# CS-206 Concurrency

# Lecture 12

CUDA

Spring 2015 Prof. Babak Falsafi parsa.epfl.ch/courses/cs206/



Adapted from slides originally developed by Babak Falsafi, David Kirk and Andreas Moshovos

EPFL Copyright 2015

EPFL CS-206 – Spring 2015

## Where are We?

|        |             | Lecture |        |        |
|--------|-------------|---------|--------|--------|
|        |             | & Lab   | Lab    |        |
| М      | Т           | W       | Т      | F      |
| 16-Feb | 17-Feb      | 18-Feb  | 19-Feb | 20-Feb |
| 23-Feb | 24-Feb      | 25-Feb  | 26-Feb | 27-Feb |
| 2-Mar  | 3-Mar       | 4-Mar   | 5-Mar  | 6-Mar  |
| 9-Mar  | 10-Mar      | 11-Mar  | 12-Mar | 13-Mar |
| 16-Mar | 17-Mar      | 18-Mar  | 19-Mar | 20-Mar |
| 23-Mar | 24-Mar      | 25-Mar  | 26-Mar | 27-Mar |
| 30-Mar | 31-Mar      | 1-Apr   | 2-Apr  | 3-Apr  |
| 6-Apr  | 7-Apr       | 8-Apr   | 9-Apr  | 10-Apr |
| 13-Apr | 14-Apr      | 15-Apr  | 16-Apr | 17-Apr |
| 20-Apr | 21-Apr      | 22-Apr  | 23-Apr | 24-Apr |
| 27-Apr | 28-Apr      | 29-Apr  | 30-Apr | 1-May  |
| 4-May  | 5-Mąy       | 6-May   | 7-May  | 8-May  |
| 11-May | <u>12-M</u> | 13-May  | 14-May | 15-May |
| 18-May |             | 20-May  | 21-May | 22-May |
| 25-May | 26-M        | 27-May  | 28-May | 29-May |

Matrix Multiply
 Basic

#### Performance

- ▷ Shared memory/Tiling
- ▷ WARPs
- ▷ Memory bank conflicts
- $\triangleright$  Loop overhead

## Can you do this one now?

# $(\mathbf{C}) = (\mathbf{A}) \cdot (\mathbf{B})$

# Programming Model: Square Matrix Multiplication Example



- One thread calculates one element of P
- M and N are loaded WIDTH times from global memory



## Memory Layout of a Matrix in C

| <b>M</b> 0,0            | <b>M</b> <sub>0,1</sub> | M <sub>0,2</sub>        | M <sub>0,3</sub>        |
|-------------------------|-------------------------|-------------------------|-------------------------|
| <b>M</b> <sub>1,0</sub> | <b>M</b> <sub>1,1</sub> | <b>M</b> <sub>1,2</sub> | <b>M</b> <sub>1,3</sub> |
| M <sub>2,0</sub>        | M <sub>2,1</sub>        | M <sub>2,2</sub>        | M <sub>2,3</sub>        |
| M <sub>3,0</sub>        | M <sub>3,1</sub>        | M <sub>3,2</sub>        | M <sub>3,3</sub>        |



Step I: Matrix Multiplication A Simple Host Version in C

```
// Matrix multiplication on (CPU) host
void MatrixMulOnHost (float* M,
                 float* N, float* P, int Width) {
  for (int i = 0; i < Width; ++i)
     for (int j = 0; j < Width; ++j) {
        float sum = 0;
        for (int k = 0; k < Width; ++k) {
           float a = M[i * width + k];
           float b = N[k * width + j];
           sum += a * b;
                                     Μ
        P[i * Width + j] = sum;
     }
```



# Step 2: Input Matrix Data Transfer (Host-side Code)

void MatrixMulOnDevice (float\* M, float\* N, float\* P, int Width) {
 int size = Width \* Width \* sizeof(float);
 float\* Md, Nd, Pd;

1. // Allocate and Load M, N to device memory cudaMalloc(&Md, size); cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size); cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device cudaMalloc(&Pd, size);

# Step 3: Output Matrix Data Transfer (Host-side Code)

- 2. // Kernel invocation code to be shown later
- // Read P from the device cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

```
// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}
```

