from the CPU. For example, NVIDIA’s latest Tesla V100 GPU
is able to achieve 120 TeraFlops of low-precision deep learn-
ing arithmetic operations (≈ 60, 000 operations per cycle).
Assuming that the entire learned index fits into the GPU’s
memory (we show in Section 3.7 that this is a very reasonable
assumption), in just 30 cycles we could execute 1 million neu-
ral net operations. Of course, the latency for transferring the
input and retrieving the result from a GPU is still significantly
higher, but this problem is not insuperable given batching
and/or the recent trend to more closely integrate CPU/GPU/T-
PUs [4]. Finally, it can be expected that the capabilities and the
number of floating/int operations per second of GPUs/TPUs
will continue to increase, whereas the progress on increasing
the performance of executing if-statements of CPUs essen-
tially has stagnated [5]. Regardless of the fact that we consider
GPUs/TPUs as one of the main reasons to adopt learned in-
dexes in practice, in this paper we focus on the more limited
CPUs to better study the implications of replacing and enhanc-
ing indexes through machine learning without the impact of
hardware changes.

2.2 Range Index Models are CDF Models

As stated in the beginning of the section, an index is a model
that takes a key as an input and predicts the position of the
record. Whereas for point queries the order of the records
does not matter, for range queries the data has to be sorted
according to the look-up key so that all data items in a range
(e.g., in a time frame) can be efficiently retrieved. This leads to
an interesting observation: a model that predicts the position
given a key inside a sorted array effectively approximates the
cumulative distribution function (CDF). We can model the
CDF of the data to predict the position as:

p = F (Key) ∗ N (1)

where p is the position estimate, F (Key) is the estimated cu-
mulative distribution function for the data to estimate the
likelihood to observe a key smaller or equal to the look-up
key P (X ≤ Key), and N is the total number of keys (see also
Figure 2). This observation opens up a whole new set of in-
teresting directions: First, it implies that indexing literally
requires learning a data distribution. A B-Tree “learns” the
data distribution by building a regression tree. A linear regres-
sion model would learn the data distribution by minimizing
the (squared) error of a linear function. Second, estimating the
distribution for a dataset is a well known problem and learned
indexes can benefit from decades of research. Third, learning
the CDF plays also a key role in optimizing other types of
index structures and potential algorithms as we will outline

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

491

Figure 2: Indexes as CDFs

later in this paper. Fourth, there is a long history of research
on how closely theoretical CDFs approximate empirical CDFs
that gives a foothold to theoretically understand the benefits
of this approach [28]. We give a high-level theoretical analysis
of how well our approach scales in Appendix A.

2.3 A First, Naïve Learned Index

To better understand the requirements to replace B-Trees
through learned models, we used 200M web-server log records
with the goal of building a secondary index over the times-
tamps using Tensorflow [9]. We trained a two-layer fully-
connected neural network with 32 neurons per layer using
ReLU activation functions; the timestamps are the input fea-
tures and the positions in the sorted array are the labels. After-
wards we measured the look-up time for a randomly selected
key (averaged over several runs disregarding the first numbers)
with Tensorflow and Python as the front-end.

In this setting we achieved ≈ 1250 predictions per second,
i.e., it takes ≈ 80, 000 nano-seconds (ns) to execute the model
with Tensorflow, without the search time (the time to find the
actual record from the predicted position). As a comparison
point, a B-Tree traversal over the same data takes ≈ 300ns and
binary search over the entire data roughly ≈ 900ns . With a
closer look, we find our naïve approach is limited in a few key
ways: (1) Tensorflow was designed to efficiently run larger
models, not small models, and thus, has a significant invocation
overhead, especially with Python as the front-end. (2) B-Trees,
or decision trees in general, are really good in overfitting the
data with a few operations as they recursively divide the space
using simple if-statements. In contrast, other models can be
significantlymore efficient to approximate the general shape of
a CDF, but have problems being accurate at the individual data
instance level. To see this, consider again Figure 2. The figure
demonstrates, that from a top-level view, the CDF function
appears very smooth and regular. However, if one zooms in
to the individual records, more and more irregularities show;
a well known statistical effect. Thus models like neural nets,
polynomial regression, etc. might be more CPU and space
efficient to narrow down the position for an item from the
entire dataset to a region of thousands, but a single neural net
usually requires significantly more space and CPU time for the
“last mile” to reduce the error further down from thousands
to hundreds. (3) B-Trees are extremely cache- and operation-
efficient as they keep the top nodes always in cache and access
other pages if needed. In contrast, standard neural nets require
all weights to compute a prediction, which has a high cost in
the number of multiplications.

3 THE RM-INDEX

In order to overcome the challenges and explore the potential
of models as index replacements or optimizations, we devel-
oped the learning index framework (LIF), recursive-model
indexes (RMI), and standard-error-based search strategies. We
primarily focus on simple, fully-connected neural nets because
of their simplicity and flexibility, but we believe other types
of models may provide additional benefits.

3.1 The Learning Index Framework (LIF)

The LIF can be regarded as an index synthesis system; given
an index specification, LIF generates different index configu-
rations, optimizes them, and tests them automatically. While
LIF can learn simple models on-the-fly (e.g., linear regression
models), it relies on Tensorflow for more complex models
(e.g., NN). However, it never uses Tensorflow at inference.
Rather, given a trained Tensorflow model, LIF automatically
extracts all weights from the model and generates efficient
index structures in C++ based on the model specification. Our
code-generation is particularly designed for small models and
removes all unnecessary overhead and instrumentation that
Tensorflow has to manage the larger models. Here we leverage
ideas from [25], which already showed how to avoid unnec-
essary overhead from the Spark-runtime. As a result, we are
able to execute simple models on the order of 30 nano-seconds.
However, it should be pointed out that LIF is still an experi-
mental framework and is instrumentalized to quickly evaluate
different index configurations (e.g., ML models, page-sizes,
search strategies, etc.), which introduces additional overhead
in form of additional counters, virtual function calls, etc. Also
besides the vectorization done by the compiler, we do not make
use of special SIMD intrinisics. While these inefficiencies do
not matter in our evaluation as we ensure a fair compari-
son by always using our framework, for a production setting
or when comparing the reported performance numbers with
other implementations, these inefficiencies should be taking
into account/be avoided.

3.2 The Recursive Model Index

As outlined in Section 2.3 one of the key challenges of building
alternative learned models to replace B-Trees is the accuracy
for last-mile search. For example, reducing the prediction error
to the order of hundreds from 100M records using a single
model is often difficult. At the same time, reducing the error
to 10k from 100M, e.g., a precision gain of 100 ∗ 100 = 10000 to
replace the first 2 layers of a B-Tree through a model, is much
easier to achieve even with simple models. Similarly, reducing
the error from 10k to 100 is a simpler problem as the model
can focus only on a subset of the data.

Based on that observation and inspired by the mixture of
experts work [62], we propose the recursive regression model
(see Figure 3). That is, we build a hierarchy of models, where
at each stage the model takes the key as an input and based
on it picks another model, until the final stage predicts the
position. More formally, for our model f (x) where x is the key
and y ∈ [0,N) the position, we assume at stage � there are

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

492

Figure 3: Staged models

M� models. We train the model at stage 0, f0(x) ≈ y. As such,

model k in stage �, denoted by f
(k)
�

, is trained with loss:

L� =
∑
(x,y)

(f
(�M� f�−1(x)/N �)
�

(x) − y)2 L0 =
∑
(x,y)

(f0(x) − y)2

Note, we use here the notation of f�−1(x) recursively exe-

cuting f�−1(x) = f
(�M�−1f�−2(x)/N �)
�−1 (x). In total, we iteratively

train each stage with loss L� to build the complete model.
One way to think about the different models is that each

model makes a prediction with a certain error about the po-
sition for the key and that the prediction is used to select the
next model, which is responsible for a certain area of the key-
space to make a better prediction with a lower error. However,
recursive model indexes do not have to be trees. As shown in
Figure 3 it is possible that different models of one stage pick
the same models at the stage below. Furthermore, each model
does not necessarily cover the same amount of records like
B-Trees do (i.e., a B-Tree with a page-size of 100 covers 100
or less records).4 Finally, depending on the used models the
predictions between the different stages can not necessarily
be interpreted as positions estimates, rather should be consid-
ered as picking an expert which has a better knowledge about
certain keys (see also [62]).

