
EPFL CS-206 – Spring 2015 Lec.13 - 1

CS-206 Concurrency
���
Lecture 13

Wrap Up
Spring 2015
Prof. Babak Falsafi
parsa.epfl.ch/courses/cs206/

Created by Nooshin Mirzadeh, Georgios Psaropoulos and Babak Falsafi
EPFL Copyright 2015

EPFL CS-206 – Spring 2015 Lec.13 - 2

Lecture
& Lab

M T W T F
16-Feb 17-Feb 18-Feb 19-Feb 20-Feb
23-Feb 24-Feb 25-Feb 26-Feb 27-Feb
2-Mar 3-Mar 4-Mar 5-Mar 6-Mar
9-Mar 10-Mar 11-Mar 12-Mar 13-Mar
16-Mar 17-Mar 18-Mar 19-Mar 20-Mar
23-Mar 24-Mar 25-Mar 26-Mar 27-Mar
30-Mar 31-Mar 1-Apr 2-Apr 3-Apr
6-Apr 7-Apr 8-Apr 9-Apr 10-Apr
13-Apr 14-Apr 15-Apr 16-Apr 17-Apr
20-Apr 21-Apr 22-Apr 23-Apr 24-Apr
27-Apr 28-Apr 29-Apr 30-Apr 1-May
4-May 5-May 6-May 7-May 8-May
11-May 12-May 13-May 14-May 15-May
18-May 19-May 20-May 21-May 22-May
25-May 26-May 27-May 28-May 29-May

Where are We?

u  Wrap up
w Concurrent list
w Concurrent hash tables
w Scheduling
w Work distribution
w Data parallel computing
w GPU

EPFL CS-206 – Spring 2015 Lec.13 - 3

Lecture 8: Concurrent Lists

Synchronization Patterns:
u  With locks

w Coarse-grained
w Fine-grained
w Optimistic
w Lazy

u  Lock-free You should be able to:
-  Describe each pattern
-  Argue about pros & cons
-  Prove concurrency properties

EPFL CS-206 – Spring 2015 Lec.13 - 4

Exercise 1

u  In the lock-free algorithm, argue for and against having the
contains() method help in the cleanup of logically
removed entries.

EPFL CS-206 – Spring 2015 Lec.13 - 5

Exercise 1: Answer

u  Assumption: most method calls are to contains()
u  Pros

w Faster add()/delete()
u  Cons

w Synchronization added à latency penalty for contains()
w Slowdown depending on the method call breakdown

EPFL CS-206 – Spring 2015 Lec.13 - 6

Lecture 9: Concurrent Hash Tables

u  Coarse-Grained Locks
u  Fine-Grained Locks
u  Striped Locks
u  Lock-free

- Sentinels

You should be able to:
-  Describe each implementation
-  Argue about pros & cons

EPFL CS-206 – Spring 2015 Lec.13 - 7

Exercise 2

u  For the lock-free HashSet, show an example of the problem
that arises when deleting an entry pointed to by a bucket
reference, if we do not add a sentinel entry to the start of
each bucket.

EPFL CS-206 – Spring 2015 Lec.13 - 8

Exercise 2: Answer

AP S

B
Concurrently:
-  Remove A
-  Insert B after A

A

P.next and bucket A.head are not changed atomically together

EPFL CS-206 – Spring 2015 Lec.13 - 9

Exercise 2: Answer

AP S

B
a.  Modify P.next
b.  Modify A.next
c.  Modify bucket A.head

B

A

EPFL CS-206 – Spring 2015 Lec.13 - 10

Exercise 2: Answer

AP SB

a.  Modify P.next
b.  Modify A.next
c.  Modify bucket A.head

A

EPFL CS-206 – Spring 2015 Lec.13 - 11

Lecture 10: Scheduling

u  Thread pools vs threads
w ExecutorService
w Runnable/Callable
w Future

u  DAG Model
w T1, Tp, T∞
w Work & Critical Path
w Speedup

You should be able to:
-  Write code using them

You should be able to:
-  Draw the DAG
-  Calculate Ts & speedup
-  Explain laws & metrics

EPFL CS-206 – Spring 2015 Lec.13 - 12

Exercise 3

u  Calculate T1, T∞ and the max speed up for the DAG.

EPFL CS-206 – Spring 2015 Lec.13 - 13

Exercise 3: Answer

T1 = 16
T∞ = 7
Speedup = 16/7

EPFL CS-206 – Spring 2015 Lec.13 - 14

Lecture 10: Work Distribution

u  Lock-free work stealing
w Each thread has a pool of ready work (Each work pool is a

double ended queue)
w Remove work without synchronizing
w  If you run out of work, steal someone else’s
w Choose victim at random

u  Work balancing
w Each thread periodically balance its workloads with a

randomly chosen partner
w Lightly-loaded threads more likely to initiate rebalancing

EPFL CS-206 – Spring 2015 Lec.13 - 15

Exercise 4

u  In the popBottom()method of class BDEQueue, the
bottom field is volatile to assure that in popBottom()
the decrement bottom-- is immediately visible. Describe
a scenario that explains what could go wrong if bottom
were not declared as volatile.

