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Where are We?

u  Matrix Multiply
w Basic

u  Performance
w Shared memory/Tiling
w WARPs
w Memory bank conflicts
w Loop overhead
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Can you do this one now?

( ) ( ) ( )BAC •=
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Programming Model:���
Square Matrix Multiplication Example

u  P = M * N of size WIDTH x WIDTH

u  One thread calculates one element of P

u  M and N are loaded WIDTH times from 
global memory
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M0,2 

M1,1 

M0,1 M0,0 

M1,0 

M0,3 

M1,2 M1,3 

Memory Layout of a Matrix in C
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Step 1: Matrix Multiplication ���
A Simple Host Version in C
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// Matrix multiplication on (CPU) host  
void MatrixMulOnHost (float* M,  

  float* N, float* P, int Width) {    
    for (int i = 0; i < Width; ++i) 
        for (int j = 0; j < Width; ++j) { 
            float sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                float a = M[i * width + k]; 
                float b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 
 

i 

k 

k 
j 
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void MatrixMulOnDevice (float* M, float* N, float* P, int Width) { 
   int size = Width * Width * sizeof(float);  
    float* Md, Nd, Pd; 
   … 
1. // Allocate and Load M, N to device memory  
    cudaMalloc(&Md, size); 
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 
 
     cudaMalloc(&Nd, size); 
     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 
 
     // Allocate P on the device 
    cudaMalloc(&Pd, size); 
 

Step 2: Input Matrix Data Transfer���
(Host-side Code)
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Step 3: Output Matrix Data Transfer���
(Host-side Code)

2.   // Kernel invocation code – to be shown later 
     … 
 
3.   // Read P from the device 
      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); 
 
      // Free device matrices 
      cudaFree(Md); cudaFree(Nd); cudaFree (Pd); 
     } 
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// Matrix multiplication kernel – per thread code 
 
__global__  
void MatrixMulKernel (float* Md, float* Nd, float* Pd, int Width)‏ { 
     
    // Pvalue is used to store the element of the matrix 
    // that is computed by the thread 
    float Pvalue = 0; 
 
 

Step 4: Kernel Function
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Nd 
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  for (int k = 0; k < Width; ++k) { 
       float Melement = Md[threadIdx.y*Width+k]; 
       float Nelement = Nd[k*Width+threadIdx.x]; 
       Pvalue += Melement * Nelement; 
   } 
 
   Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 
} 
 

ty 

tx 

ty 
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Step 4: Kernel Function  (cont.)
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    // Setup the execution configuration 
       dim3 dimGrid(1, 1); 
       dim3 dimBlock(Width, Width); 
 
 
    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

Step 5: Kernel Invocation (Host-side Code) 
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Only One Thread Block Used
u Each thread computes one Pd element

w Loads row of matrix Md
w Loads column of matrix Nd
w Performs one multiply and addition 

u Compute to global memory access 
ratio close to 1:1 
w not very high!

u  Size of matrix limited by the number 
of  threads allowed in a thread block

 Grid 1 
Block 1 

3 2 5 4

2

4

2

6

48 

Thread( 
(2,2) 

   WIDTH 
Md Pd 

Nd 
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What is the required memory bandwidth?

All accesses to global memory 

In inner loop (k from 0 to WIDTH)

u  2 memory accesses (8 bytes)                
floating-point per multiply-add          
(2 FLOP)

u  Assume peak arithmetic performance 
is 5 TFLOPs

u  How many GB/s bandwidth to Global 
Memory?

Grid 

Global Memory 

Block (0, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Block (1, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Constant Memory 
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But, actual bandwidth is much much lower!!!

Global memory bandwidth~300 GB/s

u  How many FLOPS would our matrix 
multiply run at?

u  How much slower is that than the peak 
bandwidth?

u  What do we do????

Grid 

Global Memory 

Block (0, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Block (1, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Constant Memory 
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Use Shared Memory

u  Global memory is DRAM (slow)
u  Shared memory is on-chip (fast)

u  Partition data into tiles that fit in 
shared memory

u  Use the tiles in parallel
w  Load tile using multiple threads 
w  Compute in parallel
w  Copy results back to global 

memory in parallel
u Compute in shared memory

Grid 

Global Memory 

Block (0, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Block (1, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Constant Memory 
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Where to Declare Variables?

