
EPFL CS-206 – Spring 2015 Lec.12 - 1

CS-206 Concurrency
���
Lecture 12

CUDA
Spring 2015
Prof. Babak Falsafi
parsa.epfl.ch/courses/cs206/

Adapted from slides originally developed by Babak Falsafi, David
Kirk and Andreas Moshovos

EPFL Copyright 2015

EPFL CS-206 – Spring 2015 Lec.12 - 2

Lecture
& Lab

M T W T F
16-Feb 17-Feb 18-Feb 19-Feb 20-Feb
23-Feb 24-Feb 25-Feb 26-Feb 27-Feb
2-Mar 3-Mar 4-Mar 5-Mar 6-Mar
9-Mar 10-Mar 11-Mar 12-Mar 13-Mar
16-Mar 17-Mar 18-Mar 19-Mar 20-Mar
23-Mar 24-Mar 25-Mar 26-Mar 27-Mar
30-Mar 31-Mar 1-Apr 2-Apr 3-Apr
6-Apr 7-Apr 8-Apr 9-Apr 10-Apr
13-Apr 14-Apr 15-Apr 16-Apr 17-Apr
20-Apr 21-Apr 22-Apr 23-Apr 24-Apr
27-Apr 28-Apr 29-Apr 30-Apr 1-May
4-May 5-May 6-May 7-May 8-May
11-May 12-May 13-May 14-May 15-May
18-May 19-May 20-May 21-May 22-May
25-May 26-May 27-May 28-May 29-May

Where are We?

u  Matrix Multiply
w Basic

u  Performance
w Shared memory/Tiling
w WARPs
w Memory bank conflicts
w Loop overhead

EPFL CS-206 – Spring 2015 Lec.12 - 3

Can you do this one now?

() () ()BAC •=

EPFL CS-206 – Spring 2015 Lec.12 - 4

Programming Model:���
Square Matrix Multiplication Example

u  P = M * N of size WIDTH x WIDTH

u  One thread calculates one element of P

u  M and N are loaded WIDTH times from
global memory

M

N

P

W
ID

TH

W
ID

TH

WIDTH WIDTH

EPFL CS-206 – Spring 2015 Lec.12 - 5

M0,2

M1,1

M0,1 M0,0

M1,0

M0,3

M1,2 M1,3

Memory Layout of a Matrix in C

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3

M2,1 M2,0 M2,2 M2,3

M3,1 M3,0 M3,2 M3,3

M3,1 M3,0 M3,2 M3,3

M

EPFL CS-206 – Spring 2015 Lec.12 - 6

Step 1: Matrix Multiplication ���
A Simple Host Version in C

M

N

P

W
ID

TH

W
ID

TH

WIDTH WIDTH

// Matrix multiplication on (CPU) host
void MatrixMulOnHost (float* M,

 float* N, float* P, int Width) {
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 float sum = 0;
 for (int k = 0; k < Width; ++k) {
 float a = M[i * width + k];
 float b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i

k

k
j

EPFL CS-206 – Spring 2015 Lec.12 - 7

void MatrixMulOnDevice (float* M, float* N, float* P, int Width) {
 int size = Width * Width * sizeof(float);
 float* Md, Nd, Pd;
 …
1. // Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device
 cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer���
(Host-side Code)

EPFL CS-206 – Spring 2015 Lec.12 - 8

Step 3: Output Matrix Data Transfer���
(Host-side Code)

2. // Kernel invocation code – to be shown later
 …

3. // Read P from the device
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 // Free device matrices
 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
 }

EPFL CS-206 – Spring 2015 Lec.12 - 9

// Matrix multiplication kernel – per thread code

__global__
void MatrixMulKernel (float* Md, float* Nd, float* Pd, int Width)‏ {

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;

Step 4: Kernel Function

EPFL CS-206 – Spring 2015 Lec.12 - 10

Nd

Md Pd

W
ID

TH

W
ID

TH

WIDTH WIDTH

 for (int k = 0; k < Width; ++k) {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k

Step 4: Kernel Function (cont.)