#### // Matrix multiplication kernel – per thread code

\_\_global\_\_\_ void MatrixMulKernel (float\* Md, float\* Nd, float\* Pd, int Width) {

# // Pvalue is used to store the element of the matrix // that is computed by the thread float Pvalue = 0;

# Step 4: Kernel Function (cont.)

```
for (int k = 0; k < Width; ++k) {
    float Melement = Md[threadIdx.y*Width+k];
    float Nelement = Nd[k*Width+threadIdx.x];
    Pvalue += Melement * Nelement;
```

Pd[threadIdx.y\*Width+threadIdx.x] = Pvalue;

Md



# Step 5: Kernel Invocation (Host-side Code)

#### **// Setup the execution configuration**

dim3 dimGrid(1, 1); dim3 dimBlock(Width, Width);

#### // Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

## Only One Thread Block Used

- Each thread computes one Pd element
   Loads row of matrix Md
   Loads column of matrix Nd
   Performs one multiply and addition
- Compute to global memory access ratio close to 1:1

▷ not very high!

Size of matrix limited by the number of threads allowed in a thread block



## What is the required memory bandwidth?

All accesses to global memory

In inner loop (k from 0 to WIDTH)

- 2 memory accesses (8 bytes) floating-point per multiply-add (2 FLOP)
- Assume peak arithmetic performance is 5 TFLOPs
- How many GB/s bandwidth to Global Memory?



## But, actual bandwidth is much much lower!!!

Global memory bandwidth~300 GB/s

- How many FLOPS would our matrix multiply run at?
- How much slower is that than the peak bandwidth?

► What do we do????



## Use Shared Memory

- Global memory is DRAM (slow)
- Shared memory is on-chip (fast)
- Partition data into tiles that fit in shared memory
- Use the tiles in parallel
  - Load tile using multiple threads
  - ▷ Compute in parallel
  - Copy results back to global memory in parallel
- Compute in shared memory



## Where to Declare Variables?



## Back to Matrix Multiply: Divide it into tiles

Md

```
for (int k = 0; k < Width; ++k) {
    float Melement = Md[threadIdx.y*Width+k];
    float Nelement = Nd[k*Width+threadIdx.x];
    Pvalue += Melement * Nelement;
}</pre>
```

Pd[threadIdx.y\*Width+threadIdx.x] = Pvalue;



## Idea: Use shared memory to reuse data

Μ

Each input element is read by Width threads

- Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
- ➡Tiled algorithms



## Handling Arbitrary Sized Square Matrices

- Each 2D block to compute a (TILE\_WIDTH)<sup>2</sup> sub-matrix (tile) of the result matrix
- ► (TILE\_WIDTH)<sup>2</sup> threads
- Generate 2D Grid of (WIDTH/TILE\_WIDTH)<sup>2</sup> blocks



# **Tiled Multiply**

Break up kernel execution into phases so that data accesses in each phase are focused on one Md and Nd tile





## A Small Example



EPFL CS-206 – Spring 2015

2 - 21

Every Md and Nd Element is used exactly twice in generating a 2X2 tile of P



- Each thread block should have many threads
   TILE\_WIDTH of 64 gives 64\*64 = 4096 threads
- There should be many thread blocks
   A 1024\*1024 Pd gives 16\*16= 64 Thread Blocks
- Each thread block performs 2\*4096 = 8192 float loads from global memory for 4096 \* (2\*64) = 524K mul/add operations
   Memory bandwidth no longer a limiting factor

## CUDA Code – Kernel Execution Configuration

#### **// Set up the execution configuration**

dim3 dimBlock(TILE\_WIDTH, TILE\_WIDTH); dim3 dimGrid(Width / TILE\_WIDTH, Width / TILE\_WIDTH); \_\_shared\_\_float Mds[TILE\_WIDTH][TILE\_WIDTH];
\_\_shared\_\_float Nds[TILE\_WIDTH][TILE\_WIDTH];

```
int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y;
// Identify the row and column of the Pd element to work on
int Row = by * TILE_WIDTH + ty; int Col = bx * TILE_WIDTH + tx; float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Collaborative loading of Md and Nd tiles into shared memory
     Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
     Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
    ____syncthreads();
    for (int k = 0; k < TILE_WIDTH; ++k)
        Pvalue += Mds[ty][k] * Nds[k][tx];
    ___syncthreads();
}
```

