CS-206 Concurrency

Lecture II

Data Parallel

 ComputingSpring 2015
Prof. Babak Falsafi
parsa.epfl.ch/courses/cs206/
Adapted from slides originally developed by Andreas Di Blas, Babak Falsafi, Simon Green, David Kirk, Andreas Moshovos, David Patterson and Waqar Saleem
 EPFL Copyright 2015

Where are We?

M	T	Lecture \& Lab	T	F
		W		
16-Feb	17-Feb	18-Feb	19-Feb	20-Feb
23-Feb	24-Feb	25-Feb	26-Feb	27-Feb
2-Mar	3-Mar	4-Mar	5-Mar	6-Mar
9-Mar	10-Mar	11-Mar	12-Mar	13-Mar
16-Mar	17-Mar	18-Mar	19-Mar	20-Mar
23-Mar	24-Mar	25-Mar	26-Mar	27-Mar
30-Mar	31-Mar	1-Apr	2-Apr	3-Apr
6-Apr	7-Apr	8-Apr	9-Apr	10-Apr
13-Apr	14-Apr	15-Apr	16-Apr	17-Apr
20-Apr	21-Apr	22-Apr	23-Apr	24-Apr
27-Apr	28-Apr	29-Apr	30-Apr	1-May
4-May	5-Ma	6-May	7-May	8-May
11-May		13-May	14-May	15-May
18-May	19-M y	20-May	21-May	22-May
25-May	26-May	27-May	28-May	29-May

- Data Parallel Computing
- Vector
\triangleright GPU
- GPU architecture
- CUDA
- Next week
\triangleright More CUDA

Recall: Historical View

Memory

Shared Memory Java threads
Posix threads

Processor

Data Parallel, SIMD, Vector, GPU, MapReduce

From now on: Data Parallel

Join at: I/O (Network)

Program with: Message passing Hadoop
SQL (databases)

Memory

Shared Memory Java threads
Posix threads

Processor

Data Parallel, SIMD, Vector, GPU, MapReduce

Recall: Forms of Parallelism

- Throughput parallelism
\triangle Perform many (identical) sequential tasks at the same time
\triangleright E.g., Google search, ATM (bank) transactions
- Task parallelism
\triangleright Perform tasks that are functionally different in parallel
\triangleright E.g., iPhoto (face recognition with slide show)
- Pipeline parallelism
\triangleright Perform tasks that are different in a particular order
\triangleright E.g., speech (signal, phonemes, words, conversation)
- Data parallelism
\triangleright Perform the same task on different data
\triangleright E.g., Graphics, data analytics

Recall: Forms of Parallelism

Throughput parallelism

\triangle Perform many (identical) sequential tasks at the same time
D F.g., Google search, ATM (bank) transactions
Task parallelism
\triangleright Perform tasks that are functionally different in parallel DE.g., iPhoto (face recognition with slide show)

Pipeline parallelism
Δ Perform tasks that are different in a particular order $>$ E.g., speech (signai, phonemes, words, conversation)

- Data parallelism
\triangleright Perform the same task on different data
\triangleright E.g., Graphics, data analytics

Example: Image Processing/Graphics

Example: Speech Recognition (e.g., Siri)

- Signal processing: same algorithm run on a sample
- Neural network: propagate values across neurons

Signal Processing: Data Parallel Transforms

Example: Discrete Fourier Transform (DFT) size 4
$D F T_{4}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right]=\left[\begin{array}{cccc}1 & & 1 & \\ & 1 & & 1 \\ 1 & & -1 & \\ & 1 & & -1\end{array}\right]\left[\begin{array}{llll}1 & & & \\ & 1 & & \\ & & 1 & \\ & & & i\end{array}\right]\left[\begin{array}{ccccc}1 & 1 & & \\ 1 & -1 & & \\ & & 1 & 1 \\ & & 1 & -1\end{array}\right]\left[\begin{array}{lll}1 & & \\ & & 1 \\ & 1 & \\ & & \\ & & \\ & & \\ & & \end{array}\right]$

Matrix operations are embarrassingly data parallel!