This model architecture has several benefits: (1) It separates
model size and complexity from execution cost. (2) It leverages
the fact that it is easy to learn the overall shape of the data
distribution. (3) It effectively divides the space into smaller sub-
ranges, like a B-Tree, to make it easier to achieve the required
“last mile” accuracy with fewer operations. (4) There is no
search process required in-between the stages. For example,
the output ofModel 1.1 is directly used to pick the model in the
next stage. This not only reduces the number of instructions to
manage the structure, but also allows representing the entire
index as a sparse matrix-multiplication for a TPU/GPU.

3.3 Hybrid Indexes

Another advantage of the recursive model index is, that we
are able to build mixtures of models. For example, whereas on
the top-layer a small ReLU neural net might be the best choice
as they are usually able to learn a wide-range of complex data
distributions, the models at the bottom of the model hierarchy
might be thousands of simple linear regression models as they
are inexpensive in space and execution time. Furthermore, we

4Note, that we currently train stage-wise and not fully end-to-end. End-to-end
training would be even better and remains future work.

can even use traditional B-Trees at the bottom stage if the data
is particularly hard to learn.

For this paper, we focus on 2 types of models, simple neural
nets with zero to two fully-connected hidden layers and ReLU
activation functions and a layer width of up to 32 neurons
and B-Trees (a.k.a. decision trees). Note, that a zero hidden-
layer NN is equivalent to linear regression. Given an index
configuration, which specifies the number of stages and the
number of models per stage as an array of sizes, the end-to-end
training for hybrid indexes is done as shown in Algorithm 1

Algorithm 1: Hybrid End-To-End Training
Input: int threshold, int stages[], NN_complexity
Data: record data[], Model index[][]
Result: trained index

1 M = stages.size;
2 tmp_records[][];
3 tmp_records[1][1] = all_data;
4 for i ← 1 to M do
5 for j ← 1 to staдes[i] do
6 index[i][j] = new NN trained on tmp_records[i][j];
7 if i < M then
8 for r ∈ tmp_records[i][j] do
9 p = index[i][j](r .key) / stages[i + 1];

10 tmp_records[i + 1][p].add(r);
11 for j ← 1 to index [M].size do
12 index[M][j].calc_err(tmp_records[M][j]);
13 if index [M][j].max_abs_err > threshold then
14 index[M][j] = new B-Tree trained on tmp_records[M][j];
15 return index;

Starting from the entire dataset (line 3), it trains first the top-
node model. Based on the prediction of this top-node model, it
then picks the model from the next stage (lines 9 and 10) and
adds all keys which fall into that model (line 10). Finally, in
the case of hybrid indexes, the index is optimized by replacing
NN models with B-Trees if absolute min-/max-error is above
a predefined threshold (lines 11-14).

Note, that we store the standard and min- and max-error
for every model on the last stage. That has the advantage,
that we can individually restrict the search space based on
the used model for every key. Currently, we tune the various
parameters of the model (i.e., number of stages, hidden layers
per model, etc.) with a simple simple grid-search. However,
many potential optimizations exists to speed up the training
process from ML auto tuning to sampling.

Note, that hybrid indexes allow us to bound theworst

case performance of learned indexes to the performance

of B-Trees. That is, in the case of an extremely difficult to
learn data distribution, all models would be automatically re-
placed by B-Trees, making it virtually an entire B-Tree.

3.4 Search Strategies and Monotonicity

Range indexes usually implement anupper_bound(key) [lower_
bound(key)] interface to find the position of the first keywithin
the sorted array that is equal or higher [lower] than the look-
up key to efficiently support range requests. For learned range
indexes we therefore have to find the first key higher [lower]
from the look-up key based on the prediction. Despite many

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

493

efforts, it was repeatedly reported [8] that binary search or
scanning for records with small payloads are usually the fastest
strategies to find a key within a sorted array as the additional
complexity of alternative techniques rarely pays off. However,
learned indexes might have an advantage here: the models
actually predict the position of the key, not just the region (i.e.,
page) of the key. Here we discuss two simple search strategies
which take advantage of this information:

Model Biased Search: Our default search strategy, which
only varies from traditional binary search in that the first
middle point is set to the value predicted by the model.

Biased Quaternary Search: Quaternary search takes in-
stead of one split point three points with the hope that the
hardware pre-fetches all three data points at once to achieve
better performance if the data is not in cache. In our implemen-
tation, we defined the initial three middle points of quaternary
search as pos − σ ,pos,pos + σ . That is we make a guess that
most of our predictions are accurate and focus our attention
first around the position estimate and then we continue with
traditional quaternary search.

For all our experiments we used the min- and max-error
as the search area for all techniques. That is, we executed
the RMI model for every key and stored the worst over- and
under-prediction per last-stage model. While this technique
guarantees to find all existing keys, for non-existing keys it
might return the wrong upper or lower bound if the RMImodel
is not monotonic. To overcome this problem, one option is to
force our RMI model to be monotonic, as has been studied in
machine learning [41, 71].

Alternatively, for non-monotonic models we can automati-
cally adjust the search area. That is, if the found upper (lower)
bound key is on the boundary of the search area defined by the
min- and max-error, we incrementally adjust the search area.
Yet, another possibility is, to use exponential search techniques.
Assuming a normal distributed error, those techniques on av-
erage should work as good as alternative search strategies
while not requiring to store any min- and max-errors.

3.5 Indexing Strings

We have primarily focused on indexing real valued keys, but
many databases rely on indexing strings, and luckily, signif-
icant machine learning research has focused on modeling
strings. As before, we need to design a model of strings that
is efficient yet expressive. Doing this well for strings opens a
number of unique challenges.

The first design consideration is how to turn strings into
features for the model, typically called tokenization. For sim-
plicity and efficiency, we consider an n-length string to be a
feature vector x ∈ Rn where xi is the ASCII decimal value
(or Unicode decimal value depending on the strings). Further,
most ML models operate more efficiently if all inputs are of
equal size. As such, we will set a maximum input length N .
Because the data is sorted lexicographically, we will truncate
the keys to length N before tokenization. For strings with
length n < N , we set xi = 0 for i > n.

For efficiency, we generally follow a similar modeling ap-
proach as we did for real valued inputs. We learn a hierarchy
of relatively small feed-forward neural networks. The one dif-
ference is that the input is not a single real value x but a vector
x. Linear models w · x + b scale the number of multiplications
and additions linearly with the input length N . Feed-forward
neural networks with even a single hidden layer of width h
will scale O(hN) multiplications and additions.

Ultimately, we believe there is significant future research
that can optimize learned indexes for string keys. For example,
we could easily imagine other tokenization algorithms. There
is a large body of research in natural language processing on
string tokenization to break strings into more useful segments
for ML models, e.g., wordpieces in translation [70]. Further, it
might be interesting to combine the idea of suffix-trees with
learned indexes as well as explore more complex model archi-
tectures (e.g., recurrent and convolutional neural networks).

3.6 Training

While the training (i.e., loading) time is not the focus of this
paper, it should be pointed out that all of our models, shallow
NNs or even simple linear/multi-variate regression models,
train relatively fast. Whereas simple NNs can be efficiently
trained using stochastic gradient descent and can converge
in less than one to a few passes over the randomized data,
a closed form solution exists for linear multi-variate models
(e.g., also 0-layer NN) and they can be trained in a single pass
over the sorted data. Therefore, for 200M records training
a simple RMI index does not take much longer than a few
seconds, (of course, depending on how much auto-tuning is
performed); neural nets can train on the order of minutes per
model, depending on the complexity. Also note that training
the top model over the entire data is usually not necessary as
those models converge often even before a single scan over the
entire randomized data. This is in part because we use simple
models and do not care much about the last few digit points
in precision, as it has little effect on indexing performance.
Finally, research on improving learning time from the ML
community [27, 72] applies in our context and we expect a lot
of future research in this direction.

3.7 Results

We evaluated learned range indexes in regard to their space
and speed on several real and synthetic data sets against other
read-optimized index structures.