EPFL CS-206 – Spring 2015 Lec.12 - 11

 // Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation (Host-side Code)

EPFL CS-206 – Spring 2015 Lec.12 - 12

Only One Thread Block Used
u Each thread computes one Pd element

w Loads row of matrix Md
w Loads column of matrix Nd
w Performs one multiply and addition

u Compute to global memory access
ratio close to 1:1
w not very high!

u  Size of matrix limited by the number
of threads allowed in a thread block

 Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread(
(2,2)

 WIDTH
Md Pd

Nd

EPFL CS-206 – Spring 2015 Lec.12 - 13

What is the required memory bandwidth?

All accesses to global memory

In inner loop (k from 0 to WIDTH)

u  2 memory accesses (8 bytes)
floating-point per multiply-add
(2 FLOP)

u  Assume peak arithmetic performance
is 5 TFLOPs

u  How many GB/s bandwidth to Global
Memory?

Grid

Global Memory

Block (0, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Block (1, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Constant Memory

EPFL CS-206 – Spring 2015 Lec.12 - 14

But, actual bandwidth is much much lower!!!

Global memory bandwidth~300 GB/s

u  How many FLOPS would our matrix
multiply run at?

u  How much slower is that than the peak
bandwidth?

u  What do we do????

Grid

Global Memory

Block (0, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Block (1, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Constant Memory

EPFL CS-206 – Spring 2015 Lec.12 - 15

Use Shared Memory

u  Global memory is DRAM (slow)
u  Shared memory is on-chip (fast)

u  Partition data into tiles that fit in
shared memory

u  Use the tiles in parallel
w  Load tile using multiple threads
w  Compute in parallel
w  Copy results back to global

memory in parallel
u Compute in shared memory

Grid

Global Memory

Block (0, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Block (1, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Constant Memory

EPFL CS-206 – Spring 2015 Lec.12 - 16

Where to Declare Variables?

Can host access it?

Outside of
any Function In the kernel

yes no global
constant

register
shared
local

EPFL CS-206 – Spring 2015 Lec.12 - 17

 for (int k = 0; k < Width; ++k) {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

Back to Matrix Multiply: Divide it into tiles

Nd

Md Pd

W
ID

TH

W
ID

TH

WIDTH WIDTH

ty

tx

ty

tx

k

k

EPFL CS-206 – Spring 2015 Lec.12 - 18

Idea: Use shared memory to reuse data

u  Each input element is read by Width threads
u  Load each element into Shared Memory and

have several threads use the local version to
reduce the memory bandwidth

èTiled algorithms

M

N

P

W
ID

TH

W
ID

TH

WIDTH WIDTH

ty

tx

EPFL CS-206 – Spring 2015 Lec.12 - 19
19

Handling Arbitrary Sized Square Matrices
u  Each 2D block to compute a (TILE_WIDTH)2

sub-matrix (tile) of the result matrix

u  (TILE_WIDTH)2 threads

u  Generate 2D Grid of (WIDTH/TILE_WIDTH)2

blocks

Md

Nd

Pd

W
ID

TH

W
ID

TH

WIDTH WIDTH

ty
tx

by

bx

TILE_WIDTH

EPFL CS-206 – Spring 2015 Lec.12 - 20

Md

Nd

Pd
Pds

TILE_WIDTH TILE_WIDTH

bx

0 1
TILE_WIDTH-1

2

0 1 2

by ty 2
1
0

TILE_WIDTH-1
2

1

0

TI
LE

_W
ID

TH

TI
LE

_W
ID

TH
E

Tiled Multiply

Break up kernel execution into phases so
that data accesses in each phase are
focused on one Md and Nd tile

tx

EPFL CS-206 – Spring 2015 Lec.12 - 21

A Small Example

Pd1,0 Md2,0

Md1,1

Md1,0 Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0 Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

