
Blink: Fast And Generic Collectives

for Distributed ML



Background: Training with Multiple GPUs

Inter-GPU communication becomes a more severe problem as model grows!

2 / 25



Elevator Pitch

Cloud GPUs are allocated unaware of their topology

NCCL has bad topology policy: ring or nothing

NVLinks are commonly wasted

Blink

Transparent

Dynamically generate efficient collective primitives

Better link utilization

3 / 25



Problem

By default, NCCL builds the topology among GPUs using a ring

Impossible on GPU clusters with irregular topology

Single ring could cause link under-utilization

Ring’s capacity is also restricted by the slowest link

NCCL also constructs binary tree, but only for small dataset

Otherwise, NCCL fallback to PCI-Express

Waste of NVLink!

4 / 25



Insights

Trees are better template than ring

Adaptability to irregular topology

Natural for broadcasting and gathering

GPUs and NVLinks are not the bottleneck when using spanning trees

GPUs support data transferring while computation

NVLinks can be multiplexed without severely impacting peak throughput

Topology can be probed during runtime

Collective can be implemented with trees accordingly

5 / 25



Solutions

Blink, a runtime to generate collective primitives

TopologyTopologyTopology 
Discovery Filter & TreeGen

Scheduler

Assigned
GPUs

Assigned
GPUs

CodeGen
TreesTrees libBlink.so

Main
Program

libNCCL.so

6 / 25



Solutions: Tree Generation

Formalized as an optimization problem

Approximating packing

Minimizing tree count to increase the data transferred by single tree

Enabling large data chunks

7 / 25



Solutions: Code Generation

Detect chunk size by profiling and feedback

Prefer large chunk to amortize the control cost

Too large chunk can cause long synchronization time

Once benefit decreases, reduce the chunk size

Manual and fair scheduler for shared link based on CUDA Stream

8 / 25



Takeaway

Communication optimizations can be delayed to runtime

Spanning trees are better topology template than rings

Spanning irregular topology

Utilize all possible links

9 / 25



Test-of-time Award?

Maybe no

It may get integrated into NCCL

People then will use NCCL blindly and forget this paper :(

The paper does not examine the effect when large amount of GPUs are involved

A future trend

Even finding suboptimal spanning trees can be hard

10 / 25



Reason for Rejection

A clear and nice paper, thus it should be accepted.

A flaw: Why NCCL only uses double binary trees when the transferred data is small?

A guess: double binary tree can cause congestion without carefully planned

11 / 25



Thank You!

For more information, please visit us at

parsa.epfl.ch

http://localhost:12445/parsa.epfl.ch


MSCCLang: Microsoft Collective

Communication Language



Elevator Pitch

Manual tuning of GPU collective algorithm is necessary

Squeezing performance using system and workload’s properties

Research and system designer

Writing new high-performance collective primitive is hard

MSCCLang

Programmer just needs to specify the data dependency and schedule hints

Scheduling and code generation are done by program

14 / 25



Problem

Writing high-performance GPU collectives is challenging

Fine-grained parallelism extraction (e.g., link multiplexing)

Low-level implementation detail (e.g., primitive, deadlock)

Schedule tasks with dynamic information (e.g., pipelining)

15 / 25



Insights

Programmers should focus on the collective development

Essentially, the data dependency among multiple GPUs

Low-level optimizations and implementation details are well formalized

With data dependency the hint from the programmer, tools can do it

16 / 25



Solutions

MSCCLang Runtime

MSCCLang IR

Instr. DAG

Chunk DAG

DSL

Tracing

Lowering

Scheduling

Sc
he

du
lin

g 
Di
re
ct
iv
es

M
SC
CL
an
g
Co

m
pi
le
r

17 / 25



Solutions: Domain-specific Language

Each GPU exposes the shared buffer as the source operands

Using copy and reduce to construct data dependency

Applying schedule directives for tuning

Channel

Parallelize

Aggregation

18 / 25



Solutions: Compiler

Trace input program to get data dependency

Insert communication (send/receive) and synchronization primitive

Fuse MSCCL primitives

Avoid resource allocation

Utilize complex primitive provided by NCCL

Channel allocation

Multiplexing the same link to improve utilization

Generate program in MSCCL-IR

19 / 25



Solution: Runtime

Extension of NCCL and the interpreter of MSCCL-IR

Starts all threadblocks in parallel

Picking protocols based on the program’s buffer size requirement

Overlapping the execution of different stages, i.e., pipelining

20 / 25



Takeaway

Tools can actually do good work in terms of using low-level primitive

Correct abstraction to the programmer is important

21 / 25



Test-of-time Award?

Yes

Infrastructure to accelerate more related researches

Not only for ML but also for general HPC

22 / 25



Reason for Rejection

The paper is written in low quality

Quickly fall into implementation details

Complex examples

Terminology inconsistency (e.g., buffer and chunk, channels)

It is not very clear how practical the collective AllToNext is in ML

Paper: Pipeline processing with multiple GPUs?

23 / 25



Comparison between Blink and MSCCL

Problem: the problem of NCCL

Blink: NCCL is unaware of topology

MSCCL: Hard to write high-performance collective with NCCL primitives

Insights

Blink: Runtime topology probing + primitive generation with trees

MSCCL: Tools can do low-level optimization automatically

Solutions:

Blink: Transparent runtime -> better adaptability, but low manual control

MSCCL: A compiler + runtime -> low development effort, but manual topology

24 / 25



Thank You!

For more information, please visit us at

parsa.epfl.ch

http://localhost:12445/parsa.epfl.ch

