
292 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Eyeriss v2: A Flexible Accelerator for Emerging
Deep Neural Networks on Mobile Devices

Yu-Hsin Chen , Student Member, IEEE, Tien-Ju Yang , Student Member, IEEE, Joel S. Emer, Fellow, IEEE,

and Vivienne Sze , Senior Member, IEEE

Abstract— A recent trend in deep neural network (DNN)
development is to extend the reach of deep learning applications
to platforms that are more resource and energy-constrained, e.g.,
mobile devices. These endeavors aim to reduce the DNN model
size and improve the hardware processing efficiency and have
resulted in DNNs that are much more compact in their structures
and/or have high data sparsity. These compact or sparse models
are different from the traditional large ones in that there is
much more variation in their layer shapes and sizes and often
require specialized hardware to exploit sparsity for performance
improvement. Therefore, many DNN accelerators designed for
large DNNs do not perform well on these models. In this paper,
we present Eyeriss v2, a DNN accelerator architecture designed
for running compact and sparse DNNs. To deal with the widely
varying layer shapes and sizes, it introduces a highly flexible
on-chip network, called hierarchical mesh, that can adapt to the
different amounts of data reuse and bandwidth requirements
of different data types, which improves the utilization of the
computation resources. Furthermore, Eyeriss v2 can process
sparse data directly in the compressed domain for both weights
and activations and therefore is able to improve both processing
speed and energy efficiency with sparse models. Overall, with
sparse MobileNet, Eyeriss v2 in a 65-nm CMOS process achieves
a throughput of 1470.6 inferences/s and 2560.3 inferences/J at a
batch size of 1, which is 12.6× faster and 2.5× more energy-
efficient than the original Eyeriss running MobileNet.

Index Terms— Deep neural network accelerators, deep learn-
ing, energy-efficient accelerators, dataflow processing, spatial
architecture.

I. INTRODUCTION

The development of deep neural networks (DNNs) has
shown tremendous progress in improving accuracy over the
past few years [1]. In addition, there has been an increas-
ing effort to reduce the computational complexity of DNNs,
particularly for those targeted at mobile devices [2]. Various
different techniques have been widely explored in the design
of DNN models including reduced precision of weights and
activations [3]–[8], compact network architectures [9]–[11]
(i.e., compact DNNs), and increasing sparsity in the filter

Manuscript received December 7, 2018; revised February 26, 2019; accepted
March 19, 2019. Date of publication April 11, 2019; date of current version
June 11, 2019. This work was supported by the DARPA Young Faculty Award,
MIT’s Center for Integrated Circuits and Systems, and gifts from Google,
Intel, and Nvidia. This paper was recommended by Guest Editor B. Murmann.
(Corresponding author: Yu-Hsin Chen.)

Y.-H. Chen, T.-J. Yang, and V. Sze are with the Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: yhchen@mit.edu).

J. S. Emer is with the Massachusetts Institute of Technology, Cambridge,
MA 02139 USA, and also with Nvidia, Westford, MA 01886 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2019.2910232

weights [12]–[14] (i.e., sparse DNNs). While these approaches
provide theoretical reductions in the size and number of
operations and storage cost, specialized hardware is often
necessary to translate these theoretical benefits into measurable
improvements in energy efficiency and processing speed.

Support for reduced precision has been demonstrated in
recent hardware implementations, including Envision [15],
Thinker [16], UNPU [17], Loom [18], and Stripes [19].
These works have shown various methods that efficiently
translate reduced bitwidth from 16-bits down to 1-bit into
both energy savings and increase in processing speed. Spe-
cialized hardware for binary networks have also been widely
explored [20]–[24]. In this work, we focus on complementary
approaches that have been less explored, specifically the
support for diverse filter shapes for compact DNNs, as well
as support for processing in the compressed domain for
sparse DNNs. While compact and sparse DNNs have fewer
operations and weights, they also introduce new challenges in
hardware design for DNN acceleration.

A. Challenges for Compact DNNs

The trend for compact networks is evident in how the
iconic DNNs have evolved over time. Early models, such
as AlexNet [25] and VGG [26], are now considered large
and over-parameterized. Techniques such as using deeper
but narrower network structures and bottleneck layers were
proposed to pursue higher accuracy while restricting the size
of the DNN (e.g., GoogLeNet [9] and ResNet [27]). This
quest further continued with a focus on drastically reducing the
amount of computation, specifically the number of multiply-
and-accumulates (MACs), and the storage cost, specifically the
number of weights. Techniques such as filter decomposition as
shown in Fig. 1 have since become popular for building com-
pact DNNs targeted at mobile devices (e.g., SqueezeNet [11]
and MobileNet [10]). This evolution has resulted in a more
diverse set of DNNs with widely varying shapes and sizes.

One effect of compact DNNs is that any data dimension
in a DNN layer can diminish. In addition, due to latency
constraints, it is increasingly desirable to run DNNs at smaller
batch sizes (i.e., smaller N). Table I summarizes the data
dimensions that are used to describe a DNN layer and the
common reasons for each dimension to diminish. This sug-
gests that less assumptions can be made on the dimensions of
a DNN layer.

For hardware designers, widely varying DNN layer shapes,
especially diminishing dimensions, is challenging as they

2156-3357 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4403-956X
https://orcid.org/0000-0003-4728-0321
https://orcid.org/0000-0003-4841-3990

CHEN et al.: EYERISS V2: A FLEXIBLE ACCELERATOR FOR EMERGING DNNS ON MOBILE DEVICES 293

Fig. 1. Various filter decomposition approaches [10], [26], [28].

TABLE I

REASONS FOR DIMINISHING DATA DIMENSIONS IN A DNN LAYER

result in changes in a key property of DNNs: data reuse,
which is the number of MACs that use the same piece of data,
i.e., MACs/data. Most DNN accelerators rely on data reuse as a
means to improve efficiency. The amount of data reuse for each
of the three data types in a DNN layer, i.e., input activations
(iacts), weights and partial sums (psums), is a function of the
layer shape and size. For example, the amount of iact reuse is
proportional to the number of output channels as well as the
filter size in a layer. Therefore, diminished data dimensions
suggest that it is more difficult to exploit data reuse from any
specific dimension.

Fig. 2 shows that the variation in data reuse increases in
all data types in more recent DNNs, and the amount of reuse
also decreases in iacts and psums. This variation and overall
reduction in data reuse makes the design of DNN accelerators
more challenging in two ways.

1) Array Utilization: Many existing DNN accelera-
tors [15]–[17], [29]–[32] rely on a set of pre-selected data
dimensions to exploit both high parallelism across an array
of processing elements (PEs) for high performance and data

Fig. 2. Data reuse of the three data types in each layer of the three DNNs.
Each data point represents a layer, and the red point indicates the median
amount of data reuse among all the layers in a DNN. For example, incp3a-
red5 × 5 means the reduction layer with 5 × 5 filters in Inception module
3a in GoogLeNet. (a) Input activations (iacts). (b) Weights (batch size = 1).
(c) Partial sums (psums).

Fig. 3. Two common DNN accelerator designs: (a) Spatial accumulation
array [29]–[32]: iacts are reused vertically and psums are accumulated
horizontally. (b) Temporal accumulation array [15]–[17]: iacts are reused
vertically and weights are reused horizontally.

reuse for high energy efficiency. For instance, Fig. 3 shows
two designs that are commonly used. A spatial accumulation
array architecture (Fig. 3a), which is often used for a weight-
stationary dataflow, relies on both output and input channels
to map the operations spatially onto the PE array to exploit
parallelism. At the same time, each iact can be reused across
the PE array vertically with weights from different output
channels, while psums from the PEs in the same row can
be further accumulated spatially together before written back
to the global buffer. Similarly, a temporal accumulation array
architecture (Fig. 3b), which is often used for a output-
stationary dataflow, relies on another set of data dimensions
to achieve high compute parallelism. In this case, each iact is
still reused vertically across different PEs in the same column,
while each weight is reused horizontally across PEs in the
same row.

When the set of pre-selected data dimensions diminish due
to a change in DNN shapes and sizes, e.g., the number of
output channels in a layer (M) is less than the height of
the PE array, efficiency decreases. Specifically, these spatial

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

294 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Fig. 4. Array utilization of different architectures for depth-wise (DW) layers
in MobileNet. The colored blocks are the utilized part of the PE array. For
Eyeriss [33], the different colors denote the parts that run different channel
groups (G). Please refer to Table I for the meaning of the variables.

mapping constraints result in both reduced array utilization
(i.e., fewer PEs are used) as well as lower energy efficiency.
Furthermore, these inefficiencies are magnified as the size of
the PE array is scaled up, because the diminished dimension
is even more likely to be unable to fill the array. For example,
as shown in Fig. 4, the aforementioned spatial and temporal
accumulation arrays will find it difficult to fully utilize the
array due to the lack of input and output channels in the depth-
wise (DW) layers in MobileNet. In contrast, Eyeriss [33] can
still achieve high array utilization under such circumstances by
mapping the independent channel groups onto different part of
the PE array due to the flexibility of its Row-Stationary (RS)
dataflow.

2) PE Utilization: A lower data reuse also implies that a
higher data bandwidth is required to keep the PEs busy. If the
on-chip network (NoC) for data delivery to the PEs is designed
for high spatial reuse scenarios, e.g., a broadcast network,
the insufficient bandwidth can lead to reduced utilization of
the PEs (i.e., increased stall cycles), which further reduces
accelerator performance. For instance, even though Eyeriss can
better utilize the array as shown in Fig. 4, its broadcast NoC
(which supports multicast) is not going to provide adequate
bandwidth to support high throughput processing at high
parallelism, thus the performance will still suffer. However,
if the NoC is optimized for high bandwidth scenarios, e.g.,
many unicast networks, it may not be able to take advantage
of data reuse when available.

