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Elevator speach




What is the problem? How important is it?

* Growing demand for Al services with ML workloads that become
more compute intensive.

ML workloads are expensive (infrastucture + energy), especially at
inference to serve large-scale Al applications

* Need for specialized hardware for ML that is:
* Cost effective and low-latency
* Flexible and scalable

* Important problem since specialized hardware is a key to:
* Reduce infrastructure and operational costs
* Reduce environmental footprint
* Making Al more accessible



(1) What are the insights?

* Insights from 5+ years building DSAs for DDN at
Google, summarized into 10 lessons.

* Lessons split into 3 categories:

1. Lessons applying to any DSA
2. Lessons focusing on DNN DSAs

3. Lessons about DNN applications



(2) Insights: 3 lessons applying to any DSA

Logic improves much faster than wires and — DSAs architecture should mitigate the impact of
SRAM interconnect latency and wire scaling challenges

DSA architectures and compilers co-evolve, and
2 developing optimized compilers is expensive and
time-consuming

— New DSA should leverage existing compiler
optimizations.

Different from benchmarking tools, big
3 companies care about the overall lifetime
efficiency of DSAs

= Optimize for perf/TCO is a better target when
designing DSA than perf/CapEx.

TCO = CapEx + 3 X OpEx



(3) Insights: 3 lessons focusing on DNN DSAs

— New DSA version should look like previous
version from compiler’s perspective and support
the same precision.

Backwards ML compatibility enables rapid
deployment of trained DNNs

Inference DSA requires global deployment to
5 reduce latency, but liquid cooling might not be = Inference DSAs should support air cooling.
possible everywhere

Some inference apps need floating point = DSA should support multiple precision (bf16 and
arithmetic int8), i.e. quantization must be optional.



(4) Insights: 4 lessons about DNN applications

Production inference normally needs multi- — DSAs need local memory (i.e. DRAM, since all
7 tenancy (for lower costs, reduced latency and good  weights can’t fit in SRAM) for fast switching time
software engineering practices) between models.
3 DNNs grow ~1.5x annually in memory and — DSAs architects should provide headroom to
compute support DNN growth.

= Programmability and flexibility are important

° DNN workloads evolve with DNN breakthroughs factors for inference DSAs to track DNN progress.

— DSAs should take advantage of larger batch

10 The inference SLO is P99 latency, not batch size sizes



What is the solution? Is it feasible?

These 10 lessons helped shape the new TPUv4i’s design:
1. Based on TPUvV3
2. One core chip for inference (two core TPUv4 for training)

sure 7. TPUv4i board with 4 chips that are connected by ICI.



What is the solution? Is it feasible?

Unequal hardware improvements 1. 1.

Leverage compiler optimizations 2.

Design for perf/TCO 3.

Multi-tenancy 7.

Memory/compute 1.5x grow 8.

’ — 7.
DNN workloads evolve 9.&« 3
Inference SLO is P99 latency 10.

Compiler compatibility, not binary
compatibility

Increased on-chip SRAM storage
with CMEM

4D tensor DMA

Custom on-chip interconnect (OCl)
Arithmetic improvements

Clock Rate, TDP

Inter-Chip Interconnect scaling

Workload analysis features



What is the solution? Is it feasible?
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What is the solution? Is it feasible?

1. Compiler compatibility, not binary compatibility:
XLA compiler compatible with multiple TPUs
= only LLO should be optimized per TPU

8. Clock Rate, TDP (Thermal Design Power):
Clock rate of 1.05 GHz + chip TDP of 175W
= Support air cooling and reduce TCO

6. Workload analysis features:
Tracing and performance counter hardware features

= Analyze system-level bottlenecks and support continuous
system-level performance improvements



What is the takeaway message?

Key takeaway messages in designing DSA for DNN:

1.

2.

Design should be driven by the specific needs of real-world
workloads.

Iterative improvement is the key to keeping up with the fast-
evolving demand.

DSA should be programmable and flexible to cover
previous/current/future needs.

Moore's Law is diminishing and Dennard scaling is dead =
hardware/software/DNN co-design is the best chance for DNN
DSAs to continue making progress.



What is the takeaway message?

Takeaway messages regarding the TPUv4i chip itself:

1. TPUv4i has similar performance to TPUv3 (1.9x TPUv2), but is much

more energy efficient (2.3x perf/TDP).