3.7.1 Integer Datasets. As a first experiment we compared
learned indexes using a 2-stage RMImodel and different second-
stage sizes (10k, 50k, 100k, and 200k) with a read-optimized
B-Tree with different page sizes on three different integer data
sets. For the data we used 2 real-world datasets, (1) Weblogs
and (2) Maps [56], and (3) a synthetic dataset, Lognormal. The
Weblogs dataset contains 200M log entries for every request
to a major university web-site over several years. We use the
unique request timestamps as the index keys. This dataset
is almost a worst-case scenario for the learned index as it

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

494

Figure 4: Learned Index vs B-Tree

contains very complex time patterns caused by class sched-
ules, weekends, holidays, lunch-breaks, department events,
semester breaks, etc., which are notoriously hard to learn. For
the maps dataset we indexed the longitude of ≈ 200M user-
maintained features (e.g., roads, museums, coffee shops) across
the world. Unsurprisingly, the longitude of locations is rela-
tively linear and has fewer irregularities than the Weblogs
dataset. Finally, to test how the index works on heavy-tail dis-
tributions, we generated a synthetic dataset of 190M unique
values sampled from a log-normal distribution with μ = 0
and σ = 2. The values are scaled up to be integers up to 1B.
This data is of course highly non-linear, making the CDF more
difficult to learn using neural nets. For all B-Tree experiments
we used 64-bit keys and 64-bit payload/value.

As our baseline, we used a production quality B-Tree imple-
mentation which is similar to the stx::btree but with further
cache-line optimization, dense pages (i.e., fill factor of 100%),
and very competitive performance. To tune the 2-stage learned
indexes we used simple grid-search over neural nets with zero
to two hidden layers and layer-width ranging from 4 to 32
nodes. In general we found that a simple (0 hidden layers) to
semi-complex (2 hidden layers and 8- or 16-wide) models for
the first stage work the best. For the second stage, simple, lin-
ear models, had the best performance. This is not surprising as
for the last mile it is often not worthwhile to execute complex
models, and linear models can be learned optimally.

Learned Index vs B-Tree performance: The main re-
sults are shown in Figure 4. Note, that the page size for B-Trees
indicates the number of keys per page not the size in Bytes,
which is actually larger. As the main metrics we show the size
in MB, the total look-up time in nano-seconds, and the time to
execution the model (either B-Tree traversal or ML model) also
in nano-seconds and as a percentage compared to the total
time in paranthesis. Furthermore, we show the speedup and
space savings compared to a B-Tree with page size of 128 in
parenthesis as part of the size and lookup column. We choose
a page size of 128 as the fixed reference point as it provides
the best lookup performance for B-Trees (note, that it is al-
ways easy to save space at the expense of lookup performance
by simply having no index at all). The color-encoding in the
speedup and size columns indicates howmuch faster or slower
(larger or smaller) the index is against the reference point.

As can be seen, the learned index dominates the B-Tree
index in almost all configurations by being up to 1.5 − 3×

faster while being up to two orders-of-magnitude smaller. Of
course, B-Trees can be further compressed at the cost of CPU-
time for decompressing. However, most of these optimizations
are orthogonal and apply equally (if not more) to neural nets.
For example, neural nets can be compressed by using 4- or
8-bit integers instead of 32- or 64-bit floating point values
to represent the model parameters (a process referred to as
quantization). This level of compression can unlock additional
gains for learned indexes.

Unsurprisingly the second stage size has a significant im-
pact on the index size and look-up performance. Using 10,000
or more models in the second stage is particularly impressive
with respect to the analysis in §2.1, as it demonstrates that our
first-stage model can make a much larger jump in precision
than a single node in the B-Tree. Finally, we do not report on
hybrid models or other search techniques than binary search
for these datasets as they did not provide significant benefit.

Learned Index vs Alternative Baselines: In addition to
the detailed evaluation of learned indexes against our read-
optimized B-Trees, we also compared learned indexes against
other alternative baselines, including third party implementa-
tions. In the following, we discuss some alternative baselines
and compare them against learned indexes if appropriate:

Histogram: B-Trees approximate the CDF of the underlying
data distribution. An obvious question is whether histograms
can be used as a CDF model. In principle the answer is yes,
but to enable fast data access, the histogram must be a low-
error approximation of the CDF. Typically this requires a large
number of buckets, which makes it expensive to search the
histogram itself. This is especially true, if the buckets have
varying bucket boundaries to efficiently handle data skew,
so that only few buckets are empty or too full. The obvious
solutions to this issues would yield a B-Tree, and histograms
are therefore not further discussed.

Lookup-Table: A simple alternative to B-Trees are (hierar-

chical) lookup-tables. Often lookup-tables have a fixed size
and structure (e.g., 64 slots for which each slot points to an-
other 64 slots, etc.). The advantage of lookup-tables is that
because of their fixed size they can be highly optimized using
AVX instructions. We included a comparison against a 3-stage
lookup table, which is constructed by taking every 64th key
and putting it into an array including padding to make it a
multiple of 64. Then we repeat that process one more time over
the array without padding, creating two arrays in total. To

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

495

Figure 5: Alternative Baselines

lookup a key, we use binary search on the top table followed
by an AVX optimized branch-free scan [14] for the second
table and the data itself. This configuration leads to the fastest
lookup times compared to alternatives (e.g., using scanning on
the top layer, or binary search on the 2nd array or the data).

FAST: FAST [44] is a highly SIMD optimized data structure.
We used the code from [47] for the comparison. However, it
should be noted that FAST always requires to allocate memory
in the power of 2 to use the branch free SIMD instructions,
which can lead to significantly larger indexes.

Fixed-size B-Tree & interpolation search: Finally, as proposed

in a recent blog post [1] we created a fixed-height B-Tree with
interpolation search. The B-Tree height is set, so that the total
size of the tree is 1.5MB, similar to our learned model.

Learned indexes without overhead: For our learned index
we used a 2-staged RMI index with a multivariate linear regres-
sion model at the top and simple linear models at the bottom.
We used simple automatic feature engineering for the top
model by automatically creating and selecting features in the
form of key, loд(key), key2, etc. Multivariate linear regression
is an interesting alternative to NN as it is particularly well
suited to fit nonlinear patterns with only a few operations.
Furthermore, we implemented the learned index outside of
our benchmarking framework to ensure a fair comparison.

For the comparison we used the Lognormal data with a
payload of an eight-byte pointer. The results can be seen in
Figure 5. As can be seen for the dataset under fair conditions,
learned indexes provide the best overall performance while
saving significant amount of memory. It should be noted, that
the FAST index is big because of the alignment requirement.

While the results are very promising, we by no means claim
that learned indexes will always be the best choice in terms
of size or speed. Rather, learned indexes provide a new way
to think about indexing and much more research is needed to
fully understand the implications.

3.7.2 String Datasets. We also created a secondary index
over 10M non-continuous document-ids of a large web index
used as part of a real product at Google to test how learned
indexes perform on strings. The results for the string-based
document-id dataset are shown in Figure 6, which also now
includes hybrid models. In addition, we include our best model
in the table, which is a non-hybrid RMI model index with
quaternary search, named “Learned QS” (bottom of the table).
All RMI indexes used 10,000 models on the 2nd stage and for
hybrid indexes we used two thresholds, 128 and 64, as the
maximum tolerated absolute error for a model before it is
replaced with a B-Tree.

As can be seen, the speedups for learned indexes over B-
Trees for strings are not as prominent. Part of the reason is
the comparably high cost of model execution, a problem that

Figure 6: String data: Learned Index vs B-Tree

GPU/TPUswould remove. Furthermore, searching over strings
is much more expensive thus higher precision often pays off;
the reason why hybrid indexes, which replace bad performing
models through B-Trees, help to improve performance.

Because of the cost of searching, the different search strate-
gies make a bigger difference. For example, the search time for
a NN with 1-hidden layer and biased binary search is 1102ns
as shown in Figure 6. In contrast, our biased quaternary search
with the same model only takes 658ns , a significant improve-
ment. The reason why biased search and quaternary search
perform better is that they take the model error into account.

4 POINT INDEX

Next to range indexes, Hash-maps for point look-ups play a
similarly important role in DBMS. Conceptually Hash-maps
use a hash-function to deterministically map keys to positions
inside an array (see Figure 7(a)). The key challenge for any
efficient Hash-map implementation is to prevent too many
distinct keys from being mapped to the same position inside
the Hash-map, henceforth referred to as a conflict. For exam-
ple, let’s assume 100M records and a Hash-map size of 100M.
For a hash-function which uniformly randomizes the keys,
the number of expected conflicts can be derived similarly to
the birthday paradox and in expectation would be around 33%
or 33M slots. For each of these conflicts, the Hash-map archi-
tecture needs to deal with this conflict. For example, separate
chaining Hash-maps would create a linked-list to handle the
conflict (see Figure 7(a)). However, many alternatives exist
including secondary probing, using buckets with several slots,
up to simultaneously using more than one hash function (e.g.,
as done by Cuckoo Hashing [57]).