Can host access it? 

Outside of  
any Function In the kernel 

yes no global 
constant 

register 
shared 
local 
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  for (int k = 0; k < Width; ++k) { 
       float Melement = Md[threadIdx.y*Width+k]; 
       float Nelement = Nd[k*Width+threadIdx.x]; 
       Pvalue += Melement * Nelement; 
   } 
 
   Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 
} 
 

Back to Matrix Multiply: Divide it into tiles
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Idea: Use shared memory to reuse data

u  Each input element is read by Width threads
u  Load each element into Shared Memory and 

have several threads use the local version to 
reduce the memory bandwidth

èTiled algorithms
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19 

Handling Arbitrary Sized Square Matrices
u  Each 2D block to compute a (TILE_WIDTH)2 

sub-matrix (tile) of the result matrix

u  (TILE_WIDTH)2 threads

u  Generate 2D Grid of (WIDTH/TILE_WIDTH)2 

blocks
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Tiled Multiply

Break up kernel execution into phases so 
that data accesses in each phase are 
focused on one Md and Nd tile

tx 
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A Small Example

Pd1,0 Md2,0 

Md1,1 

Md1,0 Md0,0 

Md0,1 

Md3,0 

Md2,1 

Pd0,0 

Md3,1 Pd0,1 

Pd2,0 Pd3,0 

Nd0,3 Nd1,3 

Nd1,2 

Nd1,1 

Nd1,0 Nd0,0 

Nd0,1 

Nd0,2 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 
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Every Md and Nd Element is used exactly 
twice in generating a 2X2 tile of P

P0,0 

thread0,0 

P1,0 

thread1,0 
P0,1 

thread0,1 
P1,1 

thread1,1 
M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0 

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1 

M2,0 * N0,2 

 
M2,0 * N1,2 

 
M2,1 * N0,2 

 
M2,1 * N1,2 

 
M3,0 * N0,3 

 
M3,0 * N1,3 

 
M3,1 * N0,3 

 
M3,1 * N1,3 

 

Access 
order 
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First-order Size Considerations

u  Each thread block should have many threads
w TILE_WIDTH of 64 gives 64*64 = 4096 threads

u  There should be many thread blocks
w A 1024*1024 Pd gives 16*16= 64 Thread Blocks

u  Each thread block performs 2*4096 = 8192 float loads from 
global memory for 4096 * (2*64) = 524K mul/add operations
w Memory bandwidth no longer a limiting factor
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CUDA Code – Kernel Execution 
Configuration

// Set up the execution configuration 
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH); 
dim3 dimGrid(Width  / TILE_WIDTH, Width /  TILE_WIDTH); 
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__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) { 
    
    __shared__float Mds[TILE_WIDTH][TILE_WIDTH]; 
    __shared__float Nds[TILE_WIDTH][TILE_WIDTH]; 
     
    int bx = blockIdx.x;  int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; 
    // Identify the row and column of the Pd element to work on 
    int Row = by * TILE_WIDTH + ty; int Col = bx * TILE_WIDTH + tx;  float Pvalue = 0; 
    // Loop over the Md and Nd tiles required to compute the Pd element 
    for (int m = 0; m < Width/TILE_WIDTH; ++m) { 
    // Collaborative loading of Md and Nd tiles into shared memory 

    Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];  
            Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width]; 
            __syncthreads(); 

           for (int k = 0; k < TILE_WIDTH; ++k) 
                 Pvalue += Mds[ty][k] * Nds[k][tx]; 
           __syncthreads(); 
    }  
   Pd[Row*Width+Col] = Pvalue; 
} 

Tiled Kernel
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Must sync threads when loading/computing

u  All threads load tile together
u  All thread compute together
u  But, loading & computing can not be overlapped!

w Why not?

u  How do we keep them apart?
u  Barrier synchronization

w __syncthreads()
w Also, called “barrier” synchronization
w All threads reach barrier, wait for others, then continue
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__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) { 
    