**Tiled Kernel** 

```
Pd[Row*Width+Col] = Pvalue;
```

}

## Must sync threads when loading/computing

- All threads load tile together
- All thread compute together
- But, loading & computing can not be overlapped!
  Why not?
- How do we keep them apart?
- Barrier synchronization
  - $\triangleright$  \_\_\_\_\_syncthreads()
  - ▷ Also, called "barrier" synchronization
  - $\triangleright$  All threads reach barrier, wait for others, then continue

\_global\_\_\_ void MatrixMulKernel(float\* Md, float\* Nd, float\* Pd, int Width) {

```
__shared__float Mds[TILE_WIDTH][TILE_WIDTH];
__shared__float Nds[TILE_WIDTH][TILE_WIDTH];
```

```
int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y;
// Identify the row and column of the Pd element to work on
int Row = by * TILE_WIDTH + ty; int Col = bx * TILE_WIDTH + tx; float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
     Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
     Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
     syncthreads();
    for (int k = 0; k < TILE_WIDTH; ++k)
        Pvalue += Mds[ty][k] * Nds[k][tx];
     __syncthreads();
```

```
}
Pd[Row*Width+Col] = Pvalue;
```

}

## Shared Memory Bandwidth with 64x64 tiles

### Each core has 96KB shared memory

- ▷ Size is implementation dependent!
- $\triangleright$  Assume TILE\_WIDTH = 64
- $\triangleright$  Each GPU block holds a tile (64×64)
- $\triangleright$  We share elements along TILE\_WIDTH (for M and N)
- ▷ Assuming 20 TB/s
- ▷ How much do we cut the required bandwidth?
- $\triangleright$  How many tiles can we fit?

## Shared Memory Bandwidth with 128x128 tiles

#### Each core has 96KB shared memory

- ▷ Size is implementation dependent!
- $\triangleright$  Assume TILE\_WIDTH = 128
- ▷ How much does memory bandwidth improve?

## Shared Memory Bandwidth

#### Each core has 96KB shared memory

- ▷ Size is implementation dependent!
- $\triangleright$  Assume TILE\_WIDTH = 64, each block uses 2\*4096\*4B = 32KB
- ▷ Can have up to 3 Thread Blocks actively executing
- ▷ 3\*8192= 24K pending loads. (2 per thread, 4096 threads per block)
- 64x64 tiling reduces accesses to the global memory by 64x
   300 GB/s bandwidth can now support (300/4)\*64 = 4.8 TFLOPS!

Multiple values are reduced into a single value > ADD, MUL, AND, OR, ....

Useful primitive

Easy enough to allow us to focus on optimization techniques

- → partial result
  > Process the next element
  > O(N) (*i.e., runtime linear function of N*)
- Start with the first two elements

Sequential Reduction

10

Pair-wise reduction in steps – Tree-like



## Different-degree trees possible

Pair-wise reduction in steps – Tree-like



# Reduction: Big Picture



#### The code for all levels is the same

- The same kernel code can be called multiple times
- Caveat: still a highly sequential operation
   Do not expect 100x speedup with a few elements/thread

- Each thread loads one element into shared memory
- Reduce: Proceed in logN steps
  - In each step, half of the threads are active, reducing two elements
- Terminate: when one thread left
- Last thread writes back to global memory
# Reduction Steps



#### Reduction Kernel #1: Interleaved Accesses

```
_global__ void reduce0(int *g_idata, int *g_odata, int n) {
    extern __shared__ int sdata[];
```

```
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
____syncthreads();
```

```
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) { // step = s x 2
            if (tid % (2*s) == 0) { // only threadIDs divisible by the step participate
                 sdata[tid] += sdata[tid + s];
            }
            ____syncthreads();
}</pre>
```

```
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
```

\_global\_\_ void reduce0(int \*g\_idata, int \*g\_odata, int i) { extern \_\_shared\_\_ int sdata[];

- How many elements in sdata?
- Specify when calling the kernel:
  - reduce0<<<blocks, threads, smemSize>>>(in, ...)

