Environmental Implications, Challenges and Opportunities

Sustainable Al



Elevator Pitch

The cost of Al
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Training, a lot!
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Solution?

v" Technical
v' Design




Write-up

Questions



Q1. What is the problem?

* A super-linear growth in Al
* Data, models, infrastructure

* Limited knowledge for the environmental impact holistically



Q2. Insights?

(b) Fleet View

% Experimentation * Several phases for ML dey;
Z Training
Inference

* Different energy cost:

mData | * Inference is the worst.
mTraining (Offline)

m Training (Online/Evaluation)

(c) Machine Learning Task View
[Section 3.1] m Deployment
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Energy cost break-down



Q3. What is the solution?

1. Optimize the energy efficiency and reducing carbon footprint:
* Model, platform, infrastructure, hardware.

2. Efficient designs with a sustainability mindset:
* Data, experimentation, system utilization, telemetry.



Q4. What is the takeaway message?

* Big environmental cost for ML development;

e Solutions need to be holistic.



Qs. test of time award?

* Don't think so.
* But a good synthesis of a few existing ideas;

* Qualitatively, not enough theoretical insights;

* Quantitatively, need in-depth analysis for problem size and the
effectiveness of the solution.



Q6. Accept or Reject?

* Accept at a conference.

* However,
* close to social science research
* not enough depth for a top journal publication for social science.



Q&A

Thank you
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Elevator Pitch

- Power consumption of the DNN training should be considered

« Zeus
= Trade-off power and training time (saving up to /0% energy consumption)
= Automatic and transparent

- Adaptive to various types of DNN
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Problem

= DNN training is energy-hungry
= Training parameters are selected unaware of the energy efficiency
= Maximize training throughput

= Or, follow the setting suggested by the original paper
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Insight: Opportunity

Default parameters are far away from pareto frontier.
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Implicit opportunity: training does not have tight latency requirement as inference.
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Insight: Challenge PR

= Training energy Is hard to model accurately
= Highly sensitive with workloads, dataset, and hardware
= Stochastic training process

= Opportunity: The same network is trained repeatedly
= Reason: New data is added to update model weights

= Implication: Profiles are sufficient
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High-level Solutions: Feedback

- Profile GPU power online

= Predict the optimal GPU power limit and batch size
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Technical Solutions

= Separate the optimization goal to Epochs(b), Throughput(b, I), and Power(b, I)
= Throughput and power can be profiled real time
- Stable to batch size, workload, and hardware
= Optimal GPU power limit can be predicted using batch size, without chaos
- Model the Epochs(b)
= Multi-armed bandit (Reinforcement Learning) with gaussion distribution belief
= Thompson sampling: accelerate convergence

- FEarly stopping to avoid struggling

711
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Takeaway Message

= ML research with awareness of energy consumption
= Stochastic effects in ML can be modeled by RL, with enough profiles

- Feedback can be applied to solve optimization problem
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Test-of-time Award? [ pAR@EFS%QS
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= Yes
= Awareness of energy
- General solutions for other optimization

« Modeling stochastic training process with RL
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Non-acceptance Reason

No explanation to the opportunity!
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Thank Youl

For more information, please visit us at

parsa.epfl.ch
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