EPFL CS-206 – Spring 2015 Lec.12 - 22

Every Md and Nd Element is used exactly
twice in generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0
P0,1

thread0,1
P1,1

thread1,1
M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2

M2,0 * N1,2

M2,1 * N0,2

M2,1 * N1,2

M3,0 * N0,3

M3,0 * N1,3

M3,1 * N0,3

M3,1 * N1,3

Access
order

EPFL CS-206 – Spring 2015 Lec.12 - 23

First-order Size Considerations

u  Each thread block should have many threads
w TILE_WIDTH of 64 gives 64*64 = 4096 threads

u  There should be many thread blocks
w A 1024*1024 Pd gives 16*16= 64 Thread Blocks

u  Each thread block performs 2*4096 = 8192 float loads from
global memory for 4096 * (2*64) = 524K mul/add operations
w Memory bandwidth no longer a limiting factor

EPFL CS-206 – Spring 2015 Lec.12 - 24

CUDA Code – Kernel Execution
Configuration

// Set up the execution configuration
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH, Width / TILE_WIDTH);

EPFL CS-206 – Spring 2015 Lec.12 - 25

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {

 __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y;
 // Identify the row and column of the Pd element to work on
 int Row = by * TILE_WIDTH + ty; int Col = bx * TILE_WIDTH + tx; float Pvalue = 0;
 // Loop over the Md and Nd tiles required to compute the Pd element
 for (int m = 0; m < Width/TILE_WIDTH; ++m) {
 // Collaborative loading of Md and Nd tiles into shared memory

 Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
 Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
 __syncthreads();

 for (int k = 0; k < TILE_WIDTH; ++k)
 Pvalue += Mds[ty][k] * Nds[k][tx];
 __syncthreads();
 }
 Pd[Row*Width+Col] = Pvalue;
}

Tiled Kernel

EPFL CS-206 – Spring 2015 Lec.12 - 26

Must sync threads when loading/computing

u  All threads load tile together
u  All thread compute together
u  But, loading & computing can not be overlapped!

w Why not?

u  How do we keep them apart?
u  Barrier synchronization

w __syncthreads()
w Also, called “barrier” synchronization
w All threads reach barrier, wait for others, then continue

EPFL CS-206 – Spring 2015 Lec.12 - 27

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {

 __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y;
 // Identify the row and column of the Pd element to work on
 int Row = by * TILE_WIDTH + ty; int Col = bx * TILE_WIDTH + tx; float Pvalue = 0;
 // Loop over the Md and Nd tiles required to compute the Pd element
 for (int m = 0; m < Width/TILE_WIDTH; ++m) {
 // Coolaborative loading of Md and Nd tiles into shared memory

 Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
 Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
 __syncthreads();

 for (int k = 0; k < TILE_WIDTH; ++k)
 Pvalue += Mds[ty][k] * Nds[k][tx];
 __syncthreads();
 }
 Pd[Row*Width+Col] = Pvalue;
}

Tiled Kernel

EPFL CS-206 – Spring 2015 Lec.12 - 28

Shared Memory Bandwidth with 64x64 tiles
u  Each core has 96KB shared memory

w Size is implementation dependent!
w Assume TILE_WIDTH = 64
w Each GPU block holds a tile (64x64)
w We share elements along TILE_WIDTH (for M and N)
w Assuming 20 TB/s
w How much do we cut the required bandwidth?
w How many tiles can we fit?

EPFL CS-206 – Spring 2015 Lec.12 - 29

Shared Memory Bandwidth with 128x128 tiles
u  Each core has 96KB shared memory

w Size is implementation dependent!
w Assume TILE_WIDTH = 128
w How much does memory bandwidth improve?