A network of neurons

Hidden Layers

Data Parallel Computation on Neurons

float nron [N]; // for large N for (each neu[i])
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
for ($\mathrm{j}=\mathrm{O} ; \mathrm{j}$ < nron[i].outputs; $\mathrm{j}++$)
nron[i].y[j] =
nron[i].inputs
$\operatorname{sigmoid}\left(\sum_{k=0}\right.$ nron $[i] \cdot w_{k j}$ nron $[i] \cdot x_{k}+$ nron $\left.[i] \cdot b_{j}\right)$

Example: Data Analytics

- Google processes 20 PB a day
- Wayback Machine has 3 PB + 100 TB/month
- Facebook has 2.5 PB of user data + $15 \mathrm{~TB} /$ day
- eBay has 6.5 PB of user data + 50 TB/day
- CERN's Large Hydron Collider generates I5 PB a year

How do we aggregate this data?

MapReduce in Data Analytics

- It's about aggregating statistics over data
- Divide up the data among servers
- Compute the stats (independently)
- Then aggregate/reduce
- Example: CloudSuite classification benchmark
\triangleright IO's of GB of web pages
\triangleright Rank pages based on the word occurrence (popularity)
\triangleright Look for celebrities
$\triangleright \mid$ t's an embarrassingly (data) parallel problem!

MapReduce from Google:

Data Parallel Computing on Volume Servers

Aggregate values by keys

This Course: Data Parallel Processor Architecture

I. Vector Processors
\triangleright Pipelined execution
\triangleright SIMD: Single instruction, multiple data

- Example: modern ISA extensions

2. Graphics Processing Units (GPUs)
\triangleright Dense grid of ALUs
\triangleright SIMT: Single instruction, multiple threads
\triangleright Integrated vs. discrete

Recall: MIPS Processor (Instruction Cycle)

Instruction Instruction Execute \begin{tabular}{l}
Memory

Fetch

Decodess

Write back

Result
\end{tabular} Operand

- Instructions are fetched from instruction cache and decoded
- Operands are fetched from register file
- Execute is the ALU (arithmetic logic unit)
- Memory access to data cache
- Write results back to register file

Recall: MIPS Pipeline (Instruction Cycle)

Instruction Instruction Fetch Decode/ Operand Fetch

int a[N]; // N is large
for (i $=0$; $i<N$; i++)

$$
a[i]=a[i] * \text { fade }
$$

Fader loop in assembly

for (i =0; i < N; i++) a[i] = a[i] * fade;
; a[] -> \$2,
; fade -> \$3,
; \&a[N] -> \$4,
; \$5 is a temp

loop:

lw $\$ 5,0(\$ 2)$
mul $\$ 5, \$ 3, \$ 5$
sw \$5, $0(\$ 2)$
addi \$2, \$2, 4
bne \$2, \$4, loop

Vector Processor: One instruction, multiple data

Vector Processing

- Vector processors have high-level operations that work on linear arrays of numbers: "vectors"

Example vector instructions

Each vector register is multiple scalar registers

- In our example, a vector register V has 4 scalars

So,

- mul.v
$\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 1 \quad$ vector dot product v 1 * v 2
mul.sv
- Iw.v
- sw.v
$\mathrm{v} 1, \mathrm{r} 1, \mathrm{v} 1 \quad$ multiplies scalar r 1 to all elements of v 1
$\mathrm{v} 1,0(\mathrm{r} 1) \quad$ loads vector v 1 from address r 1
$\mathrm{v} 1,0(\mathrm{r} 1) \quad$ stores vector v 1 at address r 1

Iw.v loads four integers like 4 parallel lw

Iw address 12(r1)

mul.v vector dot product (4 parallel multiplies)

add.v adds two vectors (4 parallel adds)

v1[0]*r1

v1[3]*r1

Fader loop in Vector MIPS assembly

; a[] -> \$2,
for (i $=0 ; i<n ; i++)$; fade -> \$3, $a[i]=a[i]$ t fade; ; \&a[N] -> \$4 ; \$v1 is temp