However, regardless of the Hash-map architecture, conflicts
can have a significant impact of the performance and/or stor-
age requirement, and machine learned models might provide
an alternative to reduce the number of conflicts. While the
idea of learning models as a hash-function is not new, exist-
ing techniques do not take advantage of the underlying data
distribution. For example, the various perfect hashing tech-
niques [26] also try to avoid conflicts but the data structure
used as part of the hash functions grow with the data size; a
property learned models might not have (recall, the example
of indexing all keys between 1 and 100M). To our knowledge
it has not been explored if it is possible to learn models which
yield more efficient point indexes.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

496

Figure 7: Traditional Hash-map vs Learned Hash-map

4.1 The Hash-Model Index

Surprisingly, learning the CDF of the key distribution is one
potential way to learn a better hash function. However, in
contrast to range indexes, we do not aim to store the records
compactly or in strictly sorted order. Rather we can scale
the CDF by the targeted size M of the Hash-map and use
h(K) = F (K)∗M , with keyK as our hash-function. If the model
F perfectly learned the empirical CDF of the keys, no conflicts
would exist. Furthermore, the hash-function is orthogonal to
the actual Hash-map architecture and can be combined with
separate chaining or any other Hash-map type.

For the model, we can again leverage the recursive model
architecture from the previous section. Obviously, like before,
there exists a trade-off between the size of the index and per-
formance, which is influenced by the model and dataset.

Note, that how inserts, look-ups, and conflicts are handled
is dependent on the Hash-map architecture. As a result, the
benefits learned hash functions provide over traditional hash
functions, which map keys to a uniformly distributed space
depend on two key factors: (1) How accurately the model rep-
resents the observed CDF. For example, if the data is generated
by a uniform distribution, a simple linear model will be able
to learn the general data distribution, but the resulting hash
function will not be better than any sufficiently randomized
hash function. (2) Hash map architecture: depending on the
architecture, implementation details, the payload (i.e., value),
the conflict resolution policy, as well as how much more mem-
ory (i.e., slots) will or can be allocated, significantly influences
the performance. For example, for small keys and small or no
values, traditional hash functions with Cuckoo hashing will
probably work well, whereas larger payloads or distributed
hash maps might benefit more from avoiding conflicts, and
thus from learned hash functions.

4.2 Results

We evaluated the conflict rate of learned hash functions over
the three integer data sets from the previous section. As our
model hash-functions we used the 2-stage RMI models from
the previous section with 100k models on the 2nd stage and
without any hidden layers. As the baseline we used a simple
MurmurHash3-like hash-function and compared the number
of conflicts for a table with the same number of slots as records.

As can be seen in Figure 8, the learned models can reduce
the number of conflicts by up to 77% over our datasets by
learning the empirical CDF at a reasonable cost; the execution

Figure 8: Reduction of Conflicts

time is the same as the model execution time in Figure 4,
around 25-40ns.

How beneficial the reduction of conflicts is given the model
execution time depends on the Hash-map architecture, pay-
load, and many other factors. For example, our experiments
(see Appendix B) show that for a separate chaining Hash-map
architecture with 20 Byte records learned hash functions can
reduce the wasted amount of storage by up to 80% at an in-
crease of only 13ns in latency compared to random hashing.
The reason why it only increases the latency by 13ns and not
40ns is, that often fewer conflicts also yield to fewer cache
misses, and thus better performance. On the other hand, for
very small payloads Cuckoo-hashing with standard hash-maps
probably remains the best choice. However, as we show in Ap-
pendix C, for larger payloads a chained-hashmap with learned
hash function can be faster than cuckoo-hashing and/or tra-
ditional randomized hashing. Finally, we see the biggest po-
tential for distributed settings. For example, NAM-DB [74]
employs a hash function to look-up data on remote machines
using RDMA. Because of the extremely high cost for every con-
flict (i.e., every conflict requires an additional RDMA request
which is in the order of micro-seconds), the model execution
time is negligible and even small reductions in the conflict
rate can significantly improve the overall performance. To
conclude, learned hash functions are independent of the used
Hash-map architecture and depending on the Hash-map ar-
chitecture their complexity may or may not pay off.

5 EXISTENCE INDEX

The last common index type of DBMS are existence indexes,
most importantly Bloom filters, a space efficient probabilistic
data structure to test whether an element is a member of a set.
They are commonly used to determine if a key exists on cold
storage. For example, Bigtable uses them to determine if a key
is contained in an SSTable [23].

Internally, Bloom filters use a bit array of size m and k
hash functions, which each map a key to one of them array
positions (see Figure9(a)). To add an element to the set, a key
is fed to the k hash-functions and the bits of the returned
positions are set to 1. To test if a key is a member of the set,
the key is again fed into the k hash functions to receive k array
positions. If any of the bits at those k positions is 0, the key
is not a member of a set. In other words, a Bloom filter does
guarantee that there exists no false negatives, but has potential
false positives.

While Bloom filters are highly space-efficient, they can still
occupy a significant amount of memory. For example for one
billion records roughly ≈ 1.76 Gigabytes are needed. For a FPR
of 0.01% we would require ≈ 2.23 Gigabytes. There have been
several attempts to improve the efficiency of Bloom filters [52],
but the general observation remains.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

497

Figure 9: Bloom filters Architectures

Yet, if there is some structure to determine what is inside
versus outside the set, which can be learned, it might be possi-
ble to construct more efficient representations. Interestingly,
for existence indexes for database systems, the latency and
space requirements are usually quite different than what we
saw before. Given the high latency to access cold storage (e.g.,
disk or even band), we can afford more complex models while
the main objective is to minimize the space for the index and
the number of false positives. We outline two potential ways
to build existence indexes using learned models.

5.1 Learned Bloom filters

While both range and point indexes learn the distribution of
keys, existence indexes need to learn a function that separates
keys from everything else. Stated differently, a good hash
function for a point index is one with few collisions among
keys, whereas a good hash function for a Bloom filter would be
one that has lots of collisions among keys and lots of collisions
among non-keys, but few collisions of keys and non-keys. We
consider below how to learn such a function f and how to
incorporate it into an existence index.

While traditional Bloom filters guarantee a false negative
rate (FNR) of zero and a specific false positive rate (FPR) for any
set of queries chosen a-priori [22], we follow the notion that we
want to provide a specific FPR for realistic queries in particular
while maintaining a FNR of zero. That is, we measure the FPR
over a heldout dataset of queries, as is common in evaluating
ML systems [30]. While these definitions differ, we believe the
assumption that we can observe the distribution of queries,
e.g., from historical logs, holds in many applications, especially
within databases5.

Traditionally, existence indexes make no use of the distri-
bution of keys nor how they differ from non-keys, but learned
Bloom filters can. For example, if our database included all in-
tegers x for 0 ≤ x < n, the existence index could be computed
in constant time and with almost no memory footprint by just
computing f (x) ≡ 1[0 ≤ x < n].

In considering the data distribution for ML purposes, we
must consider a dataset of non-keys. In this work, we con-
sider the case where non-keys come from observable histori-
cal queries and we assume that future queries come from the
same distribution as historical queries. When this assumption
does not hold, one could use randomly generated keys, non-
keys generated by a machine learning model [34], importance

5We would like to thank Michael Mitzenmacher for valuable conversations in
articulating the relationship between these definitions as well as improving the
overall chapter through his insightful comments.

weighting to directly address covariate shift [18], or adversar-
ial training for robustness [65]; we leave this as future work.
We denote the set of keys by K and the set of non-keys by U.

5.1.1 Bloom filters as a Classification Problem. One way to
frame the existence index is as a binary probabilistic classifica-
tion task. That is, we want to learn a model f that can predict
if a query x is a key or non-key. For example, for strings we
can train a recurrent neural network (RNN) or convolutional
neural network (CNN) [37, 64] with D = {(xi ,yi = 1)|xi ∈
K} ∪ {(xi ,yi = 0)|xi ∈ U}. Because this is a binary classifi-
cation task, our neural network has a sigmoid activation to
produce a probability and is trained to minimize the log loss:
L =

∑
(x,y)∈D y log f (x) + (1 − y) log(1 − f (x)).

The output of f (x) can be interpreted as the probability that
x is a key in our database. Thus, we can turn the model into
an existence index by choosing a threshold τ above which we
will assume that the key exists in our database. Unlike Bloom
filters, our model will likely have a non-zero FPR and FNR; in
fact, as the FPR goes down, the FNR will go up. In order to
preserve the no false negatives constraint of existence indexes,
we create an overflow Bloom filter. That is, we consider K−

τ =
{x ∈ K| f (x) < τ } to be the set of false negatives from f and
create a Bloom filter for this subset of keys. We can then run
our existence index as in Figure 9(c): if f (x) ≥ τ , the key is
believed to exist; otherwise, check the overflow Bloom filter.