EPFL CS-206 – Spring 2015 Lec.12 - 30

Shared Memory Bandwidth
u  Each core has 96KB shared memory

w Size is implementation dependent!
w Assume TILE_WIDTH = 64, each block uses 2*4096*4B = 32KB
w Can have up to 3 Thread Blocks actively executing
w 3*8192= 24K pending loads. (2 per thread, 4096 threads per block)

u 64x64 tiling reduces accesses to the global memory by 64x
w 300 GB/s bandwidth can now support (300/4)*64 = 4.8 TFLOPS!

EPFL CS-206 – Spring 2015 Lec.12 - 31

Reduction Operations

10 11 12 13

u Multiple values are reduced into a single value
w ADD, MUL, AND, OR, ….

u Useful primitive

u Easy enough to allow us to focus on optimization

techniques

46

EPFL CS-206 – Spring 2015 Lec.12 - 32

Sequential Reduction

u Start with the first two elements
 è partial result
u Process the next element
u O(N) (i.e., runtime linear function of N)

10 11

4 21

5 25

12 30

42

EPFL CS-206 – Spring 2015 Lec.12 - 33O(log2 N) steps for N amount of work

Parallel Reduction

Pair-wise reduction in steps – Tree-like

10 11 4 5 12 13 1 7

21 9 25 8

30 33

63

Time

1

2

3

4

EPFL CS-206 – Spring 2015 Lec.12 - 34

Different-degree trees possible

Pair-wise reduction in steps – Tree-like
Time

1

2

3

10 11 4 5 12 13 1 7

30 33

63

O(log2 N) steps for N amount of work

EPFL CS-206 – Spring 2015 Lec.12 - 35

Reduction: Big Picture

u  The code for all levels is the same
u  The same kernel code can be called multiple times
u  Caveat: still a highly sequential operation

w Do not expect 100x speedup with a few elements/thread

EPFL CS-206 – Spring 2015 Lec.12 - 36

Reduction Kernel #1: Strategy

u  Each thread loads one element into shared memory
u  Reduce: Proceed in logN steps

w  In each step, half of the threads are active, reducing two
elements

u  Terminate: when one thread left
u  Last thread writes back to global memory

EPFL CS-206 – Spring 2015 Lec.12 - 37

Reduction Steps

EPFL CS-206 – Spring 2015 Lec.12 - 38

Reduction Kernel #1: Interleaved Accesses
__global__ void reduce0(int *g_idata, int *g_odata, int n) {

 extern __shared__ int sdata[];

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

 // do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) { // step = s x 2
 if (tid % (2*s) == 0) { // only threadIDs divisible by the step participate
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

EPFL CS-206 – Spring 2015 Lec.12 - 39

Allocating Shared Memory

__global__ void reduce0(int *g_idata, int *g_odata, int i) {
 extern __shared__ int sdata[];

u  How many elements in sdata?
u  Specify when calling the kernel:

w  reduce0<<<blocks, threads, smemSize>>>(in, …

EPFL CS-206 – Spring 2015 Lec.12 - 40

Performance for Kernel #1

Time (222 ints)

Kernel 1:
interleaved addressing
with divergent branching

4.25ms

EPFL CS-206 – Spring 2015 Lec.12 - 41

Reduction Kernel #1: Interleaved Accesses
__global__ void reduce0(int *g_idata, int *g_odata, int n) {

 extern __shared__ int sdata[];

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

 // do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) { // step = s x 2
 if (tid % (2*s) == 0) { // only threadIDs divisible by the step participate
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Highly divergent code
leads to poor
performance

EPFL CS-206 – Spring 2015 Lec.12 - 42

Lots of idle threads!
Step = 1 Step = 2

Step = 3 Step = 4

active

idle

EPFL CS-206 – Spring 2015 Lec.12 - 43

How will these run?

Step = 3

active

idle Good!

together
this way

EPFL CS-206 – Spring 2015 Lec.12 - 44

How will these run?

