
CS-723
EFFICIENTLY SCALING 

TRANSFORMER INFERENCE

1

Presented by Bugra Eryilmaz



What is partitioning?

▪ Multi-device scenario
▪ Data is too big to fit
▪ Divide it to multiple devices
▪ Different partitions are possible

2



Topology 

▪ Physical layout of chips
▪ 3D Torus topology is used in the paper
▪ 3 axis of partitioning 

3



Q1) What is the problem?

▪ Large memory footprint
▪ PaLM has 540B parameters
▪ Single chip cannot store the model
▪ Large memory traffic

▪ Tight latency requirements

▪ Partitioning scheme effects possible utilization and latency

4
Prior work do not explain the tradeoffs in partitioning schemes!



Q2) What are the insights?

5

▪ Memory traffic is the main latency limiting factor

▪ Chip count, batch size and partition determines the traffic

▪ Analytical solutions helps understanding the tradeoffs



Q3) What is the solution?

6

▪ Identified common 
cases

▪ Analytically solved for 
communication delay



Q3) What is the solution?

7

▪ Identified common 
cases

▪ Analytically solved for 
communication delay

▪ Showcased the 
tradeoffs



Q3) What is the solution?

8

▪ Identified common 
cases

▪ Analytically solved for 
communication delay

▪ Showcased the 
tradeoffs



Q4) What is the takeaway message?

9

▪ The main bottleneck is memory traffic

▪ Careful consideration towards partitioning is necessary
▪ Partitioning scheme should minimize memory traffic
▪ Latency and utilization is the main tradeoff effecting the partition choice



Q5) Will this paper win the test of time?

10

▪ No

▪ The solution is extremely specific
▪ Partitioning scheme options can change
▪ Optimization dependent
▪ Topology dependent



Q6) Why should this paper not have
appeared at a top conference?

11

▪ Limited explanation on partitioning schemes

▪ Methodology seems problematic
▪ Comparing different hardware 

▪ Paper loses focus a lot

Thank you



CS-723
Orca: A Distributed Serving System for 
Transformer-Based Generative Models

1

Presented by Bugra Eryilmaz



Batching

▪ What is batching?

▪ Combining multiple requests

▪ Why do we need batching?

▪ Parameter reuse

▪ Utilize the parallelism

2



Why do we need scheduling?

▪ Requests arrive randomly

▪ One resource many consumers
▪ E.g., one GPU serving multiple requests
▪ Fairness while efficiently utilizing the hardware

3



Q1) What is the problem?

▪ Iterative output generation
▪ Each request runs a different number of iterations

▪ Wasted computation for early finishing requests
▪ Inputs come at different times

▪ Queueing delay waiting for the previous batch
▪ Input shape depends on iteration count and input tokens

4
Prior work do not address all challenges together!



Q2) What are the insights?

5

▪ Scheduling in granularity of iteration
▪ Early finishing requests can return
▪ Late coming requests can join the in-flight batch 

▪ Attention block does not need to be batched
▪ It does not benefit much from batching
▪ Input shape is only a problem in attention blocks



Q3) What is the solution?

6

▪ Distributed serving system

▪ Inter and intra layer parallelization

▪ FIFO based iteration level scheduling

▪ Selective batching



Q3) What is the solution?

7



Q4) What is the takeaway message?

8

▪ For iterative models we might need iteration level scheduling

▪ Early finishing requests can return

▪ Late coming requests can join the in-flight batch



Q5) Will this paper win the test of time?

9

▪ My answer is yes!

▪ The ideas are applicable to broad areas 
▪ Only assumption is attention based iterative model
▪ Attention and iteration is essential for sequential data

▪ The solution and ideas are feasible and simple



Q6) Why should this paper not have
appeared at a top conference?

10

▪ I could not find a problem in the paper
▪ Relevant problem
▪ Clear and simple insights
▪ Simple, feasible and effective solution
▪ Fair methodology
▪ Maybe it could be in a different venue, but technically fits into OSDI

Thank you