- Should do it four loop: elements at a time

Fader loop in Vector MIPS assembly

; a[] -> \$2,
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; $\mathrm{i}++$) ; fade -> \$3, $a[i]=a[i]$ * fade; ; \&a[N] -> \$4
; \$v1 is temp

- Should do it four elements at a time
- How many fewer instructions?
loop:
lw.v \$v1, 0(\$2)
mul.sv \$v1, \$3, \$v1
sw.v \$v1, 0(\$2)
addi \$2, \$2, 16
bne \$2, \$4, loop

Operation \& Instruction Count

Spec92fp
Program swim256 hydro2d nasa7
su2cor tomcatv wave5 mdljdp2

Operations (Millions)

Scalar Vector S/V
$\left|\begin{array}{rrr}115 & 95 & 1.1 x \\ 58 & 40 & 1.4 x \\ 69 & 41 & 1.7 x \\ 51 & 35 & 1.4 x \\ 15 & 10 & 1.4 x \\ 27 & 25 & 1.1 x \\ 32 & 52 & 0.6 x\end{array}\right|$

Instructions (M)
Scalar Vector S/V

115	0.8	$142 x$
58	0.8	$71 x$
69	2.2	$31 x$
51	1.8	$29 x$
15	1.3	$11 x$
27	7.2	$4 x$
32	15.8	$2 x$

Vector reduces ops by 1.2X, instructions by 20X

Automatic Code Vectorization

for (i =0; i $<\mathrm{N}$; $\mathrm{i}++$)

$$
a[i]=a[i] * \text { fade } ;
$$

Compiler can detect vector operations

- Inspect the code
- Vectorize automatically

But, what about
for (i =0; i < N; i++)

$$
a[i]=a[b[i]] \text { * fade; }
$$

Automatic Code Vectorization

for (i $=0 ; i<N ; i++)$

$$
a[i]=a[i] * \text { fade } ;
$$

Compiler can detect vector operations

- Inspect the code
- Vectorize automatically

But, what about
for (i =0; i < N; itri)

b[i] unknown at compile
 time!

x86 architecture SIMD support

- Both current AMD and Intel's $\times 86$ processors have ISA and microarchitecture support SIMD operations.
- ISA SIMD support
\triangleright MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX
Δ See the flag field in /proc/cpuinfo
\triangleright SSE (Streaming SIMD extensions): ISA extensions to $\times 86$
\triangleright SIMD/vector operations
- Micro architecture support
Δ Many functional units
$\triangleright 8$ I28-bit vector registers, XMM0, XMMI, ..., XMM7

SSE programming

- Vector registers support three data types:
\triangleright Integer (16 bytes, 8 shorts, 4 int, 2 long long int, I dqword)
\triangleright single precision floating point (4 floats)
\triangleright double precision float point (2 doubles).

SSE instructions

- Arithmetic instructions
\triangleright ADD, SUB, MUL, DIV, SQRT, MAX, MIN, RCP, etc
\triangle PD: two doubles, PS: 4 floats, SS: scalar
DADDPS - add four floats, ADDSS: scalar add
- Logical instructions

$$
\begin{aligned}
& \triangleright \text { AND, OR, XOR, ANDN, etc } \\
& \quad \triangleright \text { ANDPS - bitwise AND of operands } \\
& \quad \triangleright \text { ANDNPS - bitwise AND NOT of operands }
\end{aligned}
$$

- Comparison instruction:
- CMPPS, CMPSS - compare operands and return all I's or 0's

SIMD extensions in ARM: NEON

- 32×64-bit registers (also used as 16×128-bit registers)
- Registers considered as vectors of same data type
- Data types: signed/uns. 8-bit, I6-bit, 32-bit, 64-bit, single prec. float
- Instructions perform the same operation in all lanes