Step = 3

active

idle

Disaster!
together
this way

EPFL CS-206 – Spring 2015 Lec.12 - 45

Need some control over scheduling

u No order among threads in a block
u But, threads are grouped to run together
u The grouping is called a “warp”
u Warp grouping follows sequential thread id

EPFL CS-206 – Spring 2015 Lec.12 - 46

GPU Core: Streaming Multiprocessor (SM)
FETCH

DECODE
SCHEDULE

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG
32

REGREG
REGREG

MEM

REG
REG

REGREGLOCAL
MEM

REGREG
REGREG

CACHE

EPFL CS-206 – Spring 2015 Lec.12 - 47

GPU Multicore: SM’s connected via memory

SM
FETCH

DECODE
SCHEDULE

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

REG
REG

REG
REG

MEM

REG
REG

REG
REG LOCA

L
MEM

REG
REG

REG
REG

CACHE

SM
FETCH

DECODE
SCHEDULE

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

REG
REG

REG
REG

MEM

REG
REG

REG
REG LOCA

L
MEM

REG
REG

REG
REG

CACHE

SM
FETCH

DECODE
SCHEDULE

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

REG
REG

REG
REG

MEM

REG
REG

REG
REG LOCA

L
MEM

REG
REG

REG
REG

CACHE

Block Scheduler

Shared Cache

Global Memory

EPFL CS-206 – Spring 2015 Lec.12 - 48

GPU Core – Streaming Multiprocessor (SM)
FETCH

DECODE
SCHEDULE

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG
32

REGREG
REGREG

MEM

REG
REG

REGREGLOCAL
MEM

REGREG
REGREG

CACHE

Warp Pool

EPFL CS-206 – Spring 2015 Lec.12 - 49

Fade example

u  Each thread will process one pixel
for all elements do in parallel

 a[i] = a[i] * f;

EPFL CS-206 – Spring 2015 Lec.12 - 50

Decompose into blocks

EPFL CS-206 – Spring 2015 Lec.12 - 51

Assign each block to a core (SM)

EPFL CS-206 – Spring 2015 Lec.12 - 52

Decompose a Block into Warps

thread

EPFL CS-206 – Spring 2015 Lec.12 - 53

Execute Warps onto cores (SMs)

thread

EPFL CS-206 – Spring 2015 Lec.12 - 54

Warp vs. Thread vs. Instructions

Warp is 32 Threads

Each Thread has the same program
Each thread will execute many instructions

__global__ void fadepic (float *a, float f, int N)
 {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) a[i] = a[i] * f;
 }

EPFL CS-206 – Spring 2015 Lec.12 - 55

Warp scheduling – Hiding Stalls

EPFL CS-206 – Spring 2015 Lec.12 - 56

Exposing Locality to Programmer

grid

block

Threads within a group can co-operate and coordinate

EPFL CS-206 – Spring 2015 Lec.12 - 57

 thread 10 thread 11
 a[10] = in[10] a[11] = in[11]

 sync sync

 a[10] += a[11]

Communication & Synchronization

block

communication

synchronization
grid

EPFL CS-206 – Spring 2015 Lec.12 - 58

WARP Execution and Control Flow Divergence
if (in[i] == 0) out[i] = sqrt(x);
else out[i] = 10;

in[i] == 0

out[i] = sqrt(x)
out[i] = 10

in[i] == 0

idle

WARP

TIM
E

EPFL CS-206 – Spring 2015 Lec.12 - 59

Control Flow Divergence Contd.

in[i] == 0

idle

WARP

TIM
E

in[i] == 0

WARP #1

Good Scenario

in[i] == 0

WARP #2

Bad Scenario

EPFL CS-206 – Spring 2015 Lec.12 - 60

Back to Reduction Kernel #1
__global__ void reduce0(int *g_idata, int *g_odata, int n) {

 extern __shared__ int sdata[];

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

 // do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) { // step = s x 2
 if (tid % (2*s) == 0) { // only threadIDs divisible by the step participate
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Highly divergent code
leads to poor
performance

EPFL CS-206 – Spring 2015 Lec.12 - 61

Divergent threads in warps!
Step = 1 Step = 2

Step = 3 Step = 4

active

idle

WARP

EPFL CS-206 – Spring 2015 Lec.12 - 62

Lots of idle threads/warp

EPFL CS-206 – Spring 2015 Lec.12 - 63

Group all active threads together!