## Performance for Kernel #1

#### Time (2<sup>22</sup> ints)

| Kernel 1:<br>interleaved addressing<br>with divergent branching | 4.25ms |
|-----------------------------------------------------------------|--------|
|-----------------------------------------------------------------|--------|

#### Reduction Kernel #1: Interleaved Accesses

```
_global__ void reduce0(int *g_idata, int *g_odata, int n) {
    extern __shared__ int sdata[];
```

```
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
____syncthreads();
```

```
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) { // step = s x 2
    if (tid % (2*s) == 0) { // only thread!Ds divisible by the step participate
        sdata[tid] += sdata[tid + s];
        Highly divergent code
        leads to poor
        leads to poor
        performance</pre>
```

```
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
```

#### Lots of idle threads!

Step = 1



Step = 
$$2$$







idle





Step = 4







Step = 3

- No order among threads in a block
- But, threads are grouped to run together
- ► The grouping is called a "warp"
- ► Warp grouping follows sequential thread id

# GPU Core: Streaming Multiprocessor (SM)



## GPU Multicore: SM's connected via memory



# GPU Core – Streaming Multiprocessor (SM)



#### Fade example

#### Each thread will process one pixel for all elements do in parallel a[i] = a[i] \* f;



### Decompose into blocks





## Assign each block to a core (SM)







## Decompose a Block into Warps



## Execute Warps onto cores (SMs)







### Warp vs. Thread vs. Instructions



# Warp scheduling – Hiding Stalls









EPFL CS-206 – Spring 2015

## Exposing Locality to Programmer



Threads within a group can co-operate and coordinate

### Communication & Synchronization



#### WARP Execution and Control Flow Divergence



# Control Flow Divergence Contd.



## Back to Reduction Kernel #1

```
_global__ void reduce0(int *g_idata, int *g_odata, int n) {
    extern __shared__ int sdata[];
```

```
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
____syncthreads();
```

```
// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];
```

#### Divergent threads in warps!

Step = 1





Step = 3



Step = 4





## Lots of idle threads/warp



## Group all active threads together!



## Reduction Kernel #2: Non-divergent threads

#### Replace the divergent branching code

```
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
        if (tid % (2*s) == 0) {
            sdata[tid] += sdata[tid + s];
        }
        ____syncthreads();
}</pre>
```

#### With strided index and non-divergent branch

```
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;
    if (index < blockDim.x / s) {
        sdata[index] += sdata[index + s];
    }
    ____syncthreads();
}</pre>
```

## Non-divergent threads

Step = 1





Step = 3



Step = 
$$4$$





## Performance for 4M element reduction

|                                                                 | Time (2 <sup>22</sup> ints) | Step<br>Speedup | Cumulative<br>Speedup |
|-----------------------------------------------------------------|-----------------------------|-----------------|-----------------------|
| Kernel 1:<br>interleaved addressing<br>with divergent branching | 4.25ms                      |                 |                       |
| Kernel 2:<br>interleaved addressing<br>non-divergent branching  | 3.32 ms                     | 1.28x           | 1.28x                 |

- Hmm....not enough parallelism
- ► What gives?

## Recall: Using Shared Memory

- Load temporally into shared memory
- For inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- Use it to improve global memory access patterns



## Shared Memory is a bottleneck!



## Shared memory is banked!

Parallel access to shared memory
 Causes contention
 Therefore, memory is divided into banks

- $\triangleright$  Essential to achieve high bandwidth
- A memory can service as many simultaneous accesses as it has banks
   Typically, one access per two cycles

 Multiple simultaneous accesses to a bank result in a conflict
 Conflicting accesses are serialized



## Shared Memory Bank Conflicts

- Organization (machine dependent):
  - $\triangleright$  32 banks, 4-byte wide banks
  - > Successive 4-byte words belong to different banks
  - $\triangleright$  4- or 8-byte interleaving  $\rightarrow$  2x for double floats

