CS-206 Concurrency

EPFL CS-206 – Spring 2015

Where are We?

		Lecture		
		& Lab		
М	Т	W	Т	F
16-Feb	17-Feb	18-Feb	19-Feb	20-Feb
23-Feb	24-Feb	25-Feb	26-Feb	27-Feb
2-Mar	3-Mar	4-Mar	5-Mar	6-Mar
9-Mar	10-Mar	11-Mar	12-Mar	13-Mar
16-Mar	17-Mar	18-Mar	19-Mar	20-Mar
23-Mar	24-Mar	25-Mar	26-Mar	27-Mar
30-Mar	31-Mar	1-Apr	2-Apr	3-Apr
6-Apr	7-Apr	8-Apr	9-Apr	10-Apr
13-Apr	14-Apr	15-Apr	16-Apr	17-Apr
20-Apr	21-Apr	22-Apr	23-Apr	24-Apr
27-Apr	28-Apr	29-Apr	30-Apr	1-May
4-May	<u>5-Ma</u>	6-May	7-May	8-May
11-May		13-May	14-May	15-May
18-May	19-Miy	20-May	21-May	22-May
25-May	26-May	27-May	28-May	29-May

- Data Parallel Computing
 - ⊳ Vector

⊳ GPU

► GPU architecture

CUDA

Next week
 More CUDA

Recall: Historical View

Join at:	I/O (Network)	Memory	Processor
Program with:	Message passing	Shared Memory	Data Parallel,
	Hadoop	Java threads	SIMD, Vector,
	SQL (databases)	Posix threads	GPU, MapReduce

From now on: Data Parallel

Join at: I/O (Network)

Memory

Program with: Message passing Hadoop SQL (databases) Shared Memory Java threads Posix threads Processor

Data Parallel, SIMD, Vector, GPU, MapReduce

Recall: Forms of Parallelism

Throughput parallelism

- ▷ Perform many (identical) sequential tasks at the same time
- ▷ E.g., Google search, ATM (bank) transactions

Task parallelism

- \triangleright Perform tasks that are functionally different in parallel
- ▷ E.g., iPhoto (face recognition with slide show)

Pipeline parallelism

- ▷ Perform tasks that are different in a particular order
- ▷ E.g., speech (signal, phonemes, words, conversation)

Data parallelism

- \triangleright Perform the same task on different data
- \triangleright E.g., Graphics, data analytics

Recall: Forms of Parallelism

- Throughput parallelism
 - > Perform many (identical) sequential tasks at the same time
 - ▷ E.g., Google search, ATM (bank) transactions

Task parallelism

- \triangleright Perform tasks that are functionally different in parallel \triangleright E.g., iPhoto (face recognition with slide show)
- ► Pipeline parallelism
 - ▷ Perform tasks that are different in a particular order
 - ▷ E.g., speech (signal, phonemes, words, conversation)

Data parallelism

- \triangleright Perform the same task on different data
- ▷ E.g., Graphics, data analytics

- 6

Example: Image Processing/Graphics

Example: Speech Recognition (e.g., Siri)

Signal processing: same algorithm run on a sample
 Neural network: propagate values across neurons

Signal Processing: Data Parallel Transforms sampled signal (a vector) $x \mapsto Mx$

Example: Discrete Fourier Transform (DFT) size 4

Matrix operations are embarrassingly data parallel!

A network of neurons

float nron [N]; // for large N for (each neu[i])

for (i=0; i < N; i++)

for (j=0; j < nron[i].outputs; j++)</pre>

- ► Google processes 20 PB a day
- Wayback Machine has 3 PB + 100 TB/month
- ► Facebook has 2.5 PB of user data + 15 TB/day
- eBay has 6.5 PB of user data + 50 TB/day
- CERN's Large Hydron Collider generates 15 PB a year

How do we aggregate this data?

MapReduce in Data Analytics

- It's about aggregating statistics over data
- Divide up the data among servers
- Compute the stats (independently)
- ► Then aggregate/reduce
- Example: CloudSuite classification benchmark
 - ▷ 10's of GB of web pages
 - ▷ Rank pages based on the word occurrence (popularity)
 - \triangleright Look for celebrities
 - \triangleright It's an embarrassingly (data) parallel problem!

