
Bettina Messmer

EPFL - 25.04.2023
CS 723 - Topics in ML 
Systems

PIXELATED 
BUTTERFLY:
SIMPLE AND EFFICIENT 
SPARSE TRAINING FOR 
NEURAL NETWORK MODELS



Elevator Pitch

Problem

We need models that are cheaper to 
train, while keeping generalization 
benefits of large models.
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Elevator Pitch

Solution

We need to train our models using 
pixelated butterflies. 
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Elevator Pitch

Value

Sparsity pattern is hardware efficient

Wide-range of NN architecture support

Up to 2.5x speed up on ImageNet without 
accuracy loss
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DALL-E (generated)



Elevator Pitch - Value

Sparsity pattern is hardware efficient

Wide-range of NN architecture support

Up to 2.5x speed up on ImageNet without 
accuracy loss
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Attention is all you need, 
A. Vaswani et al., 2017

https://www.xprimarycare.com/p/artifici
al-intelligence-in-primary (24.04.2023)



Elevator Pitch - Value

Sparsity pattern is hardware efficient

Wide-range of NN architecture support

Up to 2.3x speed up on ImageNet 
without accuracy loss
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Model Mixer-B/16 Pixelfly-Mixer-B/16

Accuracy
(ImageNet)

75.6 76.3

Speedup 2.3x



§ Develop sparse training method that is/has
• simple and accurate (static sparsity pattern)
• sparsity pattern aligned with available hardware
• wide-coverage of operators (applicable to most NN-layers)

What is the problem?
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§ Overparameterized NNs generalize well, but are expensive to train
• Goal: reduce computational cost, while retaining generalization benefit
• State-of-the art sparsity training

§ has accuracy loss
§ slow training runtime (dynamic sparsity patterns)
§ sparsity patterns are not hardware efficient
§ specific to a network layer

Why is it important?
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§ Butterfly matrix + low-rank matrix is an effective fixed sparsity pattern
• Sparse matrix + low-rank matrix obtains better approximation than only one 

of the two

§ Approximate Butterfly matrices with flat block Butterfly matrices for 
hardware efficiency

What are the insights?
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§ Use Pixelated Butterfly training method
• compute sparsity level of each layer type
• select rank for low rank matrix
• select the sparsity mask from the flat block butterfly sparsity pattern
• approximate weights (W) with ! as learnable parameters

What is the solution?
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What is the take-away 
message?

re-parameterization of sparsity patterns 
based on butterfly matrices enable fast 
training and good generalisation
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Model Mixer-B/16 Pixelfly-Mixer-B/16

Accuracy
(ImageNet)

75.6 76.3

Speedup 2.3x



Test of Time award 
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https://scholar.google.com
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https://scholar.google.com



Should it have been 
accepted? 

novel well-motivated insights
practical considerations
well-written
thorough experiments
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CrAM – A 
compression 
Aware 
Minimizer



Elevator Pitch - Problem

High model retraining cost when 
deploy on various devices

Requires compression at different 
rates

C
S 

72
3 

–
To

pi
cs

 in
 M

L 
Sy

st
em

s

2



Elevator Pitch - Solution

CrAM optimizer for model training
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Elevator Pitch - Value

One-Shot compression support at 
different compression rates

No significant loss in accuracy and 
small training overhead
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§ Reduce additional computation and hyper-parameter tuning for model 
compression

What is the problem?
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§ Define measure how well a model generalized with respect to 
compression

§ A model is easily compressible if small perturbations do not affect its 
performance after compression

What are the insights?
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§ Define how much current model is compressible as part of the loss

§ Use two forward/backward passes per training step
• Compute gradient ascent step to find locally worst compressed model
• Compute gradient descent step to optimize model performance

§ Choose compression method uniformly at random when using different 

compression algorithms (rates)

§ Use 1000 random training samples to correct for model statistics

• E.g. mean and standard deviation for batch norms

What is the solution?
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What is the take-away 
message?

the concept of sharpness-aware 
minimisation can be extended to 
compression-aware minimisation
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Test of Time award 
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well-motivated method design
well-written
thorough experiments
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well-motivated method design
well-written
thorough experiments

not inspiring enough for community 
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