#### Performance:

- ▷ E.g., 4 bytes per bank per 2 clocks per core
- ▷ Memory accesses are issued per 32 threads (warp)
- > Serialization: threads accessing different words in the same bank

 $\triangleright$  Accesses are serialized

> Multicasting: threads accessing the same word in the same bank

 $\triangleright$  Accesses are parallel

# Bank Addressing Examples



# Bank Addressing Examples

2-way Bank Conflicts I 6-way Bank Conflicts Linear addressing stride = 2Linear addressing stride = 168 conflicts Thread O Bank O Thread O Bank O Bank 1 Bank 1 Thread 1 Thread 1 Bank 2 Thread 2 Bank 2 Thread 2 Bank 3 Thread 3 Thread 3 Thread 4 Bank 4 Thread 4 Bank 5 Thread 5 Bank 14 Bank 6 Thread 6 Bank 15  $\bigcirc$ Bank 7 Thread 7 Bank 16 Thread 16 Thread 17 Thread 18 Bank 31 Bank 31 Thread 3
## Shared Memory Performance Summary

### ► The fast case:

All threads access different banks, no bank conflict
 No two different words are accessed in the same bank

### ► The slow case:

- Bank conflict: multiple threads access different words in the same bank
- $\triangleright$  Must serialize accesses
- $\triangleright$  Cost = max # of simultaneous accesses to a single bank

```
__shared__ float shared[256];
float foo =
shared[baseIndex + s * threadIdx.x];
```

- This is only conflict-free if s shares no common factors with the number of banks
- With 32 banks, s must be odd





shared[baseIndex + s \* threadIdx.x];

Calculate the degree of conflict for s=1, s=2, s=3, s=4

shared[baseIndex + s \* threadIdx.x]; Calculate the degree of conflict for s=1, s=2, s=3, s=4 s=1

Accesses to bank 0:0

#### s=2

Accesses to bank 0:0, 16

#### s=3

Accesses to bank 0:0

#### s=4

Accesses to bank 0: 0, 8, 16, 24

### Data types & bank conflicts

- This has no conflicts if type of shared is 32-bits foo = shared[baseIndex + threadIdx.x]
- Multicast for all 32-bit & smaller data types

| shared | char | <pre>shared[];</pre> |  |
|--------|------|----------------------|--|
|--------|------|----------------------|--|

\_\_\_shared\_\_\_ short shared[];

\_shared\_\_ int shared[];

shared float shared[];



## Example: Good Array Access Pattern

Each thread loads one element in every consecutive group of blockDim elements

```
shared[tid] =
    global[tid];
shared[tid + blockDim.x] =
    global[tid + blockDim.x];
```





Assuming 32 banks and 32 threads:

• 2-way bank conflicts at every step

### Observe: Arbitrary Unique Pairs OK



### Reduction #3: Thread-sequential Accesses



# Reduction #3: Code Changes

```
Replace stride indexing in the inner loop
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;
    if (index < blockDim.x == 0) {
        sdata[index] += sdata[index + s];
    }
    ____syncthreads();
}
```

With reversed loop and threadID-based indexing // do reduction in shared mem

```
for (unsigned int s = blockDim.x/2; s > 0; s /= 2) {
```

## Performance for 4M element reduction

|                                                                 | Time (2 <sup>22</sup> ints) | Step<br>Speedup | Cumulative<br>Speedup |
|-----------------------------------------------------------------|-----------------------------|-----------------|-----------------------|
| Kernel 1:<br>interleaved addressing<br>with divergent branching | 4.25ms                      |                 |                       |
| Kernel 2:<br>interleaved addressing<br>non-divergent branching  | 3.32 ms                     | 1.28x           | 1.28x                 |
| Kernel 3:<br>sequential addressing                              | 2.06 ms                     | 1.61x           | 2.06x                 |

- All threads read one element
- ► First step: half of the threads are idle
- Next step: another half becomes idle

## Reduction #4: Read two elements and do the first step

Original: Each thread reads one element // each thread loads one element from global to shared mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x\*blockDim.x + threadIdx.x; sdata[tid] = g\_idata[i]; \_\_\_syncthreads();

