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=L | LM.Int8() - Elevator Pitch v1

= INt8():
Run a transformer with 8bit ops instead of 32

= some models can now be used on Google
Colab that previously couldn't



=PFL | LM.Int8() - Elevator Pitch v2

= INt8():
Run a transformer with 8bit ops instead of 16

= reduce the memory footprint of a large
model by 2x (compared to FP16)

= some models can now be used on Google
Colab that previously couldn't



=PFL 1) Problem importance

= LLMs are large

Inference cost Is crucial
(memory & compute)

B Machine Learning & Optimization Laboratory

The blessings of scale
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=PrL 2) Insights

B Machine Learning & Optimization Laboratory

= Emergence of outlier features
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=L 3) Solution

= Treat regular & | R
outlier values LLM |nt8() pronneennmsenneeanoes 1
separately Te] |
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=PFL 4) Takeaway

= reduce the memory footprint of a large
model by (only) 2x.

= some models can now be used on (insert
particular hardware) that previously couldn't

= any huggingface model can directly be
converted

= NO obvious speedup (only memory saving)



=PrL Extra

= [wo papers addressing same problem:

= LLM.int8(): 8-bit Matrix Multiplication for

Transformers at Scale
NeurlPS 2022 (arXiv Aug 2022)

» OPTQ: Accurate Quantization for
Generative Pre-trained Transformers

ICLR 2023 (arXiv Oct 2022)
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Exponential growth of DNNs [R@E{SYSSQS

ARCHITECTURE LAB
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Slowdown of Moore's Law

SRAM Cell Size Density
(GEEVERGEDN )

65nm 45nm 32nm 22nm 14nm 10nm

== |deal Scaling Actual Scaling

Need for alternate ways to increase Arithmetic Density




Use new numerical encodings for

= Block Floating Point promising candidate for DNNSs

DNNs — [BRLISH

ARCHITECTURE LAB

= Combines the advantages of Fixed point and Floating point

= Previous work does not manage to reduce precision below 8 bits for training

= The paper shows how you can use variable precision to use even lower precision

for most operations

= The paper designs a custom HWV accelerator to get the maximum benefits

Increase hardware efficiency while maintaining accuracy
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VWhat is the Problem?




Unexplored design space of BFP DAL

ARCHITECTURE LAB

" Prior work does not manage to use BFP with precision below 8 bits to get high
accuracy.

* Variable precision and Mixed precision training used for other formats before but
not studied for BFP,

= Big unexplored design space of BFP configurations below 3 bits.

= HWV support for BFP in general, and more specifically for variable precision BFP
not studied well in prior work.
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VWhat are the insights?




Variable precision

|

AISA
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ARCHITECTURE LAB

" The precision of the model parameters does not need to stay fixed during
training and even across model layers.

= Farly layers of a model and the initial epochs of a training session are more
tolerant to lower precision.

poral and Layerwise Precision (ResNet-20 on CIFAR-10)
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HWV support for variable precision

" Sub-divide the computation into 2-bit chunks

PARALLEL SYSTEMS
ARCHITECTURE LAB

[ AISA

= Allows the same custom HWV unit to implement arithmetic operations involving
higher precision mantissa by simply running multiple passes of the unit.

[
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Stochastic Rounding [!A:]ISSSTQS

ARCHITECTURE LAB

= Randomly round up or round down when converting tensors from FP32 to BFP.

= Critical to maintaining training stability when using very low precision.

Loss P32 (no rounding) Loss Fixed Point (rounding)
A\ | o |

' FP32 achieves
. lower final loss

> . . . . . >

Yo Wi W W3 Wi Updated values Yo Wi W W3 Wi Updated values
" ' ' for weight w ' ! roT for weight w
Ay A, 4y 4, Ay A, Ay A,
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VWhat is the solution!?
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Schedule for variable precision [HISSSHS

ARCHITECTURE LAB

= Jse 4-bit mantissas in combination with 2-bit mantissas

= Check if relative improvement of using the higher precision is smaller than a
threshold for a given layer and iteration

o Zn |BFP(X1174) _BFP(X1172)|
B Zn |BFP(X11>2)|

r(X)

= Scale the threshold linearly across the layers and iterations
e(li)=a—B ;B
)=a—p-—p—
’ I L

13



HWV accelerator for variable precision BFP

= Systolic array based accelerator with custom MAC unit.
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What is the take-away message’

|

BAISA

PARALLEL SYSTEMS
ARCHITECTURE LAB

15




Dynamic precision is the way to go [HISSSHS

ARCHITECTURE LAB

= Dynamic precision enables the usage of BFP precisions below 8 bits to get
comparable high performance.

= Dynamic precision allows most operations to be done at a much reduced
precision.

®* Building a custom HW accelerator allows you to extract the maximum benefits
of dynamic precision BFP operations,
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Will this paper win the Test of Time award!
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NG EAISH

= ML highly volatile field.

= Unlikely only using BFP by itself will turn out to be a good choice.

* Does not have any new insights which can be applied to any number format.
= Unclear how HWV would generalize well for any mantissa width.

= Unlikely results shown in the paper will generalize to current LLM models.
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[ AISA

Why should this paper not have appeared at HPCA!

19




Highly empirical with no new insights DAL

ARCHITECTURE LAB

* The idea of mixed precision training is not new, and the paper simply adapts it
for BFP without providing any insight as to why it works.

= The design choices in the paper are mostly based on empirical results with no
theoretical backing.

= The training accuracies are not too high, and it is hard to believe SOTA
performance for current models can be gained using only 4-bits and 2-bits

= Design not open sourced, makes it hard to reproduce results

Thank you
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