EPFL CS-206 – Spring 2015 Lec.13 - 16

Exercise 4: popTop()

public Runnable popTop() {
 int[] stamp = new int[1];
 int oldTop = top.get(stamp), newTop = oldTop + 1;
 int oldStamp = stamp[0], newStamp = oldStamp + 1;
 if (bottom <= oldTop)
 return null;
 Runnable r = tasks[oldTop];
 if (top.CAS(oldTop, newTop, oldStamp, newStamp)) return r;
 return null;
 }

EPFL CS-206 – Spring 2015 Lec.13 - 17

Exercise 4: popBottom()

Runnable popBottom() {
 if (bottom == 0) return null;
 bottom--;
 Runnable r = tasks[bottom];
 int[] stamp = new int[1];
 int oldTop = top.get(stamp), newTop = 0;
 int oldStamp = stamp[0], newStamp = oldStamp + 1;
 if (bottom > oldTop) return r;
 if (bottom == oldTop){
 bottom = 0;
 if (top.CAS(oldTop, newTop, oldStamp, newStamp))
 return r;
 }
 top.set(newTop,newStamp); return null;
 bottom = 0; }

EPFL CS-206 – Spring 2015 Lec.13 - 18

Exercise 4: Answer

u  bottom == k+1, top == k

u  Thread 1: bottom-- à bottom = k

u  Thread 2: bottom == k+1, oldTop == k

à Thread 2 won CAS à steal tasks[k],
top == k+1

u  Thread 1: r = tasks[k], oldTop = k+1

à Return tasks[k]

EPFL CS-206 – Spring 2015 Lec.13 - 19

Lecture 11: Data Parallel Computing

u  Vector Processors: SIMD
w High-level operations work on linear arrays of numbers:

"vectors”
w Vector reduces ops by 1.2X, instructions by 20X

u  Graphics Processing Units (GPUs): SIMT
w Thousands of tiny cores, mostly ALU, little cache
w  Integrated vs. discrete
w Lightweight threads
w Programming language: CUDA

EPFL CS-206 – Spring 2015 Lec.13 - 20

Lecture 11: GPU (1/2)

u  Programmer’s view
w CPU: host, GPU: device
w Create data in CPU and copy to GPU mem
w Launch GPU kernel
w Synchronize CPU and GPU, copy results back to CPU

u  Per Kernel Computation Partitioning
w Grid, blocks, and threads
w Threads within a block can communicate/synchronize
w Threads across blocks can’t communicate

EPFL CS-206 – Spring 2015 Lec.13 - 21

Lecture 11: GPU (2/2)

u  Memory model
w Global memory: Communicating R/W data between host and

device
w Texture and Constant Memories: Constants initialized by host

u  Execution Model: Ordering
w Execution order is undefined

EPFL CS-206 – Spring 2015 Lec.13 - 22

Exercise 5

u  You are writing a CUDA kernel to do vector addition.
However, instead of mapping one vector element to each
thread, you are mapping two vector elements to each
thread. Show the code for this kernel.

u  You are writing the C host code to invoke the kernel you
wrote in previous part for a vector of 5,000 elements. For
your version of CUDA, the maximum block size is 1024.
How many blocks will you create, and how many threads
per block will you use?

EPFL CS-206 – Spring 2015 Lec.13 - 23

Exercise 5: Answer

__global__ void vadd(int *a, int *b, int *c, int N){

 int i = blockIdx.x * 2*blockDim.x + threadIdx.x;

 int j = i + blockDim.x;

 c[i] = a[i] + b[i];

 if (j < N) c[j] = a[j] + b[j];

}

EPFL CS-206 – Spring 2015 Lec.13 - 24

Exercise 5: Answer

int main(){

 int N = 5000; int a[N], b[N], c[N];

 int *d_a, *d_b, *d_c; int SIZE = N*sizeof(int);

 cudaMalloc ((void **) &d_a, SIZE); …

 cudaMemcpy (d_a, a, SIZE, cudaMemcpyHostToDevice);

 …

 dim3 gridDim(ceil(N/(2*128.0)),1,1);

 dim3 blockDim(128,1,1);

 vadd<<< gridDim, blockDim >>> (d_a, d_b, d_c, N);

 cudaDeviceSynchronize ();

 cudaMemcpy (c, d_c, SIZE, cudaMemcpyDeviceToHost));

 CUDA_SAFE_CALL (cudaFree (d_a));

 …}

EPFL CS-206 – Spring 2015 Lec.13 - 25

Lecture 12: CUDA

u  Matrix multiplication
w Simple: each thread calculates one element of the result

matrix
w Tiled: Use shared memory to reuse data

u  Warp: threads are grouped to run together
w Warp grouping follows sequential thread id (32 threads)

EPFL CS-206 – Spring 2015 Lec.13 - 26

Lecture 12: CUDA: Reduction (1/2)

u  #1: Each thread loads one element into shared memory
w  Reduce: proceed in logN steps
w Divergent in warp threads

u  #2: Replace the divergent branching code with strided index
and non-divergent branch
w 2-way bank conflict

u  #3: Replace stride indexing in the inner loop With reversed
loop and threadID-based indexing
w Bad resource utilization

EPFL CS-206 – Spring 2015 Lec.13 - 27

Lecture 12: CUDA: Reduction (2/2)

u  #4: Read and reduce the first two elements
w Memory bandwidth is still underutilized

u  #5: Unrolling the last warp

EPFL CS-206 – Spring 2015 Lec.13 - 28

Exercise 6

u  For the kernel that you wrote in Exercise 5, do you expect
any of the warps (groups of 32 threads with consecutive
IDs) to take divergent paths through the code? If so, how
many, and how do you expect this divergence to affect the
performance of the kernel?

EPFL CS-206 – Spring 2015 Lec.13 - 29

Exercise 6: Answer

u  5000 % 256 = 136 à 136 elements in the last block
u  136 – 128 = 8 à First warp takes divergent path