    __shared__float Mds[TILE_WIDTH][TILE_WIDTH]; 
    __shared__float Nds[TILE_WIDTH][TILE_WIDTH]; 
     
    int bx = blockIdx.x;  int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; 
    // Identify the row and column of the Pd element to work on 
    int Row = by * TILE_WIDTH + ty; int Col = bx * TILE_WIDTH + tx;  float Pvalue = 0; 
    // Loop over the Md and Nd tiles required to compute the Pd element 
    for (int m = 0; m < Width/TILE_WIDTH; ++m) { 
    // Coolaborative loading of Md and Nd tiles into shared memory 

    Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];  
            Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width]; 
            __syncthreads(); 

           for (int k = 0; k < TILE_WIDTH; ++k) 
                 Pvalue += Mds[ty][k] * Nds[k][tx]; 
           __syncthreads(); 
    }  
   Pd[Row*Width+Col] = Pvalue; 
} 

Tiled Kernel
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Shared Memory Bandwidth with 64x64 tiles
u  Each core has 96KB shared memory

w Size is implementation dependent!
w Assume TILE_WIDTH = 64
w Each GPU block holds a tile (64x64)
w We share elements along TILE_WIDTH (for M and N)
w Assuming 20 TB/s
w How much do we cut the required bandwidth?
w How many tiles can we fit?
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Shared Memory Bandwidth with 128x128 tiles
u  Each core has 96KB shared memory

w Size is implementation dependent!
w Assume TILE_WIDTH = 128
w How much does memory bandwidth improve?
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Shared Memory Bandwidth
u  Each core has 96KB shared memory

w Size is implementation dependent!
w Assume TILE_WIDTH = 64, each block uses 2*4096*4B = 32KB 
w Can have up to 3 Thread Blocks actively executing
w 3*8192= 24K pending loads. (2 per thread, 4096 threads per block)

u 64x64 tiling reduces accesses to the global memory by 64x
w 300 GB/s bandwidth can now support (300/4)*64 = 4.8 TFLOPS!
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Reduction Operations

10 11 12 13 

u Multiple values are reduced into a single value 
w ADD, MUL, AND, OR,  …. 

u Useful primitive 
 
u Easy enough to allow us to focus on optimization 

techniques 

46 
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Sequential Reduction

 
u Start with the first two elements  
             è partial result 
u Process the next element 
u O(N) (i.e., runtime linear function of N) 

10 11 

4 21 

5 25 

12 30 

42 
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Parallel Reduction

Pair-wise reduction in steps – Tree-like 

10 11 4 5 12 13 1 7 

21 9 25 8 

30 33 

63 

Time 
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3 

4 
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Different-degree trees possible

Pair-wise reduction in steps – Tree-like 
Time 

1 

2 

3 

10 11 4 5 12 13 1 7 

30 33 

63 

O(log2 N) steps for N amount of work 
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Reduction: Big Picture

u  The code for all levels is the same 
u  The same kernel code can be called multiple times 
u  Caveat: still a highly sequential operation 

w Do not expect 100x speedup with a few elements/thread 
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Reduction Kernel #1: Strategy

u  Each thread loads one element into shared memory 
u  Reduce: Proceed in logN steps 

w  In each step, half of the threads are active, reducing two 
elements 

u  Terminate: when one thread left 
u  Last thread writes back to global memory 
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Reduction Steps
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Reduction Kernel #1: Interleaved Accesses
__global__ void reduce0(int *g_idata, int *g_odata, int n) { 

 extern __shared__ int sdata[]; 
 

 // each thread loads one element from global to shared mem 
 unsigned int tid = threadIdx.x; 
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; 
 sdata[tid] = (i < n) ? g_idata[i] : 0; 
 __syncthreads(); 

 
 // do reduction in shared mem 
 for (unsigned int s=1; s < blockDim.x; s *= 2) { // step = s x 2 
  if (tid % (2*s) == 0) { // only threadIDs divisible by the step participate 
   sdata[tid] += sdata[tid + s]; 
  } 
  __syncthreads(); 
 } 

 
 // write result for this block to global mem 
 if (tid == 0) g_odata[blockIdx.x] = sdata[0]; 