An additional challenge lies in the fact that all DNNs
that the hardware needs to run will not be known at design
time [34]; as a result, the hardware has to be flexible enough
to efficiently support a wide range of DNNs. To build a truly
flexible DNN accelerator, the new challenge is to design an
architecture that can accommodate a wide range of shapes and
sizes of DNN layers. In other words, the data has to be flexibly
mapped spatially according to the specific shape and size of the
layer, instead of with a set of pre-selected dimensions, in order
to maximize the utilization of the PE array. Also, the data
delivery NoC has to be able to provide high bandwidth when
data reuse is low while still being able to exploit data reuse
with high parallelism when the opportunity presents itself.

B. Challenges for Sparse DNNs

Sparse activations naturally occur in DNNs for several
reasons. One is that many DNNs use the rectified linear
unit (ReLU) as the activation function, which sets negative

values to zero; this sparsity tends to increase in deeper
layers and can go above 90%. Another increasingly impor-
tant reason is that many popular DNNs are in the form
of autoencoders [35]–[37] or generative adversarial net-
works (GAN) [38], which contain decoder layers that use zero
insertion to up-sample the input feature maps, resulting in over
75% zeros.

There has also been a significant amount of work to make
the weights in a DNN sparse. Various metrics are used to
decide which weights to prune (i.e., set to zero), including
saliency [12], magnitude [13], and energy consumption [14].
These pruned networks have weight sparsity of up to 90%.

Sparsity in weights and activations can be translated into
improved energy efficiency and processing speed in two ways:
(1) The MAC computation can be either gated or skipped; the
former reduces energy while the latter reduces both energy and
cycles. (2) The weights and activations can be compressed to
reduce the amount of storage and data movement; the former
reduces energy while the latter reduces both energy and cycles.
However, it is quite challenging to design DNN accelerators
that can actually harness these benefits from sparsity due to
the following reasons:

1) Irregular Accesses Patterns: Computation gating can
effectively translate sparsity in both weights and activations
into energy savings, and its implementation can be realized at
a low cost by recognizing if either the weight or activation is
zero and gating the datapath switching and memory accesses
accordingly. For example, Eyeriss has demonstrated gating for
sparse activations.

To improve throughput in addition to saving energy con-
sumption, it is desirable to skip the cycles of processing MACs
that have zero weights or iacts. However, this requires more
complex read logic as it must find the next non-zero value
to read without wasting cycles reading zeros. A natural way
to address this issue is to keep the weights and iacts in a
compressed format that can indicate the location of the next
non-zero relative to the current one. However, compressed
formats tend to be of variable length and thus must be accessed
sequentially. This makes it difficult to divide up the com-
pressed data for parallel processing across PEs without com-
promising compression efficiency. Furthermore, this presents
a challenge if sparsity in both weights and activation must be
simultaneously recognized, as it is difficult to ‘jump ahead’
(e.g., skip non-zero weights when the corresponding iact is
zero) for many of the most efficient compression formats; the
irregularity introduced by jumping ahead also prevents the use
of pre-fetching as a means of improving throughput. Thus,
the control logic to process the compressed data can be quite
complex and adds overhead to the PEs.

Accordingly, there has been limited hardware in this space.
Cnvlutin [39] only supports skipping cycles for activations
and does not compress the weights, while Cambricon-X [40]
does not keep activations in compressed form. Due to the
complexity of the logic to skip cycles for both weights
and activations, existing hardware for sparse processing is
typically limited to a specific layer type. For instance, EIE
targets fully-connected (FC) layers [41], while SCNN targets
convolutional (CONV) layers [42].

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EYERISS V2: A FLEXIBLE ACCELERATOR FOR EMERGING DNNS ON MOBILE DEVICES 295

2) Workload Imbalance and PE Utilization: With compu-
tation skipping for sparse data, the amount of work to be
performed at each PE now depends on sparsity. Since the
number of non-zero values varies across different layers, data
types, or even regions within the same filter or feature map,
it creates an imbalanced workload across different PEs and
the throughput of the entire DNN accelerator will be bounded
by the PE that has the most non-zero MACs. This leads to a
decrease in PE utilization.

C. Contributions of This Work

To address these challenges, we present Eyeriss v2, a flex-
ible architecture for DNN processing that can adapt to a
wide range of filter shapes and sizes used in compact DNNs
such as MobileNet. This is achieved through the design of
a highly flexible on-chip network (NoC), which is currently
the bottleneck for dealing with a more diverse set of DNNs.
In addition, Eyeriss v2 also supports sparse DNNs by exploit-
ing the sparsity in the weights and activations across a variety
of DNN layers and translates them into improvements in both
energy efficiency and processing speed. Finally, similar to the
original Eyeriss, Eyeriss v2 does not make any assumption
about whether the total storage capacity required by a DNN
layer can fit on-chip or not; instead, it optimizes the way to
tile data of different types to achieve high on-chip reuse and
energy efficiency. In summary, the contributions of this paper
include:

• A novel NoC, called hierarchical mesh, that is designed to
adapt to a wide range of bandwidth requirements. When
data reuse is low, it can provide high bandwidth (via
unicast) from the memory hierarchy to keep the PEs busy;
when data reuse is high, it can still exploit spatial data
reuse (via multicast or broadcast) to achieve high energy
efficiency. For a compact DNN such as MobileNet,
the hierarchical mesh increases the throughput by 5.6×
and energy efficiency by 1.8×. (Section III)

• A PE that exploits the sparsity in weights and activations
to achieve improved throughput and energy efficiency
across a variety of DNN layers. Data is kept in com-
pressed sparse column (CSC) format for both on-chip
processing and off-chip access to reduce storage and data
movement costs. Mapping of the weights to a PE is
performed by taking the sparsity into account to increase
reuse within PE, and can therefore reduce the impact of
workload imbalance. Overall, exploiting sparsity results
in an additional 1.2× and 1.3× improvement in through-
put and energy efficiency, respectively, for MobileNet.
(Section IV)

• A flexible accelerator, Eyeriss v2, that combines the
above contributions to efficiently support both compact
and sparse DNNs. Eyeriss v2 running sparse MobileNet
is 12.6× faster and 2.5× more energy efficient than
the original Eyeriss (scaled to the same number of
PEs and storage capacity as Eyeriss v2), i.e., Eyeriss
v1, running MobileNet (49.2M MACs). Eyeriss v2 is
also 42.5× faster and 11.3× more energy efficient with
sparse AlexNet compared to Eyeriss v1 running AlexNet

Fig. 5. Comparison of the architecture of original Eyeriss and Eyeriss v2.
(a) Original Eyeriss. (b) Eyeriss v2.

Fig. 6. Eyeriss v2 top-level architecture.

(724.4M MACs). Finally, Eyeriss v2 running sparse
MobileNet is 225.1× faster and 42.0 × more energy effi-
cient than Eyeriss v1 running AlexNet. It is evident that
supporting sparse and compact DNNs have a significant
impact on speed and energy consumption. (Section V)

II. ARCHITECTURE OVERVIEW

Fig. 5 shows a comparison between the original Eyeriss [33]
and the Eyeriss v2 architecture. Similar to the original Eyeriss
architecture, Eyeriss v2 is composed of an array of processing
elements (PE), where each PE contains logic to compute
multiply-and-accumulate (MAC) and local scratch pad (SPad)
memory to exploit data reuse, and global buffers (GLB), which
serve an additional level of memory hierarchy between the PEs
and the off-chip DRAM. Therefore, both the original Eyeriss
and Eyeriss v2 have a two-level memory hierarchy. The main
difference is that Eyeriss v2 uses a hierarchical structure,
where the PEs and GLBs are grouped into clusters in order
to support a flexible on-chip network (NoC) that connects the
GLBs to the PEs at low cost; in contrast, the original Eyeriss
used a flat multicast NoC between the GLB and PEs. As with
the original Eyeriss, Eyeriss v2 uses separate NoCs to transfer
each of the three data types, i.e., input activation (iact), weight,
and partial sums (psums), between the GLBs and PEs, with
each NoC tailored for the corresponding dataflow of that data
type. Details of the NoC are described in Section III.

Fig. 6 shows the top-level architecture of Eyeriss v2 and
Table II summarizes the components in the architecture. It con-
sists of 16 PE clusters and 16 GLB clusters arranged in an 8×2
array. Each PE cluster contains 12 PEs arranged in a 3 × 4
array. Each GLB cluster has a capacity of 12 KB and consists

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

296 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

TABLE II

EYERISS V2 ARCHITECTURE HIERARCHY

of SRAMs that are banked for different data types: iacts have
three banks, each of which is 1.5 kB, and psums have four
banks, each of which is 1.875 kB.

A hierarchical NoC is used to connect the PEs and GLBs:
the PE and GLB clusters are connected through 2D mesh
on-chip networks that consist of router clusters. Within each
router cluster, there are 3, 3, and 4 routers for iact, weight
and psum, respectively. Between the PE cluster and the router
cluster, an all-to-all NoC is used to connect all the PEs to
the routers for each data type. Between the GLB cluster and
the router cluster, each router is paired with a specific port
of the GLB cluster, which can read from and write to one
SRAM bank or off-chip I/O. Therefore, data from either
off-chip or a GLB cluster first goes into the router cluster,
and then can be unicast to the local PE cluster, multicast to
PE clusters on the same row or column in the mesh network,
or broadcast to all PE clusters. The decision is based on
the shape and size of the DNN layer and the processing
dataflow. The design motivation and implementation details of
this hierarchical mesh network and the dataflow are described
in Section III.