One question is how to set τ so that our learned Bloom filter
has the desired FPR p∗. We denote the FPR of our model by

FPRτ ≡
∑
x∈Ũ 1(f (x)>τ)

| Ũ | where Ũ is a held-out set of non-keys.

We denote the FPR of our overflow Bloom filter by FPRB . The
overall FPR of our system therefore is FPRO = FPRτ + (1 −
FPRτ)FPRB [53]. For simplicity, we set FPRτ = FPRB =

p∗
2 so

that FPRO ≤ p∗. We tune τ to achieve this FPR on Ũ.
This setup is effective in that the learned model can be fairly

small relative to the size of the data. Further, because Bloom
filters scale with the size of key set, the overflow Bloom filter
will scale with the FNR. We will see experimentally that this
combination is effective in decreasing the memory footprint
of the existence index. Finally, the learned model computa-
tion can benefit from machine learning accelerators, whereas
traditional Bloom filters tend to be heavily dependent on the
random access latency of the memory system.

5.1.2 Bloom filters with Model-Hashes. An alternative ap-
proach to building existence indexes is to learn a hash function
with the goal to maximize collisions among keys and among
non-keys while minimizing collisions of keys and non-keys.
Interestingly, we can use the same probabilistic classification

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

498

model as before to achieve that. That is, we can create a hash
function d , which maps f to a bit array of sizem by scaling
its output as d = � f (x) ∗m� As such, we can use d as a hash
function just like any other in a Bloom filter. This has the
advantage of f being trained to map most keys to the higher
range of bit positions and non-keys to the lower range of bit
positions (see Figure9(b)). A more detailed explanation of the
approach is given in Appendix E.

5.2 Results

In order to test this idea experimentally, we explore the appli-
cation of an existence index for keeping track of blacklisted
phishing URLs. We consider data from Google’s transparency
report as our set of keys to keep track of. This dataset consists
of 1.7M unique URLs. We use a negative set that is a mixture of
random (valid) URLs and whitelisted URLs that could be mis-
taken for phishing pages. We split our negative set randomly
into train, validation and test sets. We train a character-level
RNN (GRU [24], in particular) to predict which set a URL be-
longs to; we set τ based on the validation set and also report
the FPR on the test set.

A normal Bloomfilterwith a desired 1% FPR requires 2.04MB.
We consider a 16-dimensional GRU with a 32-dimensional em-
bedding for each character; this model is 0.0259MB. When
building a comparable learned index, we set τ for 0.5% FPR
on the validation set; this gives a FNR of 55%. (The FPR on
the test set is 0.4976%, validating the chosen threshold.) As de-
scribed above, the size of our Bloom filter scales with the FNR.
Thus, we find that our model plus the spillover Bloom filter
uses 1.31MB, a 36% reduction in size. If we want to enforce
an overall FPR of 0.1%, we have a FNR of 76%, which brings
the total Bloom filter size down from 3.06MB to 2.59MB, a 15%
reduction in memory. We observe this general relationship
in Figure 10. Interestingly, we see how different size models
balance the accuracy vs. memory trade-off differently.

We consider briefly the case where there is covariate shift
in our query distribution that we have not addressed in the
model. When using validation and test sets with only random
URLs we find that we can save 60% over a Bloom filter with a
FPR of 1%. When using validation and test sets with only the
whitelisted URLs we find that we can save 21% over a Bloom
filter with a FPR of 1%. Ultimately, the choice of negative set is
application specific and covariate shift could be more directly
addressed, but these experiments are intended to give intuition
for how the approach adapts to different situations.

Clearly, the more accurate our model is, the better the sav-
ings in Bloom filter size. One interesting property of this is
that there is no reason that our model needs to use the same
features as the Bloom filter. For example, significant research
has worked on using ML to predict if a webpage is a phish-
ing page [10, 15]. Additional features like WHOIS data or IP
information could be incorporated in the model, improving ac-
curacy, decreasing Bloom filter size, and keeping the property
of no false negatives.

Further, we give additional results following the approach
in Section 5.1.2 in Appendix E.

Figure 10: Learned Bloom filter improves memory foot-

print at a wide range of FPRs. (HereW is the RNNwidth

and E is the embedding size for each character.)

6 RELATEDWORK

The idea of learned indexes builds upon a wide range of re-
search in machine learning and indexing techniques. In the
following, we highlight the most important related areas.

B-Trees and variants: Over the last decades a variety
of different index structures have been proposed [36], such
as B+-trees [17] for disk based systems and T-trees [46] or
balanced/red-black trees [16, 20] for in-memory systems. As
the original main-memory trees had poor cache behavior, sev-
eral cache conscious B+-tree variants were proposed, such as
the CSB+-tree [58]. Similarly, there has been work on making
use of SIMD instructions such as FAST [44] or even taking
advantage of GPUs [43, 44, 61]. Moreover, many of these (in-
memory) indexes are able to reduce their storage-needs by
using offsets rather than pointers between nodes. There exists
also a vast array of research on index structures for text, such
as tries/radix-trees [19, 31, 45], or other exotic index structures,
which combine ideas from B-Trees and tries [48].

However, all of these approaches are orthogonal to the
idea of learned indexes as none of them learn from the data
distribution to achieve a more compact index representation
or performance gains. At the same time, like with our hybrid
indexes, it might be possible to more tightly integrate the
existing hardware-conscious index strategies with learned
models for further performance gains.

Since B+-trees consume significant memory, there has also
been a lot of work in compressing indexes, such as prefix/suf-
fix truncation, dictionary compression, key normalization [33,
36, 55], or hybrid hot/cold indexes [75]. However, we pre-
sented a radical different way to compress indexes, which—
dependent on the data distribution—is able to achieve orders-
of-magnitude smaller indexes and faster look-up times and
potentially even changes the storage complexity class (e.g.,
O(n) to O(1)). Interestingly though, some of the existing com-
pression techniques are complimentary to our approach and
could help to further improve the efficiency. For example, dic-
tionary compression can be seen as a form of embedding (i.e.,
representing a string as a unique integer).

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

499

Probably most related to this paper are A-Trees [32], BF-
Trees [13], and B-Tree interpolation search [35]. BF-Trees uses
a B+-tree to store information about a region of the dataset,
but leaf nodes are Bloom filters and do not approximate the
CDF. In contrast, A-Trees use piece-wise linear functions to
reduce the number of leaf-nodes in a B-Tree, and [35] proposes
to use interpolation search within a B-Tree page. However,
learned indexes go much further and propose to replace the
entire index structure using learned models.

Finally, sparse indexes like Hippo [73], Block Range In-
dexes [63], and Small Materialized Aggregates (SMAs) [54] all
store information about value ranges but again do not take
advantage of the underlying properties of the data distribution.

Learning Hash Functions for ANN Indexes: There has
been a lot of research on learning hash functions [49, 59, 67,
68]. Most notably, there has been work on learning locality-
sensitive hash (LSH) functions to build Approximate Nearest
Neighborhood (ANN) indexes. For example, [40, 66, 68] explore
the use of neural networks as a hash function, whereas [69]
even tries to preserve the order of the multi-dimensional input
space. However, the general goal of LSH is to group similar
items into buckets to support nearest neighborhood queries,
usually involving learning approximate similarity measures in
high-dimensional input space using some variant of hamming
distances. There is no direct way to adapt previous approaches
to learn the fundamental data structures we consider, and it is
not clear whether they can be adapted.

Perfect Hashing: Perfect hashing [26] is very related to
our use of models for Hash-maps. Like our CDF models, per-
fect hashing tries to avoid conflicts. However, in all approaches
of which we are aware, learning techniques have not been
considered, and the size of the function grows with the size
of the data. In contrast, learned hash functions can be inde-
pendent of the size. For example, a linear model for mapping
every other integer between 0 and 200M would not create any
conflicts and is independent of the size of the data. In addition,
perfect hashing is also not useful for B-Trees or Bloom filters.

Bloomfilters: Finally, our existence indexes directly builds
upon the existing work in Bloom filters [11, 29]. Yet again our
work takes a different perspective on the problem by proposing
a Bloom filter enhanced classification model or using models
as special hash functions with a very different optimization
goal than the hash-models we created for Hash-maps.