2. "Killing 2 birds with 1 stone": two separate chips for
inference/training is key to achieve better perf/TCO.

3. Thermal Design Power offers a good proxy for DSA Total cost of
ownership

15 13
25 1.3
20 1818 17

1.
15 13 1413

1.0

Performance Relative to T4
o
Performance/TDP Relative to T4

0.5

0.0

er Offline Server Offline NMT* NMT* Server
B TPUv3 W TPUv4i

ResNet  ResNet SSD SSD Server Offline GeoMean GeoMean
Serv i

Offline



Will this paper win the test of time award?

NO
1. Architectural choices made for the TPUv4i obsolete in 15+ years?

2. New computing paradigms are emerging.

—> DNN DSAs may be very different in 15+ years.

3. Most insights are related to ML challenges from 2015-2020

— ML community’s challenges will be different in 15+.



Name one reason why this paper should have not
appeared in MLSYS, NeurlPS, ICML, OSDI, ASPLOS, etc.?

The paper was presented to ISCA21 (103 citations on Semantic Scholar)
1. Valuable for the hardware designer community.

Scope limited to Google infrastructure?

Limited comparison to existing (similar) DSA for DNN?

Architectural description broad, with few details

Al S

Concerns regarding writing:
1. Paper is very dense, with a lot of jargon/abbreviations, hard to read.

2. Some motivations are obscured by referencing internal feedback from
other design teams, without providing further insights.



Preliminary

Feature TPUvI TPUv2 TPUv3 TPUv4i NVIDIA T4
Peak TFLOPS / Chip 92 (8b int) 46 (bfl16) 123 (bfl6) [138 (bfl6/8b int) |65 (ieee fp16)/130 (8b int)
First deployed (GA date) Q2 2015 Q3 2017 04 2018 Q1 2020 Q42018
DNN Target Inference only| Training & Inf.|Training & Inf.| Inference only Inference only
Network links x Gbits/s / Chip - 4 x 496 4 x 656 2x400 -
Max chips / supercomputer -~ 256 1024 - -~
|Chip Clock Rate (MHz) 700 700 940 1050 585 / (Turbo 1590)
Idle Power (Watts) Chip 28 53 84 S5 36
TDP (Watts) Chip / System 75/ 220 280 /460 450/ 660 175 /275 70/ 175
Die Size (mm®) <330 <625 <700 <400 545
Transistors (B) 3 9 10 16 14
|Chip Technology 28 nm 16 nm 16 nm 7 nm 12 nm
Memory size (on-/off-chip) 28MB /8GB | 32MB / 16GB | 32MB /32GB | 144MB B 18MB / 16GB
Memory GB/s / Chip 34 700 900 614 320 (if ECC is disabled)
MXU Size / Core 1 256x256 1 128x128 2 128x128 4 128x128 8 8x8
|Cores / Chip 1 2 2 1 40
IChips / CPUHost 4 4 4 8 8




. Picojoules per Operation
Operation 45 nm Tom_ | 45/7
Int 8 0.03 0.007] 4.3
Int 32 0.1 003 ] 33
-+ |BFloat 16 - 0.11 -
IEEE FP 16 0.4 0.16 | 2.5
IEEE FP 32 0.9 038 24
Int 8 0.2 0071 29
Int 32 3.1 148 | 2.1
X |BFloat 16 -- 021 ] --
IEEE FP 16 1.1 034 ] 3.2
IEEE FP 32 3.7 1.31 ] 2.8
8 KB SRAM 10 7.5 1.3
SRAM|32 KB SRAM 20 8.5 2.4
1 MB SRAM! 100 14 7.1
IGeoMean' -- -- 2.6
Circa 45 nm | Circa 7 nm
DRAM DDR3/4 1300? 13002 1.0
HBM?2 -- 250-450° --
GDDR6 -- 350-480> --

Table 2. Energy per Operation: 45 nm [16] vs 7 nm. Memory

is pJ per 64-bit access.
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Figure 2. DSA gains per chip for MLPerf Training 0.5 to 0.7
over 20 months for the same compilers. The unverified TPUv3
MLPerf 0.5 scores for Mask R-CNN and Transformer are from
[23]; all other results are from [28].
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NMT, so we use MLPerf Inference 0.5 code for it and 0.7 code for production apps @ relative to TPUvV?2 for the other TPUs.

for ResNet and SSD in Figures 9, 10, and 13. (These results are
unofficial, as they have not been verified by MLPerf.)
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Figure 10. Unverified MLPerf Inference impact of turning on
CMEM vs no CMEM.
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Figure 11. Performance of 2X HBM bandwidth with no
CMEM relative to CMEM with standard HBM bandwidth.
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Figure 12. Roofline model showing apps without CMEM (low
point) vs with CMEM (high point). Operational intensity (OI)
here is operations divided by memory accesses to HBM or to
CMEM. If OI were relative to HBM only, CMEM would
increase OI and move the points to the right as well as up.