The data movement through the two-level memory hierarchy
on Eyeriss v2 is as follows:

• iacts are read from off-chip into the GLB cluster,
where they can be stored into the GLB memory or get
passed directly to the router cluster depending on the
configuration.

• psums are always stored in the GLB memory once they
get out of the PE cluster. The final output activations
skip the GLB cluster and go directly off-chip.

• weights are not stored in GLB and get passed to the
router clusters and eventually stored in the SPads in each
PE directly.

Eyeriss v2 adopts the Row-Stationary (RS) dataflow [43] used
in the original Eyeriss, and further explores tiling the MAC
operations spatially across PEs through any layer dimension,
including the channel group dimension (G in Table I). This is
especially important for layers such as the depth-wise (DW)
CONV layers in MobileNet, which lacks the input and out-
put channels that are commonly used for spatial tiling and
therefore greatly improves the array utilization.

Each PE contains multiply-and-accumulate (MAC) data-
paths designed to process 8-bit fixed-point iacts and weights,
which is the commonly accepted bitwidth for inference. Since
many layers receive iacts after ReLU, the iacts can be set to
either signed or unsigned, which further extends the scale of

Fig. 7. Common NoC Designs.

iact representation. Psums are accumulated at 20-bit precision,
which has shown no accuracy impact in our experiments.
When the accumulation is done, the 20-bit psums are con-
verted back to 8-bit output activations and sent off-chip. The
PE contains separate SPads for iact, psum and weights. Details
of the PE architecture are described in Section IV.

Finally, Eyeriss v2 has a two-level control logic similar to
the original Eyeriss. The system-level control coordinates the
off-chip data accesses and data traffic between the GLB and
PEs, and the lower-level control is within each PE and controls
the progress of processing of each PE independently. The chip
can be reconfigured to run the dataflow that maximizes the
energy efficiency and throughput for the processing of each
DNN layer. This includes setting up the specific data traffic
pattern of the NoCs, data accesses to the GLB and SPads, and
workload distribution for each PE. For each layer, a 2134-bit
command that describes the optimized configuration is sent to
the chip and accessed statically throughout the processing of
this layer. Only one layer is processed at a time. When the
processing for a layer is done, the chip is reconfigured for the
processing of the next layer.

III. FLEXIBLE HIERARCHICAL MESH

ON-CHIP NETWORK

One of the key features required to support compact DNNs
is a flexible and efficient on-chip network (NoC). This section
will provide details on the implementation of the NoC in
Eyeriss v2 as well as describe how the NoC is configured
for various use cases.

A. Motivation

The NoC is an indispensable part of modern DNN acceler-
ators, and its design has to take the following factors into
consideration: (1) support processing with high parallelism
by efficiently delivering data between storage and datapaths,
(2) exploit data reuse to reduce the bandwidth requirement
and improve energy efficiency, and (3) can be scaled at a
reasonable implementation cost.

Fig. 7 shows several NoC designs commonly used in DNN
accelerators. Due to the property of DNN that data reuse for
all data types cannot be maximally exploited simultaneously,
a mixture of these NoCs is usually adopted for different data
types. For example, a DNN accelerator can use a 1D horizontal
multicast network to reuse the same weight across PEs in
the same row and a 1D vertical multicast network to reuse
the same iact across PEs in the same column. This setup
will then require an unicast network that gathers the unique
output activations from each PE. This combination, however,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EYERISS V2: A FLEXIBLE ACCELERATOR FOR EMERGING DNNS ON MOBILE DEVICES 297

Fig. 8. (a) High-level structure of the hierarchical mesh network (HM-NoC), and its different operating modes: (b) High bandwidth mode, (c) High reuse
mode, (d) grouped-multicast mode, and (e) interleaved-multicast mode. In each mode, the colored arrows show the routing path; different colors denote the
path for unique data.

implies that each weight needs to have the amount of reuse
with different iacts at least equal to the width of the PE array,
and the number of iact reuse with different weights at least
equal to the height of the PE array. If these conditions are not
fulfilled, the PE array will not be fully utilized, which will
impact both throughput and energy efficiency.

While it was easy to satisfy such conditions with large
DNNs, the rise of compact DNN models has made this design
approach less effective. The key reason is that it is much
more difficult to assume the amount of data reuse or required
data bandwidth for each data type, as it will vary across
layers and DNN models. For example, the lack of input
or output channels in the depth-wise layers of MobileNet
or in the bottleneck layers of ResNet and GoogLeNet has
made it very difficult to efficiently utilize the aforementioned
example well due to its rigid NoC design. In layers such
as fully-connected layers, commonly used in RNNs and
CNNs, it will also require a large batch size to improve
the amount of reuse for weights, which can be challenging
in real-time applications that are sensitive to the processing
latency.

The varying amount of data reuse for each DNN data
type across different layers or models pose a great challenge
to the NoC design. The broadcast network can exploit the
most data reuse, but its low source bandwidth can limit
the throughput when data reuse is low. The unicast network
can provide the most source bandwidth but misses out on
the data reuse opportunity when available. Taking the best
from both worlds, an all-to-all network that connects any
data sources to any destinations can adapt to the varying
amount of data reuse and bandwidth requirements. How-
ever, the cost of its design increases quadratically with the
number of nodes, e.g., PEs, and therefore is difficult to
scale up to the amount of parallelism required for DNN
accelerators.

B. High-Level Concept and Use Cases

To deal with this problem, we propose the hierarchical
mesh network (HM-NoC) in Eyeriss v2 as shown in Fig. 8a.
HM-NoC takes advantage of the all-to-all network, but solves
the scaling problem by creating a two-level hierarchy. The
all-to-all network is limited within the scope of a cluster
at the lower level. In Eyeriss v2, there are only 12 PEs in
each cluster, which effectively reduce the cost of the all-to-all
network. At the top level, the clusters are further connected

with a mesh network. While this example shows a 2×1 mesh,
Eyeriss v2 uses a 8×2 mesh. Scaling up the architecture at the
cluster level with the mesh network is much easier than with
the all-to-all network since the implementation cost increases
linearly instead of quadratically.

Fig 8b to 8e shows how the HM-NoC can be configured into
four different modes depending on the data reuse opportunity
and bandwidth requirements.

• In the high bandwidth mode (Fig. 8b), each GLB bank
or off-chip data I/O can deliver data independently to the
PEs in the cluster, which achieves unicast.

• In the high reuse mode (Fig. 8c), data from the same
source can be routed to all PEs in different clusters, which
achieves broadcast.

• For situations where the data reuse cannot fully utilize the
entire PE array with broadcast, different multicast modes,
specifically grouped-multicast (Fig. 8d) and interleaved-
multicast (Fig. 8e), can be adopted according to the
desired multicast patterns.

Fig. 9 shows several example use cases of how HM-NoC
adapts different modes for different types of layers. For
simplicity, we are only showing a simplified case with 2 PE
clusters with 2 PEs in each cluster, and it omits the NoC for
psums. However, the same principles apply to NoC for all data
types and at larger scales.

• Conventional CONV layers (Fig. 9a): In normal CONV
layers, there is plenty of data reuse for both iacts and
weights. To keep all 4 PEs busy at the lowest bandwidth
requirement, we need 2 iacts and 2 weights from the data
source (ignoring the reuse from SPad). In this case, either
the HM-NoC for iact or weight has to be configured
into the grouped-multicast mode, while the other one
configured into the interleaved-multicast mode.

• Depth-wise (DP) CONV layers (Fig. 9b): For DP CONV
layers, there can be nearly no reuse for iacts due to the
lack of output channels. Therefore, we can only exploit
the reuse of weights by broadcasting the weights to all
PEs while fetching unique iacts for each PE.

• Fully-connected (FC) layers (Fig. 9c): Contrary to the
DP CONV layers, FC layers usually see little reuse
for weights, especially when the batch size is limited.
In this case, the modes of iact and weight NoCs are
swapped from the previous one: the weights are now
unicast to the PEs while the iacts are broadcast to
all PEs.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

298 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Fig. 9. Examples of weight and iact hierarchical mesh networks configured in
different modes for different types of DNN layers: (a) CONV layers; (b) depth-
wise (DW) CONV layers; (c) fully-connected (FC) layers. Green arrows and
blue arrows show the routing paths in the weight and iact NoC, respectively.

C. Implementation Details

To support the various uses cases described in Section III-B,
each of the HM-NoC employs circuit-switched routing, which
mainly consists of muxes and is statically configured by
the configuration bits as described in Section II. Therefore,
the implementation cost of each router is very low. A separate
HM-NoC is implemented for each data type (iact, psum,
and weights) that is tailored for their given dataflow. The
specifications of the routers for each data type are summarized
in Table II. For iacts and weights, each port has a bitwidth
of 24 bits such that it can send and receive three 8b uncom-
pressed iact values or two 12b compressed iact run-data pairs
per cycle. Section IV describes the compression format in
more detail. For psum, each port has a bitwidth of 40-bit to
send and receive two psums per cycle. We will now describe
how the routers, GLB and PEs are connected in the HM-NoC
for each data type.