} 
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Allocating Shared Memory

__global__ void reduce0(int *g_idata, int *g_odata, int i) { 
 extern __shared__ int sdata[]; 

u  How many elements in sdata? 
u  Specify when calling the kernel: 

w  reduce0<<<blocks, threads, smemSize>>>(in, … 
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Performance for Kernel #1

Time (222 ints)  

Kernel 1: 
interleaved addressing 
with divergent branching 

4.25ms 
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Reduction Kernel #1: Interleaved Accesses
__global__ void reduce0(int *g_idata, int *g_odata, int n) { 

 extern __shared__ int sdata[]; 
 

 // each thread loads one element from global to shared mem 
 unsigned int tid = threadIdx.x; 
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; 
 sdata[tid] = (i < n) ? g_idata[i] : 0; 
 __syncthreads(); 

 
 // do reduction in shared mem 
 for (unsigned int s=1; s < blockDim.x; s *= 2) { // step = s x 2 
  if (tid % (2*s) == 0) { // only threadIDs divisible by the step participate 
   sdata[tid] += sdata[tid + s]; 
  } 
  __syncthreads(); 
 } 

 
 // write result for this block to global mem 
 if (tid == 0) g_odata[blockIdx.x] = sdata[0]; 

} 

Highly divergent code 
leads to poor  
performance 
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Lots of idle threads!
Step = 1 Step = 2 

Step = 3 Step = 4 

active 

idle 
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How will these run?

Step = 3 

active 

idle Good! 

together 
this way 
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How will these run?

Step = 3 

active 

idle 

Disaster! 
together 
this way 
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Need some control over scheduling

u No order among threads in a block
u But, threads are grouped to run together
u The grouping is called a “warp”
u Warp grouping follows sequential thread id
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GPU Core: Streaming Multiprocessor (SM)
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GPU Multicore: SM’s connected via memory

SM 
FETCH 

DECODE 
SCHEDULE 

EXEC 

REG 

EXEC 

REG 

EXEC 

REG 

EXEC 

REG 

EXEC 

REG 

EXEC 

REG 

REG 
REG 

REG 
REG 

MEM 

REG 
REG 

REG 
REG LOCA

L 
MEM 

REG 
REG 

REG 
REG 

CACHE 

SM 
FETCH 

DECODE 
SCHEDULE 

EXEC 
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Block Scheduler

Shared Cache

Global Memory
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GPU Core – Streaming Multiprocessor (SM)
FETCH

DECODE 
SCHEDULE

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG

EXEC

REG
32

REGREG
REGREG

MEM

REG
REG

REGREGLOCAL
MEM

REGREG
REGREG

CACHE

Warp Pool 
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Fade example

u  Each thread will process one pixel
for all elements do in parallel 

 a[i] = a[i] * f; 
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Decompose into blocks
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Assign each block to a core (SM)
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Decompose a Block into Warps

thread
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Execute Warps onto cores (SMs)

thread



EPFL CS-206 – Spring 2015  Lec.12 - 54

Warp vs. Thread vs. Instructions

Warp is 32 Threads

Each Thread has the same program
Each thread will execute many instructions

__global__ void fadepic (float *a, float f, int N) 
 { 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  if (i < N) a[i] = a[i] * f; 
 } 
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Warp scheduling – Hiding Stalls
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Exposing Locality to Programmer

grid 

block

Threads within a group can co-operate and coordinate
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 thread 10 thread 11
  a[10] = in[10]  a[11] = in[11] 

  sync    sync 

  a[10] += a[11]   

Communication & Synchronization

block

communication

synchronization
grid 
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WARP Execution and Control Flow Divergence
if (in[i] == 0) out[i] = sqrt(x); 
else out[i] = 10; 

in[i] == 0

out[i] = sqrt(x)
out[i] = 10

in[i] == 0

idle

WARP

TIM
E
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Control Flow Divergence Contd.

in[i] == 0

idle

WARP

TIM
E

in[i] == 0

WARP #1

Good Scenario

in[i] == 0

WARP #2

Bad Scenario
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Back to Reduction Kernel #1
__global__ void reduce0(int *g_idata, int *g_odata, int n) { 

 extern __shared__ int sdata[]; 
 