Succinct Data Structures: There exists an interesting con-
nection between learned indexes and succinct data structures,
especially rank-select dictionaries such as wavelet trees [38,
39]. However, many succinct data structures focus on H0 en-
tropy (i.e., the number of bits that are necessary to encode each
element in the index), whereas learned indexes try to learn the
underlying data distribution to predict the position of each el-
ement. Thus, learned indexes might achieve a higher compres-
sion rate than H0 entropy potentially at the cost of slower op-
erations. Furthermore, succinct data structures normally have
to be carefully constructed for each use case, whereas learned
indexes “automate” this process through machine learning.

Yet, succinct data structures might provide a framework to
further study learned indexes.

Modeling CDFs: Our models for both range and point in-
dexes are closely tied to models of the CDF. Estimating the
CDF is non-trivial and has been studied in the machine learn-
ing community [50] with a few applications such as ranking
[42]. How to most effectively model the CDF is still an open
question worth further investigation.

Mixture of Experts: Our RMI architecture follows a long
line of research on building experts for subsets of the data [51].
With the growth of neural networks, this has become more
common and demonstrated increased usefulness [62]. As we
see in our setting, it nicely lets us to decouple model size and
model computation, enabling more complex models that are
not more expensive to execute.

7 CONCLUSION AND FUTUREWORK

We have shown that learned indexes can provide significant
benefits by utilizing the distribution of data being indexed.
This opens the door to many interesting research questions.

Other ML Models: While our focus was on linear models
and neural nets with mixture of experts, there exist many other
ML model types and ways to combine them with traditional
data structures, which are worth exploring.

Multi-Dimensional Indexes: Arguably the most exciting
research direction for the idea of learned indexes is to extend
them to multi-dimensional indexes. Models, especially NNs,
are extremely good at capturing complex high-dimensional
relationships. Ideally, this model would be able to estimate the
position of all records filtered by any combination of attributes.

Beyond Indexing: Learned AlgorithmsMaybe surpris-
ingly, a CDF model has also the potential to speed-up sorting
and joins, not just indexes. For instance, the basic idea to speed-
up sorting is to use an existing CDF model F to put the records
roughly in sorted order and then correct the nearly perfectly
sorted data, for example, with insertion sort.

GPU/TPUs Finally, as mentioned several times throughout
this paper, GPU/TPUs will make the idea of learned indexes
even more valuable. At the same time, GPU/TPUs also have
their own challenges, most importantly the high invocation
latency. While it is reasonable to assume that probably all
learned indexes will fit on the GPU/TPU because of the ex-
ceptional compression ratio as shown before, it still requires
2-3 micro-seconds to invoke any operation on them. At the
same time, the integration of machine learning accelerators
with the CPU is getting better [4, 6] and with techniques like
batching requests the cost of invocation can be amortized, so
that we do not believe the invocation latency is a real obstacle.

In summary, we have demonstrated that machine

learnedmodels have the potential to provide significant

benefits over state-of-the-art indexes, andwebelieve this

is a fruitful direction for future research.

Acknowledgements:Wewould like to thankMichael Mitzenmacher,

Chris Olston, Jonathan Bischof and many others at Google for their

helpful feedback during the preparation of this paper.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

500

REFERENCES
[1] Database architects blog: The case for b-tree index

structures. http://databasearchitects.blogspot.de/2017/12/
the-case-for-b-tree-index-structures.html.

[2] Google’s sparsehash documentation. https://github.com/sparsehash/
sparsehash/blob/master/src/sparsehash/sparse_hash_map.

[3] An in-depth look at google’s first tensor processing unit
(tpu). https://cloud.google.com/blog/big-data/2017/05/
an-in-depth-look-at-googles-first-tensor-processing-unit-tpu.

[4] Intel Xeon Phi. https://www.intel.com/content/www/us/en/products/
processors/xeon-phi/xeon-phi-processors.html.

[5] Moore Law is Dead but GPU will get 1000X faster
by 2025. https://www.nextbigfuture.com/2017/06/
moore-law-is-dead-but-gpu-will-get-1000x-faster-by-2025.html.

[6] NVIDIA NVLink High-Speed Interconnect. http://www.nvidia.com/object/
nvlink.html.

[7] Stanford DAWN cuckoo hashing. https://github.com/stanford-futuredata/
index-baselines.

[8] Trying to speed up binary search. http://databasearchitects.blogspot.com/
2015/09/trying-to-speed-up-binary-search.html.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–283, 2016.

[10] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair. A comparison of machine
learning techniques for phishing detection. In eCrime, pages 60–69, 2007.

[11] K. Alexiou, D. Kossmann, and P.-A. Larson. Adaptive range filters for cold
data: Avoiding trips to siberia. Proc. VLDB Endow., 6(14):1714–1725, Sept.
2013.

[12] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B. Trushkowsky,
J. Trutna, and H. Oh. SCADS: scale-independent storage for social com-
puting applications. In CIDR, 2009.

[13] M. Athanassoulis and A. Ailamaki. BF-tree: Approximate Tree Indexing.
In VLDB, pages 1881–1892, 2014.

[14] Performance comparison: linear search vs binary
search. https://dirtyhandscoding.wordpress.com/2017/08/25/
performance-comparison-linear-search-vs-binary-search/.

[15] R. B. Basnet, S. Mukkamala, and A. H. Sung. Detection of phishing attacks:
A machine learning approach. Soft Computing Applications in Industry,
226:373–383, 2008.

[16] R. Bayer. Symmetric binary b-trees: Data structure and maintenance
algorithms. Acta Inf., 1(4):290–306, Dec. 1972.

[17] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indices. In SIGFIDET (Now SIGMOD), pages 107–141, 1970.

[18] S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning under
covariate shift. Journal of Machine Learning Research, 10(Sep):2137–2155,
2009.

[19] M. Böhm, B. Schlegel, P. B. Volk, U. Fischer, D. Habich, and W. Lehner.
Efficient in-memory indexing with generalized prefix trees. In BTW, pages
227–246, 2011.

[20] J. Boyar and K. S. Larsen. Efficient rebalancing of chromatic search trees.
Journal of Computer and System Sciences, 49(3):667 – 682, 1994. 30th IEEE
Conference on Foundations of Computer Science.

[21] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann, and T. Kraska. Building
a database on S3. In SIGMOD, pages 251–264, 2008.

[22] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A
survey. Internet mathematics, 1(4):485–509, 2004.

[23] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed storage system
for structured data (awarded best paper!). In OSDI, pages 205–218, 2006.

[24] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In EMNLP, pages
1724–1734, 2014.

[25] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig, U. Çetintemel, and
S. Zdonik. An architecture for compiling udf-centric workflows. PVLDB,
8(12):1466–1477, 2015.

[26] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auF der Heide, H. Rohn-
ert, and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds.
SIAM Journal on Computing, 23(4):738–761, 1994.

[27] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[28] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator.
The Annals of Mathematical Statistics, pages 642–669, 1956.

[29] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher. Cuckoo
filter: Practically better than bloom. In CoNEXT, pages 75–88, 2014.

[30] T. Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006.

[31] E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499, Sept. 1960.
[32] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska. A-tree:

A bounded approximate index structure. CoRR, abs/1801.10207, 2018.
[33] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing Relations and

Indexes. In ICDE, pages 370–379, 1998.
[34] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, pages
2672–2680, 2014.

[35] G. Graefe. B-tree indexes, interpolation search, and skew. In DaMoN, 2006.
[36] G. Graefe and P. A. Larson. B-tree indexes and CPU caches. In ICDE, pages

349–358, 2001.
[37] A. Graves. Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850, 2013.
[38] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text

indexes. In SODA, pages 841–850. Society for Industrial and Applied
Mathematics, 2003.

[39] R. Grossi and G. Ottaviano. The wavelet trie: Maintaining an indexed
sequence of strings in compressed space. In PODS, pages 203–214, 2012.

[40] J. Guo and J. Li. CNN based hashing for image retrieval. CoRR,
abs/1509.01354, 2015.

[41] M. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov,
W. Moczydlowski, and A. Van Esbroeck. Monotonic calibrated interpolated
look-up tables. The Journal of Machine Learning Research, 17(1):3790–3836,
2016.

[42] J. C. Huang and B. J. Frey. Cumulative distribution networks and the
derivative-sum-product algorithm: Models and inference for cumulative
distribution functions on graphs. J. Mach. Learn. Res., 12:301–348, Feb.
2011.

[43] K. Kaczmarski. B + -Tree Optimized for GPGPU. 2012.
[44] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.