1) HM-NoC for Input Activations: The HM-NoC imple-
mentation for iacts is shown in Fig. 10. There are three iact
routers per router cluster, one for each iact SRAM bank in
the GLB cluster. Each router for iact has four source ports
(to receive data) and four destination ports (to transmit data).
Three of the source and destination ports are used to receive
and transmit data from the other clusters in the mesh, which
are highlighted with bold arrows in Fig. 10; while a mesh
network typically requires four pairs of source and destination
ports, we only require three pairs since we only have 8 × 2
clusters and thus either the east or west port can be omitted.
The fourth source port connects to the GLB cluster to receive
data either from the memory bank or off-chip, and the fourth
destination port connects to all the V PEs in the cluster. Thanks
to the all-to-all network in the PE cluster, data from any router
can go to any PE in the same cluster.

Fig. 11 shows the implementation details of the mesh
network router for iacts. It has four source (src) and four
destination (dst) ports. In addition to data (d), each port
also has two additional signals, ready (r) and enable (e),
for hand-shaking. Each source port generates four enable
signals (e.g., e00-e03), each for one destination port, based

Fig. 10. Hierarchical mesh network for input activations. This only shows
the top 2 × 2 of the entire 8 × 2 cluster array.

Fig. 11. Implementation details of the mesh network router for input
activations. Routers for the other data types use similar logic but with different
numbers of ports. d, e, r and m are data, enable, ready and routing mode
signals, respectively.

on its own enable signal and the statically configured routing
mode (m). The routing mode can be one of the following:
unicast, horizontal multicast, vertical multicast, or broadcast.
It determines which ports can be enabled for passing data. For
example, in the horizontal multicast mode, ports that connect
to other routers in the vertical direction of the mesh network
will not be enabled. At each destination port, the destination-
specific enable signals from all source ports (e.g., e00-e30 for
destination port 0) go through an OR gate to generate the final
enable output. The ready signal from the destination ports
to the source ports are generated in a similar fashion with
the difference that the source-specific ready signals (e.g., r00-
r03 for source port 0) go through an AND gate to generated
the final ready output at each source port. The output data
from all source ports (d0-d3) is MUXed at each destination
port, and is chosen based on the enable signals from the

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EYERISS V2: A FLEXIBLE ACCELERATOR FOR EMERGING DNNS ON MOBILE DEVICES 299

Fig. 12. Hierarchical mesh network for weights. This only shows the top
2 × 2 of the entire 8 × 2 cluster array.

source ports, i.e., the data from the enabled source port will
be passed through.

2) HM-NoC for Weights: The HM-NoC implementation for
weights is shown Fig. 12. There are three weight routers
per router cluster, one for each row of PEs within a cluster.
Since Eyeriss v2 uses the RS dataflow, a significant amount
of weight reuse can be exploited using the SPad within the
PE, and only spatial reuse across horizontal PEs needs to
be further exploited. Therefore, the implementation of the
NoC for the weights can be simplified at both levels of
the HM-NoC to reduce cost but still satisfy the flexibility
requirements. Specifically, the vertical connections of the 2D
mesh between the clusters can be removed. Furthermore,
within each cluster, each router only needs to connect to one
row of PEs. Accordingly, each weight router has two source
ports and two destination ports. A source port and a destination
port are used to receive and transmit weights coming from
neighboring cluster; again, we only need one pair of ports here
since we only have 8 × 2 clusters and thus either the east or
west port can be omitted. The second source port connects to
the GLB cluster to receive data from off-chip, while the second
destination port connects to one row of PEs within the cluster.
The implementation of the mesh network router for weights
is similar to that in Fig. 11.

3) HM-NoC for Partial Sums: The HM-NoC implementa-
tion for psums is shown in Fig. 13. There are four psum routers
per router cluster, one for each psum SRAM bank in the GLB
cluster or, equivalently, one for each column of PEs within a
cluster. Similar to the weight NoC, the psum NoC is simplified
for its given dataflow; specifically, the psums are only allowed
to be accumulated across PEs in the vertical direction. This
is due to the fact that, in the row-stationary dataflow,
weights are reused across PEs horizontally, which makes it
impossible to accumulate psums across PEs horizontally. Thus,
the horizontal connections of the 2D mesh between the clusters
can be removed since psums won’t be passed horizontally.
Within each cluster, the PEs are vertically connected and each
router in the cluster only needs to transmit the psum from
the psum bank in the GLB cluster to the bottom of each PE

Fig. 13. Hierarchical mesh network for psums. This only shows the a 2 × 2
portion of the entire 8 × 2 cluster array.

column, and receive the updated psum from the top of the same
PE column. Accordingly, each psum router has three source
ports and three destination ports. One of the source ports
is used to receive data from the neighboring router cluster
to the north, while one of the destination ports is used to
transmit data to the neighboring router cluster to the south.
The second pair of source and destination ports are assigned
to the psum bank in the GLB, while the third destination
port is assigned to the bottom PE in a column of the PE
cluster and the third source port is assigned to the top PE in
a column of the PE cluster.

D. Scalability

A key design focus of the HM-NoC is to enable strong
scaling for Eyeriss v2. In other words, as the architecture
scales with more PEs, the performance, i.e., throughput, should
scale accordingly for the same problem size. Performance,
however, is a function of many factors, including the dataflow,
NoC design, available on-chip and off-chip data delivery
bandwidth, etc. To examine the impact of the HM-NoC,
we will assume no limitation on the off-chip bandwidth and
no workload imbalance (i.e., no sparsity) in the following
scalability experiments.

We profile the performance of Eyeriss v2 at three different
scales: 256 PEs, 1024 PEs, and 16384 PEs, where each PE
is capable of processing at 1 MAC/cycle. The PE cluster
for all scales has a fixed array size of 4 × 4 PEs, and the
number of PE clusters scales at 4 × 4, 8 × 8, and 32 × 32. For
comparison, we also examine the scalability of the original
Eyeriss, i.e., Eyeriss v1, at the same set of scales. For Eyeriss
v1, the PEs are arranged in square arrays, i.e., 16×16, 32×32,
and 128×128. Both versions of Eyeriss use the row-stationary
dataflow. For rapid evaluation of architectures at large scales,
we have built an analytical model that can search for the
operation mappings with the best performance at different
scales considering the data distribution and bandwidth lim-
itations of different NoC designs in the two versions of
Eyeriss.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

300 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Fig. 14. Normalized performance of (a) Eyeriss v2 and (b) Eyeriss v1 running
AlexNet, GoogLeNet, and MobileNet with a batch size of 1 at three different
scales. Note that the MobileNet model has a width multiplier of 1.0 and an
input size of 224 × 224, which is different from the MobileNet benchmarked
in Section V.

Fig. 14a and 14b show the normalized performance
of Eyeriss v2 and Eyeriss v1, respectively, running three
DNNs: AlexNet, GoogLeNet, and MobileNet (with width
multiplier of 1.0 and input size of 224 × 224)1 at the three
different scales with a batch size of 1. For all three DNNs,
the performance of Eyeriss v2 scales linearly from 256 to
1024 PEs, and achieves more than 85% of the linearly scaled
performance at 16384 PEs. In contrast, the performance of
Eyeriss v1 hardly improves when scaled up. This is due to
the insufficient bandwidth provided by the broadcast NoC
in Eyeriss v1 as discussed in Section III-A. For example,
the performance of the FC layers in AlexNet and depth-wise
layers in MobileNet do not see any improvement going from
256 PEs to 16384 PEs in Eyeriss v1 due to the insufficient
NoC bandwidth for delivering weights and input activation,
respectively, to the PEs. The HM-NoC in Eyeriss v2, how-
ever, is capable of adapting to the bandwidth requirements,
therefore achieving higher performance at large scales. The
HM-NoC is doing so while still being able to exploit available
data reuse to achieve high energy efficiency, which will be
demonstrated in Section V-A and V-B. Also note that, at large
scales, the external data bandwidth will eventually become
the performance bottleneck, and it will require more efforts
to integrate the accelerator into the system to harness its full
potential.

The implementation of the HM-NoC described in
Section III-C targets the size of 8 × 2 PE clusters, and will
require modifications when scaled up. Specifically, the mesh
routers for input activations and weights need an extra pair of
source and destination ports in order to handle data delivery
for more than two columns of PE clusters. As the area and
energy cost of the router grows with the number of ports,
the overall cost will increase. However, the same routers can
then be used for any architectural scales. Also, as will be
shown in Section V, the entire NoC only accounts for less than
3% of the area and 6%-10% of the total energy consumption.
The additional complexity in the routers is unlikely to add
significant cost. In addition, the proportion of cost of different
components will stay roughly constant as the system scales
thanks to the design of the hierarchical mesh network.

1The large MobileNet model used here is not used for performance and
energy efficiency benchmarking in Section V since the post-place-and-route
simulation turn-around time is not practical; the smaller MobileNet model
also has the same accuracy as AlexNet, which makes it a better comparison.

Fig. 15. Processing in the PE.

IV. SPARSE PROCESSING WITH SIMD SUPPORT

In the original Eyeriss, sparsity of input activations (iacts),
i.e., zeros, is exploited to improve energy efficiency by gating
the switching of logic and data accesses. In Eyeriss v2,
we want to exploit sparsity further in both weights and iacts
and improve not only energy efficiency but also throughput.
Whereas the original Eyeriss only used compression between
the GLB and off-chip DRAM, in Eyeriss v2, we keep the
data in compressed form all the way to the PE. Processing
in the compressed domain provides benefits in terms of
reducing on-chip bandwidth requirements as well as on-chip
storage, which can result in energy savings and throughput
improvements. However, as compressed data often has variable
length, this presents challenges in terms of how to manipulate
the data (e.g., distributing data across PEs, and sliding window
processing within the PE). In this section, we will introduce a
new PE architecture that can process sparse data in the com-
pressed domain for higher throughput. We will also introduce
support for SIMD in the PE such that each PE can process
two MACs per cycle.