EPFL CS-206 – Spring 2015 Lec.12 - 64

Reduction Kernel #2: Non-divergent threads
Replace the divergent branching code

 // do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

With strided index and non-divergent branch

 // do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) {
 int index = 2 * s * tid;

 if (index < blockDim.x / s) {
 sdata[index] += sdata[index + s];
 }
 __syncthreads();
 }

EPFL CS-206 – Spring 2015 Lec.12 - 65

Non-divergent threads
Step = 1 Step = 2

Step = 3 Step = 4

active

idle

WARP

EPFL CS-206 – Spring 2015 Lec.12 - 66

Performance for 4M element reduction

Time (222 ints) Step
Speedup

Cumulative
Speedup

Kernel 1:
interleaved addressing
with divergent branching

4.25ms

Kernel 2:
interleaved addressing
non-divergent branching

3.32 ms 1.28x 1.28x

u  Hmm…..not enough parallelism
u  What gives?

EPFL CS-206 – Spring 2015 Lec.12 - 67

Recall: Using Shared Memory

u  Load temporally into shared memory

u  For inter-thread communication within
a block

u  Cache data to reduce redundant global
memory accesses

u  Use it to improve global memory
access patterns

Grid

Global Memory

Block (0, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Block (1, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Constant Memory

EPFL CS-206 – Spring 2015 Lec.12 - 68

Shared Memory is a bottleneck!

u  How do we let tens of threads
access memory?

Grid

Global Memory

Block (0, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Block (1, 0)

Shared
Memory

Thread
(0, 0)

Thread
(1, 0)

Constant Memory

Shared
Memory

Threads

EPFL CS-206 – Spring 2015 Lec.12 - 69

Shared memory is banked!
u Parallel access to shared memory

w Causes contention
w Therefore, memory is divided into banks
w Essential to achieve high bandwidth

u A memory can service as many
simultaneous accesses as it has banks
w Typically, one access per two cycles

u Multiple simultaneous accesses to a bank
result in a conflict
w Conflicting accesses are serialized

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

EPFL CS-206 – Spring 2015 Lec.12 - 70

Shared Memory Bank Conflicts
u  Organization (machine dependent):

w  32 banks, 4-byte wide banks
w  Successive 4-byte words belong to different banks
w  4- or 8-byte interleaving à 2x for double floats

u  Performance:
w  E.g., 4 bytes per bank per 2 clocks per core
w  Memory accesses are issued per 32 threads (warp)
w  Serialization: threads accessing different words in the same bank

w Accesses are serialized
w  Multicasting: threads accessing the same word in the same bank

w Accesses are parallel

EPFL CS-206 – Spring 2015 Lec.12 - 71

Bank Addressing Examples
No Bank Conflicts
Linear addressing stride = 1

No Bank Conflicts
Random 1:1 Permutation

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

EPFL CS-206 – Spring 2015 Lec.12 - 72

Bank Addressing Examples
2-way Bank Conflicts
Linear addressing stride = 2

16-way Bank Conflicts
Linear addressing stride = 16

Thread 18
Thread 17
Thread 16

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 16
Bank 15

Bank 31

Bank 14

Bank 2
Bank 1
Bank 0

8 conflicts

EPFL CS-206 – Spring 2015 Lec.12 - 73

Shared Memory Performance Summary

u  The fast case:
w All threads access different banks, no bank conflict
w No two different words are accessed in the same bank

u  The slow case:
w Bank conflict: multiple threads access different words in the

same bank
w Must serialize accesses
w Cost = max # of simultaneous accesses to a single bank

EPFL CS-206 – Spring 2015 Lec.12 - 74

Linear Addressing

 __shared__ float shared[256];
 float foo =

 shared[baseIndex + s * threadIdx.x];