#### Read and reduce the first two elements

```
// each thread loads two elements from global to shared mem
// end performs the first step of the reduction
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x* blockDim.x * 2 + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i + blockDim.x];
____syncthreads();
```

## Performance for 4M element reduction

|                                                                 | Time (2 <sup>22</sup> ints) | Step<br>Speedup | Cumulative<br>Speedup |
|-----------------------------------------------------------------|-----------------------------|-----------------|-----------------------|
| Kernel 1:<br>interleaved addressing<br>with divergent branching | 4.25ms                      |                 |                       |
| Kernel 2:<br>interleaved addressing<br>non-divergent branching  | 3.32 ms                     | 1.28x           | 1.28x                 |
| Kernel 3:<br>sequential addressing                              | 2.06 ms                     | 1.61x           | 2.06x                 |
| Kernel 4:<br>first step during global load                      | 1.05 ms                     | 1.96x           | 4.04x                 |

Memory bandwidth is still underutilized
 We know that reductions have low arithmetic density

### What is the potential bottleneck?

- Ancillary instructions that are not loads, stores, or arithmetic for the core computation
- > Address arithmetic and loop overhead
- Synchronization overhead

### Unroll loops to eliminate these "extra" instructions

At every step the number of active threads halves
 When s <=32 there is only one warp left</li>

- Instructions are SIMD-synchronous within a warp
  - ▷ They all happen in lock step
  - ▷ No need to use \_\_\_\_syncthreads()
  - We don't need "if (tid < s)" since it does not save any work

All threads in a warp will "see" all instructions whether they execute them or not

Unroll the last 6 iterations of the inner loop
> s <= 32</p>



Step = 4











Step = 6



Step = 
$$7$$







# Reduction #5: Unrolling the last 6 iterations

// do reduction in shared mem
for (unsigned int s = blockDim.x/2; s > 32; s /= 2) {

```
if (tid < s) {
        sdata[tid] += sdata[tid + s];
}
___syncthreads();</pre>
```

```
if (tid <32)
{
    sdata[tid] += sdata[tid + 32];
    sdata[tid] += sdata[tid + 16];
    sdata[tid] += sdata[tid + 8];
    sdata[tid] += sdata[tid + 4];
    sdata[tid] += sdata[tid + 2];
    sdata[tid] += sdata[tid + 1];
}</pre>
```

}

### Unrolling the last warp: A Closer Look



All threads doing useful work

# Unrolling the Last WARP: A Closer Look

### sdata[tid] += sdata[tid + 16];



- Half of the threads do useless work (thrown away)
- ► Elements 16-31 are inputs to threads 0-14
- But threads 0-15 read them before they get written by threads 16-31
  - All reads proceed in "parallel" first
  - All writes proceed in "parallel" last
- But, threads 16-31 are doing useless work
  - $\triangleright$  The units and bandwidth are there  $\rightarrow$  no harm (only power)

### Unrolling the last warp: A Closer Look



EPFL CS-206 – Spring 2015

### Unrolling the last warp: A Closer Look





Lec.12 - 94

## Performance for 4M element reduction

|                                                                 | Time (2 <sup>22</sup> ints) | Step<br>Speedup | Cumulative<br>Speedup |
|-----------------------------------------------------------------|-----------------------------|-----------------|-----------------------|
| Kernel 1:<br>interleaved addressing<br>with divergent branching | 4.25ms                      |                 |                       |
| Kernel 2:<br>interleaved addressing<br>non-divergent branching  | 3.32 ms                     | 1.28x           | 1.28x                 |
| Kernel 3:<br>sequential addressing                              | 2.06 ms                     | 1.61x           | 2.06x                 |
| Kernel 4:<br>first step during global load                      | 1.05 ms                     | 1.96x           | 4.04x                 |
| Kernel 5:<br>Unroll last warp                                   | 0.73ms                      | 1.43x           | 5.82x                 |



- Performance (efficiency) is everything
- Need to assign work, schedule memory carefully

► Techniques:

- $\triangleright$  Tiling and shared memory
- $\triangleright$  WARPs
- ▷ Avoiding bank conflicts
- ⊳ Loop unrolling