A. Sparse PE Architecture

Fig. 15 illustrates how the PE processes uncompressed
weights and iacts in the original Eyeriss, where M0 and C0
are the output and input channels processed within the PE, S
is the filter width, and U is the stride. Recall that for the
row-stationary dataflow, multiple 1-D rows of weights and
iact are mapped to a given PE and processed in a sliding
window fashion; here, the C0 × M0 rows of weights with
width S are assigned to the PE, and the weights belong to M0
output channels and C0 input channels. For each iact, the PE
runs through M0 MAC operations sequentially in consecutive
cycles with the corresponding column of M0 weights in the
weight matrix, and accumulates to M0 partial sums (psums).
By going through a window of C0 × S iacts in the stream,
the processing goes through all M0 × C0 × S weights in the
matrix and accumulates to the same M0 psums. It then slides
to the next window in the iact stream by replacing C0 × U
iacts at the front of the window with new ones, and repeats
the processing with the same weight matrix but accumulates to
another set of psums. Note that the access pattern of weights
goes through the entire weight matrix once sequentially in a
column-major fashion for each window of iacts.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EYERISS V2: A FLEXIBLE ACCELERATOR FOR EMERGING DNNS ON MOBILE DEVICES 301

To speed up the processing when the iacts and/or weights
are sparse, the goal is to read only the non-zero data in the
iact stream and the weight matrix for processing. In addition,
we only want to perform the read when both iact and weights
are non-zero. The challenge, however, is to correctly and
efficiently address data for all three data types. For example,
when jumping between non-zero iacts in a window, the access
pattern of weights does not go through the weight matrix
sequentially anymore. Instead, additional logic is required to
fetch the corresponding column of weights for the non-zero
iact, which is not deterministic. Similarly, when jumping
between non-zero weights in a weight column, it also has to
calculate the address of the corresponding psum instead of
just incrementing the address by one. Since the access order
is also not deterministic, prefetching from the weight SPad is
very challenging.

In order to achieve the processing of sparse data as described
above, we take advantage of the compressed sparse col-
umn (CSC) compression format similar to what is described
in [41], [44]. For each non-zero value in the data, the CSC
format records a count value that indicates the number of
leading zeros from the previous non-zero value in the uncom-
pressed data stream; this is similar to the run length in run
length coding (RLC). The count value can then be used to
calculate the address change between the non-zero data. The
added advantage of CSC over RLC is that it has an additional
address value that allows the data to be broken into segments
(e.g., columns) for easy handling, which we will discuss next;
this, of course, also adds overhead in the compression.

Both the iact and weights are encoded in the CSC format.
For iacts, the data stream is divided into non-overlapping C0×
U segments, and each segment is CSC encoded separately.
Doing so enables sliding window processing, which replaces
a segment of data with a new one from the stream when the
window slides. Since the data length of each segment will be
different after CSC coding, additional information is needed
to address each encoded segment. Therefore, for each encoded
segment, an address value is also recorded in the CSC format
that indicates the start address of the encoded segment in the
entire encoded stream. The filter weights are also encoded with
CSC compression by dividing each column of M0 weights as
a segment and encoding each segment separately. This helps
enable fast access of each column of non-zero weights.

Fig. 16 shows an example of CSC compressed weights.
The characters in the weight matrix indicate the locations
of non-zero values. To read the non-zero weights from a
specific column, e.g., column 1 (assuming indexing starts
from 0), the PE first reads address[1] and address[2] from
the address vector in the CSC compressed weights, which
gives the inclusive lower bound and non-inclusive upper bound
of the addresses, i.e., 2 and 5, respectively, for reading the
data and count vector. The first address (in this example,
address[1]) is the location of the first non-zero weight in each
column, highlighted in bold in Fig. 16, within the data vector;
it then goes through the three non-zero weights in the column,
i.e., c, d and e, to perform the computation. If there is no
non-zero weight in a column, the location of the next first
non-zero value is repeated (e.g., since there are no non-zero

Fig. 16. Example of compressing sparse weights with compressed sparse
column (CSC) coding. The first non-zero weight in each column is highlighted
in bold; the address vector points to the location of these weights within
the data vector. If there are no non-zero weights in a column next location
is repeated (e.g., repeated 6 in address vector reflects the all zero column
between f and g).

values in column 3, the value 6 which is the location of g,
is repeated such that the difference in consecutive address
values is zero, which reflects the all zero column.). At the
same time, the corresponding addresses of the psums to update
can be calculated by accumulating the counts from the count
vector.

In the CSC format, the count vector is an overhead in
addition to the non-zero data. If the bitwidth of the count is
low, it may affect the compression efficiency when sparsity
is high since the number of consecutive zeros can exceed
the maximum count. If the count bitwidth is high, however,
the overhead of the count vector becomes more significant.
From our experiments, setting each count at 4b yields the
best compression rate for the 8b iact and weights. Therefore,
each count-data pair is 12b and is stored in a 12b word of
the data SPad for both iact and weight. This is similar to
setting the run-length in the RLC, where 5b was allocated to
the run-length in [33].

In summary, both the weights and iacts can be processed
directly in the CSC format. The processing can skip the zeros
entirely without spending extra cycles, thus improving the
processing throughput as well as energy efficiency.

Fig. 17 shows the block diagram of the sparse PE that
can perform the processing of CSC encoded iacts and weights
directly as described above. Processing only non-zero data
in the compressed format introduces read dependencies. For
the compressed format, the address must be read before the
data-count pair. To ensure only non-zero values are read, iact
is read before the weight such that a non-zero weight is only
read when the corresponding iact is non-zero. To handle these
dependencies while still maintaining throughput, the PE is
implemented using seven pipeline stages and five SPads. The
first two pipeline stages are responsible for fetching non-zero
iacts from the SPads. The iact address SPad stores the address
vector of the CSC compressed iacts, which is used to address
the reads from the iact data SPad that holds the non-zero data
vector as well as the count vector. After a non-zero iact is
fetched, the next three pipeline stages read the corresponding
weights. Similarly, there is a weight address SPad to address
the reads from the weight data SPad for the correct column
of weights. The final two stages in the pipeline perform the
MAC computation on the fetched non-zero iact and weight,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

302 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Fig. 17. Eyeriss v2 PE Architecture. The address SPad for both iact and
weight are used to store addr vector in the CSC compressed data, while the
data SPad stores the data and count vectors. The text in red denote changes
for SIMD (Section IV-B).

and then send the updated psum either back to the psum SPad
or out of the PE.

Since either iact and weight can be zero or non-zero, there
are three possible scenarios:

• If the iact is zero, the CSC format will ensure that it is not
read from the spad and therefore no cycles are wasted.

• If the iact is not zero, its value will be fetched from the
iact data SPad and passed to the next pipeline stage.

– If there are non-zero weights corresponding to the
non-zero iacts, they will be passed down the pipeline
for computation. The zero weights will be skipped
since the weights are also encoded with the CSC
format.

– If there are no non-zero weights corresponding to the
non-zero iacts, the non-zero iacts will not be further
passed down in the pipeline. This may not necessar-
ily introduce bubbles in the pipeline since the later
stages, i.e., after the weight data Spad stage, can still
be working on the computation for the previous non-
zero iact if it has multiple corresponding weights.

In the Eyeriss v2 PE, the sizes of the iact address and data
SPads are 9 × 4b and 16 × 12b, respectively, which allow
for a maximum iact window size of 16. The sizes of the
weight address and data SPads are 16 × 7b and 96 × 24b,
respectively. This allows for a maximum weight matrix size
of 96 × (24b/12b) = 192. The size of the psum SPad is
32 × 20b, and allows for a maximum weight matrix height
of 32 (i.e., maximum number of output channels M0). If we
fully utilize the iact SPads and psum SPad, it will require a
weight matrix size of 32 × 16 = 512, which is larger than the
limit of 192; however, the sparse PE design takes advantage
of the fact that the sparse pattern of weights is known at
compile time; therefore, it is possible to guarantee that the
compressed weights will fit in a smaller SPad. Table III shows
how many weights are stored in the SPad of each PE for
sparse AlexNet. While in most layers the nominal number of
weights is higher than 192, the number of non-zero weights
after compression in the worst case is smaller and fits in the
SPad for processing. By mapping more non-zero weights into
each PE instead of mapping based on the nominal number
of weights, more operations are performed in a PE, which
statistically helps to reduce the amount of workload imbalance
caused by the sparsity.

TABLE III

DISTRIBUTION OF WEIGHTS IN SPARSE ALEXNET TO THE SPAD
IN EACH PE OF EYERISS V2

Since the degree of sparsity varies across different DNNs
and data types, the PE is also designed to adapt to the scenarios
when sparsity is low. In such cases, the PE can directly
take in uncompressed iacts and weights instead of the CSC
compressed versions to reduce the overhead in data traffic.
Both iact and weight address SPads are not used and therefore
clock-gated to save energy consumption, and the count in the
CSC format is fixed to zero to address the data SPads correctly
for processing.

B. SIMD Support in PE

Profiling results of the PE implementation shows that the
area and energy consumption of the MAC unit is insignificant
compared to other components in a PE. In Eyeriss, for
example, the MAC unit takes less than 5% of the PE area,
and only consumes 2%–9% of the PE power. This motivates
the exploration of SIMD processing in a PE in order to achieve
speedup of at most two times.