 // each thread loads one element from global to shared mem 
 unsigned int tid = threadIdx.x; 
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; 
 sdata[tid] = (i < n) ? g_idata[i] : 0; 
 __syncthreads(); 

 
 // do reduction in shared mem 
 for (unsigned int s=1; s < blockDim.x; s *= 2) { // step = s x 2 
  if (tid % (2*s) == 0) { // only threadIDs divisible by the step participate 
   sdata[tid] += sdata[tid + s]; 
  } 
  __syncthreads(); 
 } 

 
 // write result for this block to global mem 
 if (tid == 0) g_odata[blockIdx.x] = sdata[0]; 

} 

Highly divergent code 
leads to poor  
performance 



EPFL CS-206 – Spring 2015  Lec.12 - 61

Divergent threads in warps!
Step = 1 Step = 2 

Step = 3 Step = 4 

active 

idle 

WARP 
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Lots of idle threads/warp
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Group all active threads together!
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Reduction Kernel #2: Non-divergent threads
Replace the divergent branching code 

 // do reduction in shared mem 
 for (unsigned int s=1; s < blockDim.x; s *= 2) { 
  if (tid % (2*s) == 0) { 
   sdata[tid] += sdata[tid + s]; 
  } 
  __syncthreads(); 
 } 

 
With strided index and non-divergent branch 

 // do reduction in shared mem 
 for (unsigned int s=1; s < blockDim.x; s *= 2) { 
  int index  = 2 * s * tid; 

 
  if (index < blockDim.x / s) { 
   sdata[index] += sdata[index + s]; 
  } 
  __syncthreads(); 
 } 
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Non-divergent threads
Step = 1 Step = 2 

Step = 3 Step = 4 

active 

idle 

WARP 
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Performance for 4M element reduction

Time (222 ints)  Step 
Speedup 

Cumulative 
Speedup 

Kernel 1: 
interleaved addressing 
with divergent branching 

4.25ms 

Kernel 2: 
interleaved addressing 
non-divergent branching 

3.32 ms 1.28x 1.28x 

u  Hmm…..not enough parallelism 
u  What gives? 
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Recall: Using Shared Memory

u  Load temporally into shared memory

u  For inter-thread communication within 
a block

u  Cache data to reduce redundant global 
memory accesses

u  Use it to improve global memory 
access patterns

Grid 

Global Memory 

Block (0, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Block (1, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Constant Memory 
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Shared Memory is a bottleneck!

u  How do we let tens of threads 
access memory?

Grid 

Global Memory 

Block (0, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Block (1, 0) 

Shared 
Memory 

Thread  
(0, 0) 

Thread  
(1, 0) 

Constant Memory 

Shared 
Memory 

Threads 



EPFL CS-206 – Spring 2015  Lec.12 - 69

Shared memory is banked!
u Parallel access to shared memory

w Causes contention
w Therefore, memory is divided into banks
w Essential to achieve high bandwidth

u A memory can service as many 
simultaneous accesses as it has banks
w Typically, one access per two cycles

u Multiple simultaneous accesses to a bank 
result in a conflict 
w Conflicting accesses are serialized

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 
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Shared Memory Bank Conflicts
u  Organization (machine dependent):

w  32 banks, 4-byte wide banks
w  Successive 4-byte words belong to different banks
w  4- or 8-byte interleaving à 2x for double floats

u  Performance:
w  E.g., 4 bytes per bank per 2 clocks per core
w  Memory accesses are issued per 32 threads (warp)
w  Serialization: threads accessing different words in the same bank

w Accesses are serialized
w  Multicasting: threads accessing the same word in the same bank

w Accesses are parallel
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Bank Addressing Examples
No Bank Conflicts
Linear addressing stride = 1

No Bank Conflicts
Random 1:1 Permutation

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Bank Addressing Examples
2-way Bank Conflicts
Linear addressing stride = 2

16-way Bank Conflicts
Linear addressing stride = 16

Thread 18 
Thread 17 
Thread 16 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 16 
Bank 15 