This Course:

Data Parallel Processor Architecture

I. Vector Processors
\triangleright Pipelined execution
\triangleright SIMD: Single instruction, multiple data
D Example: modern ISA extensions
2. Graphics Processing Units (GPUs)
\triangleright Dense grid of ALUs
\triangleright SIMT: Single instruction, multiple threads
\triangleright Integrated vs. discrete

CPU vs. GPU

- Tens of cores
- Mostly control logic
- Large caches
- Regular threads (e.g., Java) Special threads (e.g., CUDA)

Integrated vs. Discrete GPU

Integrated (e.g., AMD)

- Shared cache hierarchy
- One memory

Discrete (e.g., nVidia)

- Specialized GPU memory
- Must move data back/forth

This course: Discrete GPU

Integrated (e.g., AMD)

- Shared cache hierarchy
- One memory

Discrete (e.g., nVidia)

- Specialized GPU memory
- Must move data back/forth

Warning! CPU/GPU connection is a bottleneck

Sequential Execution Model / SISD

int a[N]; // N is large
for (i =0; i < N; i++)
a[i] = a[i] * fade;

Flow of control / Thread One instruction at the time Optimizations possible at the machine level

Data Parallel Execution Model / SIMD

int a[N]; // N is large
for all elements do in parallel
a[i] = a[i] * fade;

Single Program Multiple Data / SPMD

int a[N]; // N is large
for all elements do in parallel
if (a[i] > threshold) a[i]*= fade;

Code is statically identical across all threads Execution path may differ
The model used in today's Graphics Processors

Killer app? 3D Graphics

Example apps:

\triangle Games
\triangle Engineering/CAD

Computation:

\triangle Start with triangles (points in 3D space)
\triangleright Transform (move, rotate, scale)
\triangle Paint / Texture mapping
\triangle Rasterize \rightarrow convert into pixels
-Light \& Hidden "surface" elimination

Bottom line:

\triangleright Tons of independent calculations
E $\quad \triangleright$ Lots of identical calculations

Target Applications

int a[N]; // N is large
for all_elements of an array

- Lots of independent computations
\triangleright CUDA threads need not be completely independent
$a[0] a[1] a[N-1]$

THREAD

Programmer's View of the GPU

- GPU: a compute device that:
\triangleright Is a coprocessor to the CPU or host
\triangleright Has its own DRAM (device memory)
\triangleright Runs many threads in parallel
- Data-parallel portions of an application are executed on the device as kernels which run in parallel on many threads

GPU vs. CPU Threads

- GPU threads are extremely lightweight
\triangleright Little creation overhead (unlike Java)
De.g., ~microseconds
\triangle All done in hardware
- GPU needs 1000 s of threads for full efficiency
\triangle Multi-core CPU needs only a few

GPU threads help in two ways!

$$
\ldots=a[i] \ldots .
$$

CPU

Parallelize computation

Overlap memory access

Execution Timeline

CPU / Host

1. Copy to GPU mem

GPU / Device

2'. Synchronize with GPU
3. Copy from GPU mem

Programmer's view

- First create data in CPU memory

Programmer's view

- Then Copy to GPU

Programmer's view

- GPU starts computation \rightarrow runs a kernel
- CPU can also continue

Programmer's view

- CPU and GPU Synchronize

Programmer's view

- Copy results back to CPU

Programming Languages

- CUDA
\triangle nVidia
\triangleright Has market lead
- OpenCL
\triangleright Many including nVidia
\triangleright CUDA superset
\triangleright Targets many different devices, e.g., CPUs + programmable accelerators
\triangle Fairly new
- Both are evolving

Computation partitioning

- Think of computation as a series of loops
- Think of data as an array

$$
\begin{aligned}
& \text { for }(i=0 ; i<\text { big_number; } i++) \\
& \qquad \text { for }(i=0 ; i \operatorname{li}=\text { some function } \\
& a[i]=\text { some other function } \\
& \text { for }(i=0 ; i \text { < big_number; } i++) \\
& a[i]=\text { some other function }
\end{aligned}
$$

What is the kernel here?