SIMD is applied to the PE architecture as shown in Fig. 17
by fetching two weights instead of one for computing two
MAC operations per cycle with the same iact, i.e., a SIMD
width of two. The changes are noted in the red text in the
figure. SIMD processing not only improves the throughput but
also further reduces the number of iact reads from the SPad.
In terms of architectural changes, SIMD requires the word
width of the weight data SPad to be two-word wide, which
is why the size of the weight data SPad is 96 × 24b instead
of 192 × 12b. The psum SPad also has to have two read and
two write ports for updating two psums per cycle. In the case
where only an odd number of non-zero weights exist in the
column of M0 weights, the second 12b of the last 24b word
in a column of non-zero weights is filled with zero. When
the PE logic encounters the all-zero count-data pair, it clock-
gates the second MAC datapaths as well as the read and write
of the second ports in the psum SPad to avoid unnecessary
switching, which reduces power consumption.

V. IMPLEMENTATION RESULTS

Eyeriss v2 was implemented in a 65nm CMOS process and
the specifications of the design are summarized in Table IV.
The design was placed-and-routed and the results reported
in this section are from post-layout cycle-accurate gate-level
simulations with (1) technology library from the worst PVT
corner, (2) switching activities profiled from running the

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EYERISS V2: A FLEXIBLE ACCELERATOR FOR EMERGING DNNS ON MOBILE DEVICES 303

TABLE IV

EYERISS V2 SPECIFICATIONS

Fig. 18. Eyeriss v2 area breakdown. (a) Overall Area Breakdown. (b) PE
Area Breakdown.

actual weights of the DNNs and data from the ImageNet
dataset [1], and (3) a batch size of one, which represents a
more challenging setup for energy efficiency and throughput,
but captures the low latency use case.

The overall gate count of Eyeriss v2, excluding SRAMs,
is approximately 2695k NAND-2 gates. The area breakdown
(Fig. 18) shows that the 192 PEs dominates the area cost,
while the area of the hierarchical mesh networks of all data
types combined only account for 2.6% of the area. This result
proves that it is possible to build in high flexibility at a low
cost. Within each PE, all of the SPads combined account for
around 72% of the area, while the two MAC units only account
for 5%.

A. Performance Analysis

To demonstrate the throughput and energy efficiency
improvements brought on by the hierarchical mesh network
and sparse PE architecture, we have implemented three dif-
ferent variants of Eyeriss: v1, v1.5, and v2. Table V lists
the key differences between these Eyeriss variants. For the
PE architecture, Dense means the PE can only clock-gate the
cycles with zero data but not skip it, while Sparse means
the PE can further skip the processing cycles with zero data.
Eyeriss v1 is the same design as the original Eyeriss [33], but
with the storage capacity, number of PEs and data precision
scaled to the same level as v1.5 and v2 for a fair comparison.
In short, the comparison between v1 and v1.5 shows the
impact of the hierarchical mesh network, while the comparison
between v1.5 and v2 shows the impact of the sparse PE
architecture along with the support for SIMD processing.
These architectures are placed-and-routed and benchmarked
with four DNNs that have the same accuracy on the ImageNet

TABLE V

KEY DIFFERENCES BETWEEN THE THREE EYERISS VARIANTS.
THE AREA IS LOGIC ONLY

dataset: AlexNet [25], MobileNet (with a width multiplier
of 0.5 and input size of 128×128) [10], and the sparse version
of them as pruned by the method introduced in [14]. In this
section, unless otherwise specified, AlexNet and MobileNet
are referring to the dense model.

The implementation shows that Eyeriss v2 has an area
increase of around two times compared to the other versions.
The increase in mostly in the PE, which is 73% larger than
the original one. The main reason is due to the need to
support sparse processing, which requires deeper pipelining
in the control logic and additional SPads to store the CSC
compressed data. This contributes to a nearly 50% increase in
area. Supporting SIMD also contributes to an additional 15%
area increase due to the two sets of read and write ports for the
psum SPad and the wider bus-width of the PE I/O in addition
to the doubling of MAC units.

1) AlexNet: Fig. 19a shows the throughput improvements
of different versions of Eyeriss on AlexNet over Eyeriss v1.
Results on sparse AlexNet are also included (yellow bars)
along with a breakdown of the processing latency across the
different layers shown in Fig. 20. For AlexNet, the result
shows that Eyeriss v1.5 significantly speeds up FC layers.
This is because the throughput of FC layers is bandwidth-
limited in Eyeriss v1, which is addressed by the hierarchical
mesh network in Eyeriss v1.5. Eyeriss v2, on the contrary,
significantly speeds up the CONV layers over Eyeriss v1.5 due
to the increased number of multipliers and sparsity in the
activations. However, the throughput of the FC layers only
shows a marginal improvement because the FC layers are still
bandwidth-limited even with the hierarchical mesh network.
Therefore, speeding up the processing with sparsity and SIMD
does not improve the throughput of FC layers as significantly
as in CONV layers.

The full potential of Eyeriss v2, however, is fully revealed
when coupled with sparse AlexNet. The bandwidth require-
ment of weights is lower in sparse AlexNet since it is very
sparse, and the CSC compression can effectively reduce the
data traffic. As a result, exploiting sparsity becomes more
effective. Overall, Eyeriss v2 achieves 42.5× speedup with
sparse AlexNet over Eyeriss v1 with AlexNet.

Fig. 19b shows the improvement on energy efficiency.
It largely correlates to the speedup in Fig. 19a since the higher
overall utilization of the PEs reduces the proportion of the
static power consumption, e.g., clock network. Overall, Eyeriss
v2 with sparse AlexNet is 11.3× more energy efficient than
Eyeriss v1 with AlexNet.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

304 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Fig. 19. (a) Speedup and (b) energy efficiency improvement of different versions of Eyeriss over Eyeriss v1 benchmarked with AlexNet.

Fig. 20. Breakdown of processing latency across the different layers of sparse
AlexNet running on Eyeriss v2.

2) MobileNet (Width Multiplier of 0.5, Input Size of 128 ×
128): Fig. 21a and 21b show the improvement on throughput
and energy efficiency, respectively, of different versions of
Eyeriss on selected layers of MobileNet over Eyeriss v1.
Results on sparse MobileNet are also included (yellow bars).
The lack of data reuse in MobileNet results in low throughput
on Eyeriss v1 due to the low-bandwidth NoC, which is
why Eyeriss v1.5 can achieve a significant speedup over v1.
However, the speedup of Eyeriss v2 over v1.5 is a mixed bag.
While layers such as CONV1 and the point-wise (PW) layers
can still take advantage of the sparsity in input activations
to improve the throughput, the throughput of the Depth-
wise (DW) CONV layers becomes worse. This is because the
CSC compression does not create skippable cycles when the
number of input and output channels are both one. Therefore,
the sparse PE in Eyeriss v2 does not bring any advantage over
the dense PE in Eyeriss v1.5. Furthermore, the deeper pipeline
of the sparse PE actually makes the throughput slightly worse
in the DW CONV layers.

Sparse MobileNet brings additional benefits on throughput
and energy efficiency on Eyeriss v2; however, the improve-
ment is not as significant as with the sparse AlexNet, since
the CSC compression is less effective on sparse MobileNet
than on sparse AlexNet due to its small layer sizes. Overall,
Eyeriss v2 with sparse MobileNet is 12.6× faster and 2.5×
more energy efficient than Eyeriss v1 with MobileNet.

B. Benchmark Results

Table VI summarizes the throughput and energy efficiency
of Eyeriss v2 benchmarked with four DNNs that have com-
parable accuracy at a batch size of one. Although Eyeriss
v2 achieves the highest GOPS/W2 with sparse AlexNet, it con-
sumes the least amount of time and energy per inference

2In this paper, we calculate GOPS based on the nominal number of
operations in the DNN, i.e., including operations with data values of zero.

with the sparse MobileNet. This result echoes the trend of
DNN development going toward compact models that are
more lightweight but also have less reuse for the hardware to
explore, which makes it harder to reduce GOPS/W but can still
improve inference/J. Also, Eyeriss v2 achieves 12.6× higher
inference/sec for MobileNet than AlexNet, which correlates
well to the 14.7× reduction in the nominal number of MACs.
This proves that the design has high flexibility to perform well
for compact DNN models.

Fig. 22 shows the normalized power breakdown of Eyeriss
v2 running a variety of DNN layers. We pick a representative
set of layers to show how the different characteristics of the
DNN layers impact the hardware. Note that these layers have
different energy consumption and efficiency. The results are
summarized as follows:

• CONV1 of AlexNet (148.1 GOPS/W) shows the case of
no sparsity in both activations and weights. Compared
to other layers, the high utilization of the PEs makes
the proportion of the clock network power consumption
low. It also has the highest proportion of MAC power
consumption.

• CONV3 of sparse AlexNet (1423.2 GOPS/W) has the
highest amount of sparsity in all layers we have tested.
Compared to CONV3 of AlexNet (392.0 GOPS/W),
the proportions of the clock network, HM-NoC and
GLB power consumption are higher. This is mainly due
to the workload imbalance induced by sparsity, which
lowers the utilization of the active PEs. However, judging
from the large proportion of the SPad and MAC power
consumption compared to other components such as PE
control logic, the PE is still kept fairly busy and data
reuse is effectively exploited by the SPads.