Lee, S. A. Brandt, and P. Dubey. Fast: Fast architecture sensitive tree search
on modern cpus and gpus. In SIGMOD, pages 339–350, 2010.

[45] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. Kiss-tree: Smart latch-
free in-memory indexing onmodern architectures. InDaMoN, pages 16–23,
2012.

[46] T. J. Lehman and M. J. Carey. A study of index structures for main memory
database management systems. In VLDB, pages 294–303, 1986.

[47] V. Leis. FAST source. http://www-db.in.tum.de/âĹĳleis/index/fast.cpp.
[48] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful

indexing for main-memory databases. In ICDE, pages 38–49, 2013.
[49] W. Litwin. Readings in database systems. chapter Linear Hashing: A New

Tool for File and Table Addressing., pages 570–581. Morgan Kaufmann
Publishers Inc., 1988.

[50] M. Magdon-Ismail and A. F. Atiya. Neural networks for density estimation.
In M. J. Kearns, S. A. Solla, and D. A. Cohn, editors, NIPS, pages 522–528.
MIT Press, 1999.

[51] D. J. Miller and H. S. Uyar. A mixture of experts classifier with learning
based on both labelled and unlabelled data. In NIPS, pages 571–577, 1996.

[52] M. Mitzenmacher. Compressed bloom filters. In PODC, pages 144–150,
2001.

[53] M. Mitzenmacher. A model for learned bloom filters and related structures.
arXiv preprint arXiv:1802.00884, 2018.

[54] G. Moerkotte. Small Materialized Aggregates: A Light Weight Index Struc-
ture for Data Warehousing. In VLDB, pages 476–487, 1998.

[55] T. Neumann and G. Weikum. RDF-3X: A RISC-style Engine for RDF. Proc.
VLDB Endow., pages 647–659, 2008.

[56] OpenStreetMap database ©OpenStreetMap contributors. https://aws.
amazon.com/public-datasets/osm.

[57] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–
144, 2004.

[58] J. Rao and K. A. Ross. Making b+- trees cache conscious in main memory.
In SIGMOD, pages 475–486, 2000.

[59] S. Richter, V. Alvarez, and J. Dittrich. A seven-dimensional analysis of
hashing methods and its implications on query processing. Proc. VLDB
Endow., 9(3):96–107, Nov. 2015.

[60] D. G. Severance and G. M. Lohman. Differential files: Their application to
the maintenance of large data bases. In SIGMOD, pages 43–43, 1976.

[61] A. Shahvarani and H.-A. Jacobsen. A hybrid b+-tree as solution for in-
memory indexing on cpu-gpu heterogeneous computing platforms. In
SIGMOD, pages 1523–1538, 2016.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

501

[62] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and
J. Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[63] M. Stonebraker and L. A. Rowe. The Design of POSTGRES. In SIGMOD,
pages 340–355, 1986.

[64] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In NIPS, pages 3104–3112, 2014.

[65] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel. Ensemble
adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

[66] M. Turcanik and M. Javurek. Hash function generation by neural network.
In NTSP, pages 1–5, Oct 2016.

[67] J. Wang, W. Liu, S. Kumar, and S. F. Chang. Learning to hash for indexing
big data;a survey. Proceedings of the IEEE, 104(1):34–57, Jan 2016.

[68] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search: A
survey. CoRR, abs/1408.2927, 2014.

[69] J. Wang, J. Wang, N. Yu, and S. Li. Order preserving hashing for approxi-
mate nearest neighbor search. In MM, pages 133–142, 2013.

[70] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et al. Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[71] S. You, D. Ding, K. Canini, J. Pfeifer, and M. Gupta. Deep lattice networks
and partial monotonic functions. In NIPS, pages 2985–2993, 2017.

[72] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer. Imagenet training
in minutes. CoRR, abs/1709.05011, 2017.

[73] J. Yu and M. Sarwat. Two Birds, One Stone: A Fast, Yet Lightweight,
Indexing Scheme for Modern Database Systems. In VLDB, pages 385–396,
2016.

[74] E. Zamanian, C. Binnig, T. Kraska, and T. Harris. The end of a myth:
Distributed transaction can scale. PVLDB, 10(6):685–696, 2017.

[75] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen.
Reducing the storage overhead of main-memory OLTP databases with
hybrid indexes. In SIGMOD, pages 1567–1581, 2016.

A THEORETICAL ANALYSIS OF SCALING
LEARNED RANGE INDEXES

One advantage of framing learned range indexes as modeling
the cumulative distribution function (CDF) of the data is that
we can build on the long research literature on modeling the
CDF. Significant research has studied the relationship between
a theoretical CDF F (x) and the empirical CDF of data sampled
from F (x).We consider the case where we have sampled i.i.d.N
datapoints, Y, from some distribution, and we will use F̂N (x)
to denote the empirical cumulative distribution function:

F̂N (x) =

∑
y∈Y 1y≤x

N
. (2)

One theoretical question about learned indexes is: how well
do they scale with the size of the data N ? In our setting, we
learn a model F (x) to approximate the distribution of our data
F̂N (x). Here, we assume we know the distribution F (x) that
generated the data and analyze the error inherent in the data
being sampled from that distribution6. That is, we consider the
error between the distribution of data F̂N (x) and our model
of the distribution F (x). Because F̂N (x) is a binomial random
variable with mean F (x), we find that the expected squared
error between our data and our model is given by

E

[(
F (x) − F̂N (x)

)2]
=
F (x)(1 − F (x))

N
. (3)

In our application the look-up time scales with the average
error in the number of positions in the sorted data; that is, we

6Learning F (x) can improve or worsen the error, but we take this as a reasonable
assumption for some applications, such as data keyed by a random hash.

Figure 11: Model vs Random Hash-map

are concernedwith the error between ourmodelNF (x) and the
key position N F̂N (x). With some minor manipulation of Eq.
(3), we find that the average error in the predicted positions
grows at a rate of O(

√
N). Note that this sub-linear scaling

in error for a constant-sized model is an improvement over
the linear scaling achieved by a constant-sized B-Tree. This
provides preliminary understanding of the scalability of our
approach and demonstrates how framing indexing as learning
the CDF lends itself well to theoretical analysis.

B SEPARATED CHAINING HASH-MAP

We evaluated the potential of learned hash functions using a
separate chainingHash-map; records are stored directly within
an array and only in the case of a conflict is the record attached
to the linked-list. That is without a conflict there is at most one
cache miss. Only in the case that several keys map to the same
position, additional cache-misses might occur. We choose that
design as it leads to the best look-up performance even for
larger payloads. For example, we also tested a commercial-
grade dense Hash-map with a bucket-based in-place overflow
(i.e., the Hash-map is divided into buckets to minimize over-
head and uses in-place overflow if a bucket is full [2]). While
it is possible to achieve a lower footprint using this technique,
we found that it is also twice as slow as the separate chaining
approach. Furthermore, at 80% or more memory utilization the
dense Hash-maps degrade further in performance. Of course
many further (orthogonal) optimizations are possible and by
no means do we claim that this is the most memory or CPU
efficient implementation of a Hash-map. Rather we aim to
demonstrate the general potential of learned hash functions.

As the baseline for this experiment we used our Hash-map
implementation with a MurmurHash3-like hash-function. As
the data we used the three integer datasets from Section 3.7
and as the model-based Hash-map the 2-stage RMI model with
100k models on the 2nd stage and no hidden layers from the
same section. For all experiments we varied the number of
available slots from 75% to 125% of the data. That is, with 75%
there are 25% less slots in the Hash-map than data records.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

502

Forcing less slots than the data size, minimizes the empty
slots within the Hash-map at the expense of longer linked
lists. However, for Hash-maps we store the full records, which
consist of a 64bit key, 64bit payload, and a 32bit meta-data field
for delete flags, version nb, etc. (so a record has a fixed length
of 20 Bytes); note that our chained hash-map adds another
32bit pointer, making it a 24Byte slot.

The results are shown in Figure 11, listing the average look-
up time, the number of empty slots in GB and the space im-
provement as a factor of using a randomized hash function.
Note, that in contrast to the B-Tree experiments, we do include
the data size. The main reason is that in order to enable 1
cache-miss look-ups, the data itself has to be included in the
Hash-map, whereas in the previous section we only counted
the extra index overhead excluding the sorted array itself.

As can be seen in Figure 11, the index with the model hash
function overall has similar performance while utilizing the
memory better. For example, for the map dataset the model
hash function only “wastes” 0.18GB in slots, an almost 80%
reduction compared to using a random hash function. Obvi-
ously, the moment we increase the Hash-map in size to have
25% more slots, the savings are not as large, as the Hash-map
is also able to better spread out the keys. Surprisingly if we
decrease the space to 75% of the number of keys, the learned
Hash-map still has an advantage because of the still prevalent
birthday paradox.