My first CUDA Program

 global__ void fadepic(int *a, int fade, int N)int $i=$ blockId $x . x^{*}$ blockDim. x + threadIdx. x;
if $(i<N) a[i]=a[i]$ * fade;
\}
int main()
\{ int h[N]; int *d;
cudaMalloc ((void **) \&d, SIZE);
cudaThreadSynchronize (); cudaMemcpy (d, h, SIZE, cudaMemcpyHostToDevice));
fadepic《<< n_blocks, block_size >>> (d, 10.0, N);
cudaDeviceSynchronize ();
cudaMemcpy (h, d, SIZE, cudaMemcpyDeviceToHost)); CUDA_SAFE_CALL (cudaFree (d));

Per Kernel Computation Partitioning

Threads within a block can communicate/synchronize
\triangleright Run on the same core
Threads across blocks can't communicate
\triangleright Shouldn't touch each others data (undefined behavior)

Per Kernel Computation Partitioning

- One thread can process multiple data elements
- Other mappings are possible and often desirable \triangleright We will talk about this later

Fade example

- Each thread will process one pixel

 for all elements do in parallel$$
a[i]=a[i] \text { * fade; }
$$

Code Skeleton

- CPU:
\triangleright Initialize image from file
\triangleright Allocate buffer on GPU
\triangleright Copy image to buffer
\triangleright Launch GPU kernel
\triangle Reads and writes into buffer
\triangleright Copy buffer back to CPU
\triangleright Write image to a file
- GPU:
\triangleright Launch a thread per pixel

GPU Kernel pseudo-code

_global__ void fadepic (int *a, int fade, int N)

$\{$

int $v=a[x][y]$;
$\mathrm{v}=\mathrm{v}$ * fade;
$a[x][y]=v$;
\}

- This is the program for one thread
- It processes one pixel

Which thread computes which pixel?

gridDim

- gridDim. $x=7$, gridDim. $y=6$
- How many blocks per dimension?

blockldx

- blockldx = coordinates of block in the grid
- blockldx.x $=2$, blockldx.y $=3$
- blockldx.x = 5, blockldx.y = I
$(0,0)$

blockDim

- blockDim. $x=7$, blockDim. $y=7$
- How many threads in a block per dimension?

threadldx

- threadldx = coordinates of thread in the block
- threadidx. $x=2$, threadldx. $y=3$
- threadldx. $x=5$, threadldx. $y=4$
$(0,0)$

Which thread computes which pixel?

GPU Kernel pseudo-code

global__ void fade (int *a, int fade, int N)

int $x=$ blockDim. x^{*} blockld $x . x+$ threadldx. x;
int $y=$ blockDim. y^{*} blockldx. $y+$ threadldx. y
int offset $=y^{*}\left(\right.$ blockDim. x^{*} gridDim. $\left.x\right)+x$;
// offset within unidimensional array
int $v=a[$ offset];
$\mathrm{v}=\mathrm{v}$ * fade;
$a[$ offset] $=\mathrm{v}$;

GPU Kernel pseudo-code w/ limits

global__ void fade (int *a, int fade, int N)

int $x=$ blockDim. x^{*} blockld $x . x+$ threadldx. x;
int $y=$ blockDim. y^{*} blockldx. $y+$ threadldx.y
int offset $=y^{*}\left(\right.$ blockDim. x^{*} gridDim. $\left.x\right)+x$;
if (offset $>\mathrm{N}$) return;
int $v=a[$ offset];
$\mathrm{v}=\mathrm{v}$ * fade;
$a[$ offset] $=v$;

Grids of Blocks of Threads

Cores and caches are clustered on chip for fast connectivity Hardware partitioned naturally into grids