MapReduce from Google: Data Parallel Computing on Volume Servers

This Course: Data Parallel Processor Architecture

- I. Vector Processors
 - ▷ Pipelined execution
 - ▷ SIMD: Single instruction, multiple data
 - ▷ Example: modern ISA extensions
- 2. Graphics Processing Units (GPUs)
 ▷ Dense grid of ALUs
 ▷ SIMT: Single instruction, multiple threads
 - \triangleright Integrated vs. discrete

Recall: MIPS Processor (Instruction Cycle)

- Instructions are fetched from instruction cache and decoded
- Operands are fetched from register file
- Execute is the ALU (arithmetic logic unit)
- Memory access to data cache
- Write results back to register file

Recall: MIPS Pipeline (Instruction Cycle)

Fader loop in assembly

for (i =0; i < N; i++)
a[i] = a[i] * fade;</pre>

- ; a[] -> \$2,
- ; fade -> \$3,
- ; $\&a[N] \rightarrow 4 ,
- ; \$5 is a temp

- The loop iterates N times (once for each array element)
- Same exact operation for each element
- ▶ Assume 32-bit "mul"

loop:

- lw \$5, 0(\$2)
- mul \$5, \$3, \$5
- sw \$5, 0(\$2)
- addi \$2, \$2, 4
 - bne \$2, \$4, loop

Vector Processor: One instruction, multiple data

Vector Processing

Vector processors have high-level operations that work on linear arrays of numbers: "vectors"

Each vector register is multiple scalar registers

▶ In our example, a vector register V has 4 scalars

So,

- mul.v v1, v2, v1 vector dot product v1*v2
- mul.sv v1, r1, v1 multiplies scalar r1 to all elements of v1
- Iw.v v1, 0(r1) loads vector v1 from address r1
- sw.v v1, 0(r1) stores vector v1 at address r1

Iw.v loads four integers like 4 parallel Iw

Lec. || - 22

mul.v vector dot product (4 parallel multiplies)

add.v adds two vectors (4 parallel adds)

Fader loop in Vector MIPS assembly

- ; a[] -> \$2,
- for (i =0; i < N; i++)
 a[i] = a[i] * fade;</pre>
- ; fade -> \$3,
- ; &a[N] -> \$4
- ; \$v1 is temp
- Should do it four loop: elements at a time

Fader loop in Vector MIPS assembly

- ; a[] -> \$2,
- ; fade -> \$3,
- ; &a[N] -> \$4
- ; \$v1 is temp

Should do it four elements at a time

for (i = 0; i < N; i++)

a[i] = a[i] * fade;

How many fewer instructions? loop:
 lw.v \$v1, 0(\$2)
 mul.sv \$v1, \$3, \$v1
 sw.v \$v1, 0(\$2)
 addi \$2, \$2, 16
 bne \$2, \$4, loop

Operation & Instruction Count

(from F. Quintana, U. Barcelona.)

Spec92fp	Operations (Millions)		Instructions (M)			
Program	Scalar	Vector	S/V	Scalar	Vector	S/V
swim256	115	95	1.1x	115	0.8	142x
hydro2d	58	40	1.4x	58	0.8	71x
nasa7	69	41	1.7x	69	2.2	31x
su2cor	51	35	1.4x	51	1.8	29x
tomcatv	15	10	1.4x	15	1.3	11x
wave5	27	25	1.1x	27	7.2	4x
mdljdp2	32	52	0.6x	32	15.8	2x
wave5	27	25	1.1x	27	7.2	4:

Vector reduces ops by 1.2X, instructions by 20X

Automatic Code Vectorization

for (i = 0; i < N; i++)

```
a[i] = a[i] * fade;
```

Compiler can detect vector operations

► Inspect the code

► Vectorize automatically

But, what about

Automatic Code Vectorization

for (i =0; i < N; i++)</pre>

a[i] = a[i] * fade;

Compiler can detect vector operations

► Inspect the code

► Vectorize automatically

But, what about

for (i =0; i < N; i++)
a[i] = a[b[i]] * fade;</pre>

b[i] unknown at compile time!

x86 architecture SIMD support

- Both current AMD and Intel's x86 processors have ISA and microarchitecture support SIMD operations.
- ► ISA SIMD support
 - ▷ MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX
 - ▷See the flag field in /proc/cpuinfo
 - SSE (Streaming SIMD extensions): ISA extensions to x86
 SIMD/vector operations
- ► Micro architecture support
 - ▷ Many functional units
 - ▷ 8 I 28-bit vector registers, XMM0, XMMI, ..., XMM7

SSE programming

Vector registers support three data types:

- ▷ Integer (16 bytes, 8 shorts, 4 int, 2 long long int, 1 dqword)
- \triangleright single precision floating point (4 floats)
- \triangleright double precision float point (2 doubles).