RNN1
BERTO
BERT1
CNNO
RNNO
MLP1
MLPO
CNN1
NMT
ResNet
0,
0% 0 25 50 75 100 125 SSD
— = MLP Avg

Size of CMEM (MB) =+ = App Avg

Figure 13. Percent of 128 MB speed as CMEM varies (0-128
MB for the apps and MLPerf Inference 0.5-0.7 server code.
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erf/TDP TDP MiB Type

i Z 4w o CH sy DI
T4 1.00 70 40 0.6 20 GDDRS6|
Goya 046 200 8 2.1 ~32 DDRA4
Nervana 0.69 100 24 1.1 60 LPDDR4
Zebra 0.25 225 -- -- 54 DDRA4|
HanGuang 2.17 280 4 0.7 192 none

Table 6. Five DSAs that ran the MLPerf Inference 0.5 (Goya,
Nervana, HanGuang) or 0.7 (T4, Zebra) server scenarios. Goya
ran only SSD, and the last three ran only ResNet. Performance
is relative to T4 for MLPerf Inference 0.5. TDP in this table is
per chip rather than per system, since the latter was
unavailable. All have 16-32GB of DRAM except HanGuang,
which has none. All results are from [291.
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Figure 14. T4 and TPUv4 running unverified MLPerf
Inference benchmarks 0.5/0.7 at Google with memory ECC off
and on. NVIDIA’s MLPerf score is 100% for T4 and 100% for
TPUv4i is unverified MLPerf in our datacenter. For the 1
minute case, the T4 was idle initially. It then ran MLPerf with
ECC off and on for 1 minute at the fastest clock rate. (T4 offers
inline ECC, which uses memory bandwidth.) For the 10 minute
case, the machines are not idle beforechand. TPUv4i’s speed is
unchanged whether ECC is on or off or how long it runs.
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ITPU TPUvl TPUv2 TPUv3 TPUv4i
1 2 4 4
256 x256 128x128 128x128 128x128
MXUs % Die Area 24% 8% 11% 11%
FLOPS/s Utilization 20% = 51% @ 38% = 33%
HBM Roofline Util.  20% = 66% @ 63% = 99%

Table 7. Average utilization of peak performance and of
roofline for our eight production applications.

MXUs/Chip




RaPID:

Al Accelerator for Ultra-low Precision Training and Inference
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Move forward?
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Write-up questions



1. What is the problem?

Al/DNN have different paradigm of computation workloads

the high accuracy of these tasks have a high computational cost.

=>they severely stress the capabilities of traditional computing platforms.



2. What are the insights?

Al workloads are static dataflow graphs
the computations only need a small number of primitives
specialized hardware accelerators can improve system performance

Al-workloads are error-resilient, so precision scaling can be beneficial.



3. What is the solution?

varying level of precision is designed and supported;

both performance and energy efficiently should be improved;

several operations, like data-shuffle and polling, by special function units;
zero-gating logic to boost the performance of sparse Al models;

memory neighbor interface to incorporate core-to-core and core-to-
memory communication and synchronization.



3. solution — cont'd
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Figure 13: Classifications per second using 4-core RAPID chip
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Figure 14: Sustained TOPS/W on 4-core RAPID chip
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4. What is the takeaway message?

® Precision scaling is an effective foundation for designing hardware
accelerators for Al.



5. Will this paper win the test of time award?

® Possible, from the perspective that the chip could be used for edge or
battery-operated devices for Al applications with less energy consumption.

® However, in terms of generic Al accelerators, | don't think the design has
achieved a great leap.



6. Reason why it isn't top conference quality?

® No critical reasons to reject this paper.
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® However, how much better this accelerator performs with/compared-to
different CPU/GPU/TPUs? Below btw.
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