•  This is only conflict-free if s shares no
common factors with the number of banks

•  With 32 banks, s must be odd

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

s=3

s=1

EPFL CS-206 – Spring 2015 Lec.12 - 75

Example with 32 banks

shared[baseIndex + s * threadIdx.x];

Calculate the degree of conflict for s=1, s=2, s=3, s=4

EPFL CS-206 – Spring 2015 Lec.12 - 76

Example with 32 banks

 shared[baseIndex + s * threadIdx.x];

Calculate the degree of conflict for s=1, s=2, s=3, s=4
s=1
Accesses to bank 0: 0

s=2
Accesses to bank 0: 0, 16

s=3
Accesses to bank 0: 0

s=4

Accesses to bank 0: 0, 8, 16, 24

EPFL CS-206 – Spring 2015 Lec.12 - 77

Data types & bank conflicts
u  This has no conflicts if type of shared is 32-bits
 foo = shared[baseIndex + threadIdx.x]

u  Multicast for all 32-bit & smaller data types

__shared__ char shared[];

__shared__ short shared[];

__shared__ int shared[];

__shared__ float shared[];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

EPFL CS-206 – Spring 2015 Lec.12 - 78

Example: Good Array Access Pattern

u  Each thread loads one element in every
consecutive group of blockDim elements

Bank 31

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 31

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

shared[tid] =
 global[tid];
shared[tid + blockDim.x] =
 global[tid + blockDim.x];

EPFL CS-206 – Spring 2015 Lec.12 - 79

Reduction #2: 2-way bank conflicts! Thread
conflicts

0/8….

0/4….

0/2…

Assuming 32 banks and 32 threads:
•  2-way bank conflicts at every step

0/16…

EPFL CS-206 – Spring 2015 Lec.12 - 80

Observe: Arbitrary Unique Pairs OK

10 11 4 5 12 13 1 7

23 12 17 11

34 29

63

1

2

3

4

EPFL CS-206 – Spring 2015 Lec.12 - 81

Reduction #3: Thread-sequential Accesses

EPFL CS-206 – Spring 2015 Lec.12 - 82

Reduction #3: Code Changes
u  Replace stride indexing in the inner loop

 // do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) {
 int index = 2 * s * tid;

 if (index < blockDim.x == 0) {
 sdata[index] += sdata[index + s];
 }
 __syncthreads();
 }

u  With reversed loop and threadID-based indexing
 // do reduction in shared mem
 for (unsigned int s = blockDim.x/2; s > 0; s /= 2) {

 if (tid < s) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

EPFL CS-206 – Spring 2015 Lec.12 - 83

Performance for 4M element reduction

Time (222 ints) Step
Speedup

Cumulative
Speedup

Kernel 1:
interleaved addressing
with divergent branching

4.25ms

Kernel 2:
interleaved addressing
non-divergent branching

3.32 ms 1.28x 1.28x

Kernel 3:
sequential addressing

2.06 ms 1.61x 2.06x

EPFL CS-206 – Spring 2015 Lec.12 - 84

Reduction #3: Bad resource utilization

u  All threads read one element
u  First step: half of the threads are idle
u  Next step: another half becomes idle

EPFL CS-206 – Spring 2015 Lec.12 - 85

Reduction #4: ���
Read two elements and do the first step
u  Original: Each thread reads one element

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = g_idata[i];
 __syncthreads();

u  Read and reduce the first two elements
 // each thread loads two elements from global to shared mem
// end performs the first step of the reduction
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x* blockDim.x * 2 + threadIdx.x;
 sdata[tid] = g_idata[i] + g_idata[i + blockDim.x];
 __syncthreads();