Programmer's view: Memory Model

Grids of Thread Blocks: Dimension Limits

Grid of Blocks ID, 2D, or 3D
$\triangleright \operatorname{Max} x, y$ and $z: 2^{32}$-।
\triangleright Machine dependent

- Block of Threads: ID, 2D, or 3D
\triangleright Max number of threads: 1024
\triangleright Max x: 1024
$\triangleright \operatorname{Max} y: 1024$
\triangleright Max z: 64

Block $(1,1)$

Thread $(0,0)$	Thread $(1,0)$	Thread $(2,0)$	Thread $(3,0)$	Thread $(4,0)$
Thread $(0,1)$	Thread $(1,1)$	Thread $(2,1)$	Thread $(3,1)$	Thread $(4,1)$
Thread $(0,2)$	Thread $(1,2)$	Thread $(2,2)$	Thread $(3,2)$	Thread $(4,2)$

Thread Batching

- Kernel executed as a grid of thread blocks
- Threads in block cooperate
\triangleright Synchronize their execution
- Efficiently share data in blocklocal memory
- Threads across blocks cannot cooperate

Thread Coordination Overview

Race-free access to data
thread A
thread B

$$
a[i]=\ldots
$$

synchronize

$$
\overline{\ldots \pm a[i]}>
$$

Only across threads within the same block No communication across blocks

Arrows show whether read and/or write is possible

Memory Model Summary

Memory	Location	Access	Scope
Local	off-chip	R/W	thread
Shared	on-chip	R/W	all threads in a block
Global	off-chip	R/W	all threads + host
Constant	off-chip	RO	all threads + host
Texture	off-chip	RO	all threads + host
Surface	off-chip	R/W	all threads + host

Memory Model: Global, Constant, and Texture Memories

- Global memory
- Communicating R/W data between host and device
- Contents visible to all threads
- May be cached (machine dependent)
- Texture and Constant Memories
- Constants initialized by host
- Contents visible to all threads
- May be cached (machine dependent)

Execution Model: Ordering

- Execution order is undefined
- Do not assume and use:
\triangleright block 0 executes before block I
\triangle thread 10 executes before thread 20
D and any other ordering even if you can observe it
- Future implementations may break this ordering
- It's not part of the CUDA definition
- Why? More flexible hardware options

Reasoning about CUDA call ordering

- Access GPU via cuda...) calls and kernel invocations
\triangleright cudaMalloc, cudaMemCpy
- Asynchronous from the CPU's perspective
\triangleright CPU places a request in a "CUDA" queue
\triangleright requests are handled in-order

Execution Model Summary (for your reference)

- Grid of blocks of threads
\triangleright 1D/2D/3D grid of blocks of 1D/2D/3D threads
\triangleright Threads and blocks have IDs
- Block execution order is undefined
- Same block threads can shared data fast
- Across blocks, threads:
- Cannot cooperate
- Communicate (slowly) through global memory
- Blocks do not migrate: execute on the same processor
- Several blocks may run over the same core

CUDA API: Example

int a[N];
for (i =0; i < N; i++)
a[i] = a[i] + x;
I. Allocate CPU Data Structure
2. Initialize Data on CPU
3. Allocate GPU Data Structure
4. Copy Data from CPU to GPU
5. Define Execution Configuration
6. Run Kernel
7. CPU synchronizes with GPU
8. Copy Data from GPU to CPU
9. De-allocate GPU and CPU memory

I. Allocate CPU data structure

float *ha;
main (int argc, char *argv[])
\{
int $N=$ atoi (argv[1]);
ha $=$ (float *) malloc (sizeof (float) * N);
\}

2. Initialize CPU data (dummy)

float *ha;
int i;

```
for (i = 0; \(\mathbf{i}<\mathrm{N}\); i++)
ha[i] = i;
```


3. Allocate GPU data structure

float *da;
cudaMalloc ((void **) \&da, sizeof (float) * N);

- Notice: no assignment side
\triangleright NOT: da = cudaMalloc (...)
- Assignment is done internally:
\triangleright That's why we pass \&da
- Space is allocated in Global Memory on the GPU