Bank 31 

Bank 14 

Bank 2 
Bank 1 
Bank 0 

8 conflicts 
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Shared Memory Performance Summary

u  The fast case:
w All threads access different banks, no bank conflict
w No two different words are accessed in the same bank

u  The slow case:
w Bank conflict: multiple threads access different words in the 

same bank
w Must serialize accesses
w Cost = max # of simultaneous accesses to a single bank
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Linear Addressing
 

 
  __shared__ float shared[256]; 
  float foo =  

     shared[baseIndex + s * threadIdx.x]; 

 

•  This is only conflict-free if s shares no 
common factors with the number of banks 

•  With 32 banks, s must be odd

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

s=3 

s=1 
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Example with 32 banks

shared[baseIndex + s * threadIdx.x]; 

 

Calculate the degree of conflict for s=1, s=2, s=3, s=4
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Example with 32 banks

          shared[baseIndex + s * threadIdx.x]; 

Calculate the degree of conflict for s=1, s=2, s=3, s=4
s=1
Accesses to bank 0: 0

s=2
Accesses to bank 0: 0, 16

s=3
Accesses to bank 0: 0

s=4

Accesses to bank 0: 0, 8, 16, 24
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Data types & bank conflicts
u  This has no conflicts if type of shared is 32-bits
 foo = shared[baseIndex + threadIdx.x] 

u  Multicast for all 32-bit & smaller data types
 

__shared__ char shared[]; 

__shared__ short shared[]; 

 

__shared__ int shared[]; 

 

__shared__ float shared[]; 

 

 

 
 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Example: Good Array Access Pattern

u  Each thread loads one element in every 
consecutive group of blockDim elements 
 

Bank 31 

Bank 7 

Bank 6 

Bank 5 

Bank 4 

Bank 3 

Bank 2 

Bank 1 

Bank 0 

Thread 31 

Thread 7 

Thread 6 

Thread 5 

Thread 4 

Thread 3 

Thread 2 

Thread 1 

Thread 0 

shared[tid] =  
       global[tid]; 
shared[tid + blockDim.x] =      
       global[tid + blockDim.x]; 
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Reduction #2: 2-way bank conflicts! Thread  
conflicts 

0/8…. 

0/4…. 

0/2… 

Assuming 32 banks and 32 threads: 
•  2-way bank conflicts at every step 

0/16… 
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Observe: Arbitrary Unique Pairs OK

10 11 4 5 12 13 1 7 

23 12 17 11 

34 29 

63 

1 

2 

3 

4 
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Reduction #3: Thread-sequential Accesses
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Reduction #3: Code Changes
u  Replace stride indexing in the inner loop 

 // do reduction in shared mem 
 for (unsigned int s=1; s < blockDim.x; s *= 2) { 
  int index  = 2 * s * tid; 

 
  if (index < blockDim.x == 0) { 
   sdata[index] += sdata[index + s]; 
  } 
  __syncthreads(); 
 } 

 

u  With reversed loop and threadID-based indexing 
 // do reduction in shared mem 
 for (unsigned int s = blockDim.x/2; s > 0; s /= 2) { 

 
  if (tid < s) { 
   sdata[tid] += sdata[tid + s]; 
  } 
  __syncthreads(); 
 } 
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Performance for 4M element reduction

Time (222 ints)  Step 
Speedup 

Cumulative 
Speedup 

Kernel 1: 
interleaved addressing 
with divergent branching 

4.25ms 

Kernel 2: 
interleaved addressing 
non-divergent branching 

3.32 ms 1.28x 1.28x 

Kernel 3: 
sequential addressing 

2.06 ms 1.61x 2.06x 
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Reduction #3: Bad resource utilization

u  All threads read one element 
u  First step: half of the threads are idle 
u  Next step: another half becomes idle 
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Reduction #4: ���
Read two elements and do the first step
u  Original: Each thread reads one element 

 // each thread loads one element from global to shared mem 
 unsigned int tid = threadIdx.x; 
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; 
 sdata[tid] = g_idata[i]; 
 __syncthreads(); 

u  Read and reduce the first two elements 
 // each thread loads two elements from global to shared mem 
// end performs the first step of the reduction 
 unsigned int tid = threadIdx.x; 
 unsigned int i = blockIdx.x* blockDim.x * 2 + threadIdx.x; 
 sdata[tid] = g_idata[i] + g_idata[i + blockDim.x]; 
 __syncthreads(); 
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Performance for 4M element reduction