C HASH-MAP COMPARISON AGAINST
ALTERNATIVE BASELINES

In addition to the separate chaining Hash-map architecture, we
also compared learned point indexes against four alternative
Hash-map architectures and configurations:

AVX Cuckoo Hash-map: We used an AVX optimized
Cuckoo Hash-map from [7].

Commercial Cuckoo Hash-map: The implementation
of [7] is highly tuned, but does not handle all corner cases. We
therefore also compared against a commercially used Cuckoo
Hash-map.

In-place chained Hash-map with learned hash func-

tions: One significant downside of separate chaining is that it
requires additional memory for the linked list. As an alterna-
tive, we implemented a chained Hash-map, which uses a two
pass algorithm: in the first pass, the learned hash function is
used to put items into slots. If a slot is already taken, the item is
skipped. Afterwards we use a separate chaining approach for
every skipped item except that we use the remaining free slots
with offsets as pointers for them. As a result, the utilization
can be 100% (recall, we do not consider inserts) and the quality
of the learned hash function can only make an impact on the
performance not the size: the fewer conflicts, the fewer cache
misses. We used a simple single stage multi-variate model as
the learned hash function and implemented the Hash-map
including the model outside of our benchmarking framework
to ensure a fair comparison.

Type Time (ns) Utilization

AVX Cuckoo, 32-bit value 31ns 99%
AVX Cuckoo, 20 Byte record 43ns 99%
Comm. Cuckoo, 20Byte record 90ns 95%

In-place chained Hash-map
with learned hash functions,
record

35ns 100%

Table 1: Hash-map alternative baselines

Like in Section B our records are 20 Bytes large and consist
of a 64bit key, 64bit payload, and a 32bit meta-data field as
commonly found in real applications (e.g., for delete flags,
version numbers, etc.). For all Hash-map architectures we tried
to maximize utilization and used records, except for the AVX
Cuckoo Hash-map where we also measured the performance
for 32bit values. As the dataset we used the log-normal data
and the same hardware as before. The results are shown in
Table 1.

The results for the AVX cuckoo Hash-map show that the
payload has a significant impact on the performance. Going
from 8 Byte to 20 Byte decreases the performance by almost
40%. Furthermore, the commercial implementation which han-
dles all corner cases but is not very AVX optimized slows down
the lookup by another factor of 2. In contrast, our learned hash
functions with in-place chaining can provide better lookup
performance than even the cuckoo Hash-map for our records.
The main take-aways from this experiment is that learned
hash functions can be used with different Hash-map architec-
tures and that the benefits and disadvantages highly depend
on the implementation, data and workload.

D FUTURE DIRECTIONS FOR LEARNED
B-TREES

In the main part of the paper, we have focused on index-
structures for read-only, in-memory database systems. Here
we outline how the idea of learned index structures could be
extended in the future.

D.1 Inserts and Updates

On first sight, inserts seem to be the Achilles heel of learned in-
dexes because of the potentially high cost for learning models,
but yet again learned indexes might have a significant ad-
vantage for certain workloads. In general we can distinguish
between two types of inserts: (1) appends and (2) inserts in the

middle like updating a secondary index on the customer-id
over an order table.

Let’s for the moment focus on the first case: appends. For
example, it is reasonable to assume that for an index over the
timestamps of web-logs, like in our previous experiments, most
if not all inserts will be appends with increasing timestamps.
Now, let us further assume that our model generalizes and
is able to learn the patterns, which also hold for the future
data. As a result, updating the index structure becomes anO(1)
operation; it is a simple append and no change of the model

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

503

itself is needed, whereas a B-Tree requiresO(logn) operations
to keep the B-Tree balance. A similar argument can also be
made for inserts in the middle, however, those might require
to move data or reserve space within the data, so that the new
items can be put into the right place.

Obviously, this observation also raises several questions.
First, there seems to be an interesting trade-off in the gener-
alizability of the model and the “last mile” performance; the
better the “last mile” prediction, arguably, the more the model
is overfitting and less able to generalize to new data items.

Second, what happens if the distribution changes? Can it
be detected, and is it possible to provide similar strong guaran-
tees as B-Trees which always guarantee O(loдn) look-up and
insertion costs? While answering this question goes beyond
the scope of this paper, we believe that it is possible for cer-
tain models to achieve it. More importantly though, machine
learning offers new ways to adapt the models to changes in
the data distribution, such as online learning, which might be
more effective than traditional B-Tree balancing techniques.
Exploring them also remains future work.

Finally, it should be pointed out that there always exists
a much simpler alternative to handling inserts by building a
delta-index [60]. All inserts are kept in buffer and from time
to time merged with a potential retraining of the model. This
approach is already widely used, for example in Bigtable [23]
and many other systems, and was recently explored in [32]
for learned indexes.

D.2 Paging

Throughout this section we assumed that the data, either the
actual records or the <key,pointer> pairs, are stored in one
continuous block. However, especially for indexes over data
stored on disk, it is quite common to partition the data into
larger pages that are stored in separate regions on disk. To
that end, our observation that a model learns the CDF no
longer holds true as pos = Pr(X < Key) ∗ N is violated. In the
following we outline several options to overcome this issue:

Leveraging the RMI structure: The RMI structure already
partitions the space into regions. With small modifications
to the learning process, we can minimize how much models
overlap in the regions they cover. Furthermore, it might be
possible to duplicate any records which might be accessed by
more than one model.

Another option is to have an additional translation table in
the form of <first_key, disk-position>. With the trans-
lation table the rest of the index structure remains the same.
However, this idea will work best if the disk pages are very
large. At the same time it is possible to use the predicted po-
sition with the min- and max-error to reduce the number of
bytes which have to be read from a large page, so that the
impact of the page size might be negligible.

With more complex models, it might actually be possible
to learn the actual pointers of the pages. Especially if a file-
system is used to determine the page on disk with a systematic

numbering of the blocks on disk (e.g., block1,...,block100)
the learning process can remain the same.

Obviously, more investigation is required to better under-
stand the impact of learned indexes for disk-based systems. At
the same time the significant space savings as well as speed
benefits make it a very interesting avenue for future work.

E FURTHER BLOOM FILTER RESULTS

In Section 5.1.2, we propose an alternative approach to a
learned Bloom filter where the classifier output is discretized
and used as an additional hash function in the traditional
Bloom filter setup. Preliminary results demonstrate that this
approach in some cases outperforms the results listed in Sec-
tion 5.2, but as the results depend on the discretization scheme,
further analysis is worthwhile. We describe below these addi-
tional experiments.

As before, we assume we have a model model f (x) → [0, 1]
that maps keys to the range [0, 1]. In this case, we allocate
m bits for a bitmap M where we set M[�mf (x)�] = 1 for
all inserted keys x ∈ K . We can then observe the FPR by
observing what percentage of non-keys in the validation set
map to a location in the bitmap with a value of 1, i.e. FPRm ≡∑

x∈Ũ M[�f (x)m �]
| Ũ | . In addition, we have a traditional Bloom

filter with false positive rate FPRB . We say that a query q
is predicted to be a key if M[� f (q)m�] = 1 and the Bloom
filter also returns that it is a key. As such, the overall FPR
of the system is FPRm × FPRB ; we can determine the size of
the traditional Bloom filter based on it’s false positive rate

FPRB =
p∗

FPRm
where p∗ is the desired FPR for the whole

system.
As in Section 5.2, we test our learned Bloom filter on data

from Google’s transparency report. We use the same character
RNN trained with a 16-dimensional width and 32-dimensional
character embeddings. Scanning over different values form,
we can observe the total size of the model, bitmap for the
learned Bloom filter, and the traditional Bloom filter. For a
desired total FPR p∗ = 0.1%, we find that settingm = 1000000
gives a total size of 2.21MB, a 27.4% reduction in memory,
compared to the 15% reduction following the approach in
Section 5.1.1 and reported in Section 5.2. For a desired total
FPR p∗ = 1% we get a total size of 1.19MB, a 41% reduction in
memory, compared to the 36% reduction reported in Section
5.2.

These results are a significant improvement over those
shown in Section 5.2. However, typical measures of accuracy
or calibration do not match this discretization procedure, and
as such further analysis would be valuable to understand how
well model accuracy aligns with it’s suitability as a hash func-
tion.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

504