• CONV13 DW layer of MobileNet (77.7 GOPS/W) has
the lowest GOPS/W among all the layers we have tested.
As expected, most of the energy is spent on the clock
network. Inside the PE, the lack of reuse and not being
able to utilize SIMD also hurt the energy efficiency, which
is evident by the fact that most of the energy is spent in
the control logic instead of the SPads or MACs.

• FC8 of sparse AlexNet (465.1 GOPS/W) shows the case
of high sparsity and low data reuse. This combina-
tion makes the architecture more bandwidth-limited, and
therefore the utilization of active PEs becomes low. That
is why this layer has the highest proportion of power
consumed by the clock network. The lack of reuse also
makes the proportion of the SPad power consumption low

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EYERISS V2: A FLEXIBLE ACCELERATOR FOR EMERGING DNNS ON MOBILE DEVICES 305

Fig. 21. (a) Speedup and (b) energy efficiency improvement of different versions of Eyeriss over Eyeriss v1 benchmarked with MobileNet. Due to the large
number of layers, only a few representative layers are presented.

TABLE VI

THROUGHPUT AND ENERGY EFFICIENCY OF EYERISS V2 BENCHMARKED WITH FOUR DNNS THAT HAVE COMPARABLE ACCURACY AND A BATCH

SIZE OF 1. NOTE THAT THE MOBILENET USED FOR BENCHMARK HAS A WIDTH MULTIPLIER OF 0.5 AND AN INPUT SIZE OF 128 × 128

Fig. 22. Eyeriss v2 power breakdown running different DNN layers.

and the NoC power consumption high. However, thanks
to sparsity, the overall energy efficiency of this layer is
still better than CONV1 of AlexNet.

In terms of external DRAM accesses, AlexNet requires
much more data than MobileNet as shown in Table VI, which
is mainly due to the large amount of weights in the fully-
connected layers. For CONV layers only, the required DRAM
accesses are 7.1 MB and 4.6 MB for AlexNet and sparse
AlexNet, respectively. Note that Eyeriss v2 does not perform
the pooling layers on-chip, and the required DRAM accesses
will further decrease if pooling layers are processed on-chip.
We have also profiled the impact of a limited peak external
bandwidth on the performance. With an aggregated external
read and write bandwidth of 25600 MB/s, which is at the level
of DDR4-3200, the throughput of Eyeriss v2 running sparse
AlexNet and sparse MobileNet will decrease by 16% and 24%,
respectively, due to the bursty external data access patterns.
However, we believe that additional on-chip buffering can
alleviate the performance degradation, which we will leave for
future endeavors. This result also confirms that, with efficient
hardware that can maximize utilization even when data reuse
is low, DNNs that do not have enough data reuse to exploit

will put more pressure on the external data bandwidth, which
should be addressed in the design of future DNN models.

C. Comparison With Prior Art

Table VII shows the comparison between Eyeriss v2 and
the state-of-the-art prior art. Eyeriss v2 is the first one to
report benchmark results on both large DNNs, e.g., AlexNet,
and compact DNNs, e.g., MobileNet. For AlexNet, Eyeriss
v2 still achieves comparable throughput and slightly less
energy efficiency compared to other works that are tailored
for the large models. This result is achieved with a batch size
of one (while other results use larger batch sizes), and the
overhead associated with its additional flexibility to handle
the drastically different layer shapes in the compact models.
We report results for Eyeriss v2 on a sparse network which is
a widely used approach for large DNN models, particularly
on mobile devices; unfortunately, the available results for
the other works are only on AlexNet. We would expect
the sparse AlexNet to potentially provide additional energy
efficiency improvements on those works, but not throughput
improvements.

For MobileNet, Eyeriss v2 achieves 5.3× throughput
improvement and 3.9× energy improvement over AlexNet,
with the same accuracy. Although the other designs do not
report results for MobileNet, our understanding of those
designs leads us to believe that they would not achieve compa-
rable improvements, similar to the original Eyeriss, due to the
NoC limitations as well as additional mapping inefficiencies of
the dataflow. However, we conjecture that the NoC limitations
can be addressed by the proposed HM-NoC.

D. Discussion

Eyeriss v2 focuses its design on improving the throughput
and energy efficiency for compact and sparse DNN models,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

306 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

TABLE VII

COMPARISON WITH STATE-OF-THE-ART DESIGNS. FOR EYERISS V2, THE THROUGHPUT AND ENERGY EFFICIENCY ARE BENCHMARKED
ON THE SPARSE VERSION OF ALEXNET AND MOBILENET

which is very different from the direction taken in many of
the state-of-the-art previous works. With a similar amount
of resources, i.e., area, Eyeriss v2 has much fewer number
of MACs. However, with the flexibility of the on-chip net-
work and the sparse processing logic that effectively improve
throughput based on the sparsity of the data, Eyeriss v2 still
achieves comparable throughput and energy efficiency for
large DNNs against the state-of-the-art that optimizes directly
for them. Furthermore, Eyeriss v2 shows a significant through-
put and energy efficiency improvement on sparse MobileNet
against Eyeriss v1 as shown in Section V-A.

Supporting sparse processing is a challenging task from
an architecture design point of view. First of all, the PE
design complexity and cost becomes much higher due to the
additional required logic and storage. This has resulted in a
significant increase in area as shown in Table V. In addition,
it makes the support for high SIMD width processing difficult
because of the workload imbalance and the high cost in the
SPad due to the non-deterministic access patterns. Eyeriss
v2, however, still demonstrates a design that can effectively
translate the sparsity to significant throughput and energy
efficiency improvement as compared to Eyeriss v1.

It is worth noting that the flexibility provided by the
hierarchical mesh network and the throughput boost from the
sparse processing logic can be applied separately. Therefore,
if sparse networks are not the target workload, the flexible NoC
can still be used in conjunction with other techniques such
as lower precision and higher parallelism to achieve higher
throughput and energy efficiency.

VI. CONCLUSION

DNNs are rapidly evolving due to the significant amount
of research in the field; however, the current direction of
DNN development also brings new challenges to the design
of DNN accelerators due to the widely varying layer shapes in
compact DNNs and the varying data sparsity in sparse DNNs.
In this work, we propose a new DNN accelerator architec-
ture, called Eyeriss v2, that addresses these challenges. First,
the varying layer shapes makes the on-chip network (NoC)
the performance bottleneck since conventional NoC design

poses strong assumptions on the amount of data reuse and
required data bandwidth for each data type, which is too rigid
to adapt. We solve this problem by introducing the hierarchical
mesh network (HM-NoC). HM-NoC can be configured into
different modes that can deliver from high bandwidth to high
data reuse. More importantly, its implementation cost is also
minimized through the hierarchical design that limit the costly
all-to-all communication within local clusters as well as the
circuit-switched routing. This helps to bring over an order of
magnitude speedup for processing MobileNet compared to the
original Eyeriss, i.e., Eyeriss v1, scaled to the same number of
multipliers and storage capacity as Eyeriss v2. Furthermore,
Eyeriss v2 incorporates a new PE architecture that support
processing sparse weights and input activations directly in
compressed domain to improve not only energy efficiency but
also throughput. It also adds SIMD support so that each PE
can process 2 MACs per cycles. Overall, Eyeriss v2 achieves
42.5× and 11.3× improvement in throughput and energy
efficiency, respectively, with sparse AlexNet compared to
Eyeriss v1 running AlexNet; it also achieves 12.6× and 2.5×
improvement in throughput and energy efficiency, respec-
tively, with sparse MobileNet compared to Eyeriss v1 running
MobileNet.

REFERENCES

[1] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252,
Dec. 2015.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[3] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in Proc.
NIPS, 2015, pp. 3123–3131.

[4] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. ECCV, 2016, pp. 525–542.

[5] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong,
“LogNet: Energy-efficient neural networks using logarithmic computa-
tion,” in Proc. ICASSP, Mar. 2017, pp. 5900–5904.

[6] F. Li and B. Liu, “Ternary weight networks,” in Proc. NIPS Workshop
Efficient Methods Deep Neural Netw., 2016.

[7] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, “Energy-
efficient ConvNets through approximate computing,” in Proc. WACV,
Mar. 2016, pp. 1–8.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EYERISS V2: A FLEXIBLE ACCELERATOR FOR EMERGING DNNS ON MOBILE DEVICES 307

[8] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, N. E. Jerger,
and A. Moshovos, “Proteus: Exploiting numerical precision variability
in deep neural networks,” in Proc. Int. Conf. Supercomput., 2016,
Art. no. 23.

[9] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
CVPR, Jun. 2015, pp. 1–9.

[10] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” CoRR, Apr. 2017.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer. (2016). “SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5 MB model size.” [Online]. Available: https://
arxiv.org/abs/1602.07360

[12] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Proc. NIPS, 1990, pp. 598–605.

[13] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[14] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proc. CVPR,
Jul. 2017, pp. 6071–6079.

[15] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 envi-
sion: A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-
accuracy-frequency-scalable convolutional neural network processor in
28 nm FDSOI,” in ISSCC Dig. Tech. Papers, San Francisco, CA, USA,
Feb. 2017, pp. 246–247.

[16] S. Yin et al., “A 1.06-to-5.09 TOPS/W reconfigurable hybrid-neural-
network processor for deep learning applications,” in Proc. Symp. VLSI
Circuits, Jun. 2017, pp. C26–C27.

[17] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
A 50.6 TOPS/W unified deep neural network accelerator with 1b-to-
16b fully-variable weight bit-precision,” in ISSCC Dig. Tech. Papers,
San Francisco, CA, USA, Feb. 2018, pp. 218–220.