Time (222 ints)  Step 
Speedup 

Cumulative 
Speedup 

Kernel 1: 
interleaved addressing 
with divergent branching 

4.25ms 

Kernel 2: 
interleaved addressing 
non-divergent branching 

3.32 ms 1.28x 1.28x 

Kernel 3: 
sequential addressing 

2.06 ms 1.61x 2.06x 

Kernel 4: 
first step during global load 

1.05 ms 1.96x 4.04x 



EPFL CS-206 – Spring 2015  Lec.12 - 87

Reduction #4: Still way off 

u  Memory bandwidth is still underutilized 
w We know that reductions have low arithmetic density 

u  What is the potential bottleneck? 
w Ancillary instructions that are not loads, stores, or 

arithmetic for the core computation 
w Address arithmetic and loop overhead 
w Synchronization overhead 

u  Unroll loops to eliminate these “extra” instructions 
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Unrolling the last warp

u  At every step the number of active threads halves 
w When s <=32 there is only one warp left 

u  Instructions are SIMD-synchronous within a warp 
w They all happen in lock step 
w No need to use __syncthreads() 
w We don’t need “if (tid < s)” since it does not save any 

work 
w All threads in a warp will “see” all instructions 

whether they execute them or not 
u  Unroll the last 6 iterations of the inner loop 

w s <= 32 
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Last warps
Step = 4 Step = 5 

Step = 6 Step = 7 

active 

idle 
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Reduction #5: Unrolling the last 6 iterations
  

     // do reduction in shared mem 
 for (unsigned int s = blockDim.x/2; s > 32; s /= 2) { 

 
  if (tid < s) { 
   sdata[tid] += sdata[tid + s]; 
  } 
  __syncthreads(); 
 } 

 
 if (tid <32) 

     { 
  sdata[tid] += sdata[tid + 32]; 
  sdata[tid] += sdata[tid + 16]; 
  sdata[tid] += sdata[tid + 8]; 
  sdata[tid] += sdata[tid + 4]; 
  sdata[tid] += sdata[tid + 2]; 
  sdata[tid] += sdata[tid + 1]; 
 } 
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Unrolling the last warp: A Closer Look

sdata[tid] += sdata[tid + 32]; 
0 31 

32 63 

0 31 threadID 

Element 
index 

15 

All threads doing useful work 

0 31 
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Unrolling the Last WARP: A Closer Look

sdata[tid] += sdata[tid + 16]; 
 

u  Half of the threads do useless work (thrown away) 
u  Elements 16-31 are inputs to threads 0-14 
u  But threads 0-15 read them before they get written by threads 16-31 

w  All reads proceed in “parallel” first 
w  All writes proceed in “parallel” last 

u  But, threads 16-31 are doing useless work 
w  The units and bandwidth are there à no harm (only power) 

0 31 

32 

0 31 threadID 20 15 

0 31 
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Unrolling the last warp: A Closer Look
0 31 

32 

0 31 threadID 20 7 

0 31 

0 31 

32 

0 31 20 3 

0 31 
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Unrolling the last warp: A Closer Look
0 31 

32 

0 31 20 

1 

0 31 

32 

0 31 20 

0 31 
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Performance for 4M element reduction

Time (222 ints)  Step 
Speedup 

Cumulative 
Speedup 

Kernel 1: 
interleaved addressing 
with divergent branching 

4.25ms 

Kernel 2: 
interleaved addressing 
non-divergent branching 

3.32 ms 1.28x 1.28x 

Kernel 3: 
sequential addressing 

2.06 ms 1.61x 2.06x 

Kernel 4: 
first step during global load 

1.05 ms 1.96x 4.04x 

Kernel 5: 
Unroll last warp 

0.73ms 1.43x 5.82x 
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Summary

u  Performance (efficiency) is everything
u  Need to assign work, schedule memory carefully

u  Techniques:
w Tiling and shared memory
w WARPs
w Avoiding bank conflicts
w Loop unrolling


