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▪ int8(): 
Run a transformer with 8bit ops instead of 32 

▪ some models can now be used on Google 
Colab that previously couldn't
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▪ int8(): 
Run a transformer with 8bit ops instead of 16 

▪ reduce the memory footprint of a large 
model by 2x  (compared to FP16) 

▪ some models can now be used on Google 
Colab that previously couldn't
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▪ LLMs are large 
▪ Inference cost is crucial  

(memory & compute)
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▪ Emergence of outlier features
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▪ Treat regular & 
outlier values 
separately 

▪ Integration into 
hugging face
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▪ reduce the memory footprint of a large 
model by (only) 2x.  

▪ some models can now be used on (insert 
particular hardware) that previously couldn’t 

▪ any huggingface model can directly be 
converted 

▪ no obvious speedup (only memory saving)
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▪ Two papers addressing same problem: 

▪ LLM.int8(): 8-bit Matrix Multiplication for 
Transformers at Scale  
NeurIPS 2022 (arXiv Aug 2022) 

▪ OPTQ: Accurate Quantization for 
Generative Pre-trained Transformers  
ICLR 2023 (arXiv Oct 2022)
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Elevator Pitch

2



Exponential growth of DNNs

3

Commensurate increase in computational cost and carbon emissions!



Slowdown of Moore's Law
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Need for alternate ways to increase Arithmetic Density



Use new numerical encodings for DNNs
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Increase hardware efficiency while maintaining accuracy

▪ Block Floating Point promising candidate for DNNs

▪ Combines the advantages of Fixed point and Floating point

▪ Previous work does not manage to reduce precision below 8 bits for training

▪ The paper shows how you can use variable precision to use even lower precision 
for most operations

▪ The paper designs a custom HW accelerator to get the maximum benefits



What is the Problem?
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Unexplored design space of BFP

▪ Prior work does not manage to use BFP with precision below 8 bits to get high 
accuracy.

▪ Variable precision and Mixed precision training used for other formats before but 
not studied for BFP.

▪ Big unexplored design space of BFP configurations below 8 bits.

▪ HW support for BFP in general, and more specifically for variable precision BFP 
not studied well in prior work.
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What are the insights?
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Variable precision

▪ The precision of the model parameters does not need to stay fixed during 
training and even across model layers.

▪ Early layers of a model and the initial epochs of a training session are more 
tolerant to lower precision.
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HW support for variable precision

▪ Sub-divide the computation into 2-bit chunks 

▪ Allows the same custom HW unit to implement arithmetic operations involving 
higher precision mantissa by simply running multiple passes of the unit.
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Stochastic Rounding

▪ Randomly round up or round down when converting tensors from FP32 to BFP.

▪ Critical to maintaining training stability when using very low precision.
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What is the solution?
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Schedule for variable precision

▪ Use 4-bit mantissas in combination with 2-bit mantissas

▪ Check if relative improvement of using the higher precision is smaller than a 
threshold for a given layer and iteration

▪ Scale the threshold linearly across the layers and iterations
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HW accelerator for variable precision BFP

▪ Systolic array based accelerator with custom MAC unit.

▪ Novel memory layout to store variable precision BFP values.
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What is the take-away message?
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Dynamic precision is the way to go

▪ Dynamic precision enables the usage of BFP precisions below 8 bits to get 
comparable high performance.

▪ Dynamic precision allows most operations to be done at a much reduced 
precision.

▪ Building a custom HW accelerator allows you to extract the maximum benefits 
of dynamic precision BFP operations.
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Will this paper win the Test of Time award?
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No

▪ ML highly volatile field.

▪ Unlikely only using BFP by itself will turn out to be a good choice.

▪ Does not have any new insights which can be applied to any number format.

▪ Unclear how HW would generalize well for any mantissa width.

▪ Unlikely results shown in the paper will generalize to current LLM models.
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Why should this paper not have appeared at HPCA?
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Highly empirical with no new insights
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Thank you

▪ The idea of mixed precision training is not new, and the paper simply adapts it 
for BFP without providing any insight as to why it works.

▪ The design choices in the paper are mostly based on empirical results with no 
theoretical backing.

▪ The training accuracies are not too high, and it is hard to believe SOTA 
performance for current models can be gained using only 4-bits and 2-bits

▪ Design not open sourced, makes it hard to reproduce results