GPU Memory Allocation

- The host manages GPU memory allocation:
\triangleright cudaMalloc (void **ptr, size_t nbytes)
\triangleright Must explicitly cast to (void $* *$)
$\triangleright c u d a M a l l o c ~((v o i d ~ * *) ~ \& d a, ~ s i z e o f ~(f l o a t) ~ * ~ N) ; ~$
\triangleright cudaFree (void *ptr);
\triangleright cudaFree (da);
\triangleright cudaMemset (void *ptr, int value, size_t nbytes);
\triangleright cudaMemset (da, $0, N$ * sizeof (int));
- Check the CUDA Reference Manual

4. Copy Initialized CPU data to GPU

float *da;
float *ha;
cudaMemCpy ((void *) da, (void *) ha, // SOURCE sizeof (float) * N, // \#bytes cudaMemcpyHostToDevice);
// DIRECTION

Host/Device Data Transfers

The host initiates all transfers:

- cudaMemcpy (void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction)
- Asynchronous from the CPU's perspective
\triangleright CPU thread continues
- In-order processing with other CUDA requests
- enum cudaMemcpyKind
\triangleright cudaMemcpyHostToDevice
\triangleright cudaMemcpyDeviceToHost
\triangleright cudaMemcpyDeviceToDevice

5. Define Execution Configuration

- How many blocks and threads/block
int threads_block = 64;
int blocks = N / threads_block;
if (blocks \% N != O) blocks += 1;
- Alternatively:
blocks $=(\mathrm{N}+\underset{\text { threads_block }-1) /}{\text { threads_block; }}$

6. Launch Kernel \&

7. CPU/GPU Synchronization

- GPU launch blocks x threads_block threads: arradd <<<blocks, threads_block>> (da, 10f, N) ;
cudaDeviceSynchronize (); // forces CPU to wait
> arradd: kernel name
<<<<...>>> execution configuration
(da, \times, N): arguments
$\triangleright 256$ byte limit / No variable arguments
\triangleright Not sure this is still true

CPU/GPU Synchronization

- CPU does not block on cuda...() calls
\triangleright Kernel/requests are queued and processed in-order
- Control returns to CPU immediately
- Good if there is other work to be done
\triangleright e.g., preparing for the next kernel invocation
- Eventually, CPU must know when GPU is done
- Then it can safely copy the GPU results
- cudaDeviceSynchronize ()
\triangleright Block CPU until all preceding cuda...() and kernel requests have completed
\triangleright Used to be cudaThreadSynchronize ()

8. Copy data from GPU to CPU \& 9. Deallocate Memory

float *da;
float *ha;
cudaMemCpy ((void *) ha,
// DESTINATION (void *) da, // SOURCE sizeof (float) * N, // \#bytes cudaMemcpyDeviceToHost) ;
// DIRECTION
cudaFree (da);
// display or process results here free (ha);

The GPU Kernel

__global__ darradd (float *da, float x, int N)
\{
int i $=$ blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) da[i] = da[i] + x;
\}

CUDA Function Declarations

	Executed on the:	Only callable from the:
__device__ float DeviceFunc ()	device	device
__global__ void KernelFunc ()	device	host
__host__ float HostFunc ()	host	host

global__ defines a kernel function
\triangleright Must return void
\triangleright Can only call __device__ functions device__ and __host__ can be used together
\triangleright Two difference versions generated

Can you do this one now?

$$
(C)=(A) \cdot(B)
$$

Summary

- Data Parallel Computing
\triangleright Much of media processing is data parallel
\triangleright All of data analytics on datacenters \& beyond
- Platforms for data parallel computing
\triangleright Within CPU: SIMD/Vector
\triangleright Across CPU: GPU
\triangleright Across a single computer: cluster of servers
- GPUs: orders of magnitude more concurrent than CPU
- GPU programming
- It's complicated
\triangleright Take your time