[18] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom:
Exploiting weight and activation precisions to accelerate convolutional
neural networks,” in Proc. 55th Annu. Design Automat. Conf., 2018,
pp. 20:1–20:6.

[19] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Oct. 2016, pp. 19:1–19:12.

[20] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An ultra-
low power convolutional neural network accelerator based on binary
weights,” in Proc. ISVLSI, Jul. 2016, pp. 236–241.

[21] K. Ando et al., “BRein memory: A 13-layer 4.2 K neuron/0.8 M
synapse binary/ternary reconfigurable in-memory deep neural network
accelerator in 65 nm CMOS,” in Proc. Symp. VLSI Circuits, Jun. 2017,
pp. C24–C25.

[22] Z. Jiang, S. Yin, M. Seok, and J.-S. Seo, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” in
Proc. IEEE Symp. VLSI Technol., Jun. 2018, pp. 173–174.

[23] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An always-on 3.8 µJ/86% CIFAR-10 mixed-signal binary CNN proces-
sor with all memory on chip in 28-nm CMOS,” in ISSCC Dig. Tech.
Papers, 2018, pp. 222–224.

[24] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A mixed-signal
binarized convolutional-neural-network accelerator integrating dense
weight storage and multiplication for reduced data movement,” in Proc.
IEEE Symp. VLSI Circuits, Jun. 2018, pp. 141–142.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, Sep. 2014.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, Jun. 2016, pp. 770–778.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proc. CVPR,
Jun. 2016, pp. 2818–2826.

[29] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” CoRR, Jun. 2015.

[30] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. ISCA, 2015, pp. 92–104.

[31] Nvidia. (2017). NVDLA Open Source Project. [Online]. Available:
http://nvdla.org/

[32] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Archit., Jun. 2017, pp. 1–12.

[33] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[34] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Understanding the
limitations of existing energy-efficient design approaches for deep neural
networks,” in Proc. SysML, 2018.

[35] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis.,
Dec. 2015, pp. 1520–1528.

[36] A. Dosovitskiy et al., “FlowNet: Learning optical flow with convolu-
tional networks,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 2758–2766.

[37] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in Proc. 4th Int. Conf. 3D Vis. (3DV), Oct. 2016, pp. 239–248.

[38] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[39] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. ISCA, 2016, pp. 1–13.

[40] S. Zhang et al., “Cambricon-x: An accelerator for sparse neural net-
works,” in Proc. ISCA, 2016, Art. no. 20.

[41] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ISCA, Jun. 2016, pp. 243–254.

[42] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. ACM/IEEE 44th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2017, pp. 27–40.

[43] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
43rd Int. Symp. Comput. Archit. (ISCA), 2016, pp. 367–379.

[44] R. Dorrance, F. Ren, and D. Marković, “A scalable sparse matrix-
vector multiplication kernel for energy-efficient sparse-blas on FPGAs,”
in Proc. ISFPGA, 2014, pp. 161–170.

Yu-Hsin Chen (S’11) received the B.S. degree in
electrical engineering from National Taiwan Uni-
versity, Taipei, Taiwan, in 2009, and the M. S.
and Ph.D. degrees in electrical engineering and
computer science (EECS) from the Massachusetts
Institute of Technology (MIT), Cambridge, MA,
USA, in 2013 and 2018, respectively.

Since 2018, he has been a Research Scientist with
the Nvidia’s Architecture Research Group, Santa
Clara, CA, USA. His current research focuses on
the design of computer architectures for machine

learning, deep learning, and domain-specific processors. In 2018, he received
the Jin-Au Kong Outstanding Doctoral Thesis Prize in electrical engineering
from MIT. He was a recipient of the 2015 Nvidia Graduate Fellowship,
the 2015 ADI Outstanding Student Designer Award, and the 2017 IEEE
SSCS Predoctoral Achievement Award. His work on the dataflows for CNN
accelerators was selected as one of the Top Picks in computer architecture
in 2016. He also co-taught a tutorial on Hardware Architectures for Deep
Neural Networks at MICRO-49, ISCA2017, and MICRO-50.

Tien-Ju Yang (S’11) received the B.S. degree in
electrical engineering and the M.S. degree in elec-
tronics engineering from National Taiwan Univer-
sity (NTU), Taipei, Taiwan, in 2010 and 2012,
respectively. He is currently pursuing the Ph.D.
degree in electrical engineering and computer sci-
ence with the Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, with a focus on
energy-efficient deep neural network design. From
2012 to 2015, he was with the Intelligent Vision
Processing Group, MediaTek Inc., Hsinchu, Taiwan,

as an Engineer. His research interest spans the area of computer vision,
machine learning, image/video processing, and VLSI system design. He won
the First Place in the 2011 National Taiwan University Innovation Contest.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

308 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Joel S. Emer (M’73–SM’03–F’04) received the B.S.
(Hons.) and M.S. degrees in electrical engineering
from Purdue University, West Lafayette, IN, USA,
in 1974 and 1975, respectively, and the Ph.D. degree
in electrical engineering from the University of Illi-
nois at Urbana–Champaign, Champaign, IL, USA,
in 1979.

He was with Intel, where he was an Intel
Fellow and the Director of Microarchitecture
Research. At Intel, he led the VSSAD Group, where
he was a member of Compaq and Digital Equipment

Corporation. He is currently a Senior Distinguished Research Scientist with
the Nvidia’s Architecture Research Group, Westford, MA, USA, where he
is responsible for the exploration of future architectures and modeling and
analysis methodologies. He is also a Professor of the Practice with the
Massachusetts Institute of Technology, Cambridge, MA, USA, where he
teaches computer architecture and supervises graduate students. He has held
various research and advanced development positions investigating processor
microarchitecture and developing performance modeling and evaluation tech-
niques. He has made architectural contributions to a number of VAX, Alpha,
and X86 processors and is recognized as one of the developers of the widely
employed quantitative approach to processor performance evaluation. He has
been recognized for his contributions in the advancement of simultaneous
multithreading technology, processor reliability analysis, cache organization,
and spatial architectures for deep learning.

Dr. Emer is a fellow of the ACM. He has been a recipient of numerous public
recognitions. In 2009, he received the Eckert-Mauchly Award for lifetime
contributions in computer architecture, the Purdue University Outstanding
Electrical and Computer Engineer Alumni Award, and the University of
Illinois Electrical and Computer Engineering Distinguished Alumni Award
in 2010 and 2011, respectively. His 1996 paper on simultaneous multithread-
ing received the ACM/SIGARCH-IEEE-CS/TCCA: Most Influential Paper
Award in 2011. He was named to the ISCA and Micro Halls of Fame
in 2005 and 2015, respectively. He has had five papers selected for the IEEE
Micro’s Top Picks in Computer Architecture, in 2003, 2004, 2007, 2013, 2015,
and 2016. He was the Program Chair of ISCA in 2000 and Micro in 2017.

Vivienne Sze (S’04–M’10–SM’16) received the
B.A.Sc. degree (Hons.) in electrical engineering
from the University of Toronto, Toronto, ON,
Canada, in 2004, and the S.M. and Ph.D. degree in
electrical engineering from the Massachusetts Insti-
tute of Technology (MIT), Cambridge, MA, USA,
in 2006 and 2010, respectively.

She was a member of the Technical Staff, Systems
and Applications Research and Development Center,
Texas Instruments (TI), Dallas, TX, USA, where she
designed low-power algorithms and architectures for

video coding. She also represented TI in the JCT-VC Committee of ITU-T
and ISO/IEC standards body during the development of High Efficiency Video
Coding (HEVC), which received a Primetime Engineering Emmy Award.
Within the committee, she was the primary coordinator of the core experiment
on coefficient scanning and coding, and has chaired/vice-chaired several ad
hoc groups on entropy coding. She is currently an Associate Professor with
the Electrical Engineering and Computer Science Department, MIT. She has
co-edited the book High Efficiency Video Coding (HEVC): Algorithms and
Architectures (Springer, 2014). Her research interests include energy-aware
signal processing algorithms, and low-power circuit and system design for
portable multimedia applications, including computer vision, deep learning,
autonomous navigation, image processing, and video coding.

Dr. Sze received the Jin-Au Kong Outstanding Doctoral Thesis Prize
in electrical engineering from MIT in 2011. She was a recipient of the
2019 Edgerton Faculty Achievement Award from MIT, the 2018 Facebook
Faculty Award, the 2017 and 2018 Qualcomm Faculty Award, the 2016 and
2018 Google Faculty Research Award, the 2016 AFOSR Young Investigator
Research Program (YIP) Award, the 2016 3M Non-Tenured Faculty Award,
the 2014 DARPA Young Faculty Award, and the 2007 DAC/ISSCC Student
Design Contest Award. She was a co-recipient of the 2018 VLSI Best
Student Paper Award, the 2017 CICC Outstanding Invited Paper Award,
the 2016 IEEE Micro Top Picks Award, and the 2008 A-SSCC Outstanding
Design Award. She will be the Systems Program Chair of SysML in 2020. She
is a Distinguished Lecturer of the IEEE Solid-State Circuits Society (SSCS)
and currently serves on the Technical Program Committee for the International
Solid-State Circuits Conference (ISSCC) and the SSCS Advisory Committee
(AdCom). She has also served on the technical program committees for VLSI
Circuits Symposium, Micro and the Conference on Systems and Machine
Learning (SysML), and as a Guest Editor for the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (TCSVT).

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 09,2020 at 16:12:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