EPFL CS-206 – Spring 2015 Lec.12 - 86

Performance for 4M element reduction

Time (222 ints) Step
Speedup

Cumulative
Speedup

Kernel 1:
interleaved addressing
with divergent branching

4.25ms

Kernel 2:
interleaved addressing
non-divergent branching

3.32 ms 1.28x 1.28x

Kernel 3:
sequential addressing

2.06 ms 1.61x 2.06x

Kernel 4:
first step during global load

1.05 ms 1.96x 4.04x

EPFL CS-206 – Spring 2015 Lec.12 - 87

Reduction #4: Still way off

u  Memory bandwidth is still underutilized
w We know that reductions have low arithmetic density

u  What is the potential bottleneck?
w Ancillary instructions that are not loads, stores, or

arithmetic for the core computation
w Address arithmetic and loop overhead
w Synchronization overhead

u  Unroll loops to eliminate these “extra” instructions

EPFL CS-206 – Spring 2015 Lec.12 - 88

Unrolling the last warp

u  At every step the number of active threads halves
w When s <=32 there is only one warp left

u  Instructions are SIMD-synchronous within a warp
w They all happen in lock step
w No need to use __syncthreads()
w We don’t need “if (tid < s)” since it does not save any

work
w All threads in a warp will “see” all instructions

whether they execute them or not
u  Unroll the last 6 iterations of the inner loop

w s <= 32

EPFL CS-206 – Spring 2015 Lec.12 - 89

Last warps
Step = 4 Step = 5

Step = 6 Step = 7

active

idle

EPFL CS-206 – Spring 2015 Lec.12 - 90

Reduction #5: Unrolling the last 6 iterations

 // do reduction in shared mem
 for (unsigned int s = blockDim.x/2; s > 32; s /= 2) {

 if (tid < s) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 if (tid <32)

 {
 sdata[tid] += sdata[tid + 32];
 sdata[tid] += sdata[tid + 16];
 sdata[tid] += sdata[tid + 8];
 sdata[tid] += sdata[tid + 4];
 sdata[tid] += sdata[tid + 2];
 sdata[tid] += sdata[tid + 1];
 }

EPFL CS-206 – Spring 2015 Lec.12 - 91

Unrolling the last warp: A Closer Look

sdata[tid] += sdata[tid + 32];
0 31

32 63

0 31 threadID

Element
index

15

All threads doing useful work

0 31

EPFL CS-206 – Spring 2015 Lec.12 - 92

Unrolling the Last WARP: A Closer Look

sdata[tid] += sdata[tid + 16];

u  Half of the threads do useless work (thrown away)
u  Elements 16-31 are inputs to threads 0-14
u  But threads 0-15 read them before they get written by threads 16-31

w  All reads proceed in “parallel” first
w  All writes proceed in “parallel” last

u  But, threads 16-31 are doing useless work
w  The units and bandwidth are there à no harm (only power)

0 31

32

0 31 threadID 20 15

0 31

EPFL CS-206 – Spring 2015 Lec.12 - 93

Unrolling the last warp: A Closer Look
0 31

32

0 31 threadID 20 7

0 31

0 31

32

0 31 20 3

0 31

EPFL CS-206 – Spring 2015 Lec.12 - 94

Unrolling the last warp: A Closer Look
0 31

32

0 31 20

1

0 31

32

0 31 20

0 31

EPFL CS-206 – Spring 2015 Lec.12 - 95

Performance for 4M element reduction

Time (222 ints) Step
Speedup

Cumulative
Speedup

Kernel 1:
interleaved addressing
with divergent branching

4.25ms

Kernel 2:
interleaved addressing
non-divergent branching

3.32 ms 1.28x 1.28x

Kernel 3:
sequential addressing

2.06 ms 1.61x 2.06x

Kernel 4:
first step during global load

1.05 ms 1.96x 4.04x

Kernel 5:
Unroll last warp

0.73ms 1.43x 5.82x

EPFL CS-206 – Spring 2015 Lec.12 - 96

Summary

u  Performance (efficiency) is everything
u  Need to assign work, schedule memory carefully

u  Techniques:
w Tiling and shared memory
w WARPs
w Avoiding bank conflicts
w Loop unrolling

