














Q2. Insights?

• Inference is the worst

Energy cost break-down 



Model, platform, infrastructure, hardware.

• Data, experimentation, system utilization, telemetry.





• But a good synthesis of a few existing ideas; 
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Elevator Pitch

Power consumption of the DNN training should be considered

Zeus

Trade-off power and training time (saving up to 70% energy consumption)

Automatic and transparent

Adaptive to various types of DNN
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Problem

DNN training is energy-hungry

Training parameters are selected unaware of the energy efficiency

Maximize training throughput

Or, follow the setting suggested by the original paper

3 / 11



Insight: Opportunity

Default parameters are far away from pareto frontier.

Implicit opportunity: training does not have tight latency requirement as inference.
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Insight: Challenge

Training energy is hard to model accurately

Highly sensitive with workloads, dataset, and hardware

Stochastic training process

Opportunity: The same network is trained repeatedly

Reason: New data is added to update model weights

Implication: Profiles are sufficient
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High-level Solutions: Feedback

Profile GPU power online

Predict the optimal GPU power limit and batch size

Zeus
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Technical Solutions

Separate the optimization goal to Epochs(b), Throughput(b, l), and Power(b, l)

Throughput and power can be profiled real time

Stable to batch size, workload, and hardware

Optimal GPU power limit can be predicted using batch size, without chaos

Model the Epochs(b)

Multi-armed bandit (Reinforcement Learning) with gaussion distribution belief

Thompson sampling: accelerate convergence

Early stopping to avoid struggling
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Takeaway Message

ML research with awareness of energy consumption

Stochastic effects in ML can be modeled by RL, with enough profiles

Feedback can be applied to solve optimization problem
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Test-of-time Award?

Yes

Awareness of energy

General solutions for other optimization

Modeling stochastic training process with RL
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Non-acceptance Reason

No explanation to the opportunity!
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Thank You!

For more information, please visit us at

parsa.epfl.ch

http://localhost:12445/parsa.epfl.ch