Arithmetic instructions

- \rhd ADD, SUB, MUL, DIV, SQRT, MAX, MIN, RCP, etc
- \triangleright PD: two doubles, PS: 4 floats, SS: scalar
 - ▷ ADDPS add four floats, ADDSS: scalar add

Logical instructions

- \triangleright AND, OR, XOR, ANDN, etc
 - ▷ANDPS bitwise AND of operands
 - ▷ANDNPS bitwise AND NOT of operands

Comparison instruction:

▷ CMPPS, CMPSS – compare operands and return all I's or 0's

SIMD extensions in ARM: NEON

- > 32×64 -bit registers (also used as 16×128 -bit registers)
- Registers considered as vectors of same data type
- ▶ Data types: signed/uns. 8-bit, 16-bit, 32-bit, 64-bit, single prec. float
- Instructions perform the same operation in all lanes

ane

This Course: Data Parallel Processor Architecture

- I. Vector Processors
 - ▷ Pipelined execution
 - ▷ SIMD: Single instruction, multiple data
 - ▷ Example: modern ISA extensions
- 2. Graphics Processing Units (GPUs)
 - ▷ Dense grid of ALUs
 - ▷ SIMT: Single instruction, multiple threads
 - \triangleright Integrated vs. discrete

CPU vs. GPU

- Tens of cores
- Mostly control logic
- Large caches

- Thousands of tiny cores
- Mostly ALU
- Little cache
- Regular threads (e.g., Java) Special threads (e.g., CUDA)

Integrated vs. Discrete GPU

Integrated (e.g., AMD)Shared cache hierarchyOne memory

Discrete (e.g., nVidia)

- Specialized GPU memory
- Must move data back/forth

This course: Discrete GPU

Integrated (e.g., AMD)Shared cache hierarchyOne memory

Discrete (e.g., nVidia) Specialized GPU memory Must move data back/forth

EPFL CS-206 - Spring 2015

Warning! CPU/GPU connection is a bottleneck

Sequential Execution Model / SISD

Flow of control / Thread One instruction at the time Optimizations possible at the machine level

Data Parallel Execution Model / SIMD

Single Program Multiple Data / SPMD

Code is statically identical across all threads Execution path may differ The model used in today's Graphics Processors

Killer app? 3D Graphics

Example apps:

- ⊳Games
- ⊳Engineering/CAD

Computation:

Е

Start with triangles (points in 3D space)
Transform (move, rotate, scale)
Paint / Texture mapping
Rasterize → convert into pixels
Light & Hidden "surface" elimination

Bottom line:

- \triangleright Tons of independent calculations
- \triangleright Lots of identical calculations

Lots of independent computations
 CUDA threads need not be completely independent

Programmer's View of the GPU

► GPU: a compute device that:

- \triangleright Is a coprocessor to the CPU or **host**
- \triangleright Has its own DRAM (device memory)
- \triangleright Runs many threads in parallel

Data-parallel portions of an application are executed on the device as kernels which run in parallel on many threads GPU threads are extremely lightweight
 Little creation overhead (unlike Java)
 e.g., ~microseconds
 All done in hardware

GPU needs 1000s of threads for full efficiency
 Multi-core CPU needs only a few

GPU threads help in two ways!

Execution Timeline

► First create data in CPU memory

Programmer's view

► Then Copy to GPU

Programmer's view

- \blacktriangleright GPU starts computation \rightarrow runs a kernel
- CPU can also continue

CPU and GPU Synchronize

Copy results back to CPU

Programming Languages

CUDA

- ⊳ nVidia
- ▷ Has market lead
- OpenCL
 - ▷ Many including nVidia
 - ▷ CUDA superset
 - Targets many different devices, e.g., CPUs + programmable accelerators
 - ⊳ Fairly new

Both are evolving

Computation partitioning

What is the kernel here?

EPFL CS-206 – Spring 2015

```
My first CUDA Program
```

```
__global___ void fadepic(int *a, int fade, int N)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) a[i] = a[i] * fade;
}
```

```
int main()
```

```
int h[N];
int *d;
cudaMalloc ((void **) &d, SIZE);
```

••••

}

```
cudaThreadSynchronize ();
cudaMemcpy (d, h, SIZE, cudaMemcpyHostToDevice));
```

```
fadepic<<< n_blocks, block_size >>> (d, 10.0, N);
```

```
cudaDeviceSynchronize ();
cudaMemcpy (h, d, SIZE, cudaMemcpyDeviceToHost));
CUDA_SAFE_CALL (cudaFree (d));
```

CPU

```
GPU
```

Per Kernel Computation Partitioning

Threads within a block can communicate/synchronize

 \triangleright Run on the same core

Threads across blocks can't communicate

▷ Shouldn't touch each others data (undefined behavior)

Per Kernel Computation Partitioning

- One thread can process multiple data elements
- Other mappings are possible and often desirable
 We will talk about this later

Fade example

Each thread will process one pixel

for all elements do in parallel

a[i] = a[i] * fade;

Code Skeleton

► CPU:

 \triangleright Initialize image from file \triangleright Allocate buffer on GPU \triangleright Copy image to buffer ▷ Launch GPU kernel \triangleright Reads and writes into buffer \triangleright Copy buffer back to CPU \triangleright Write image to a file ► GPU:

 \triangleright Launch a thread per pixel

GPU Kernel pseudo-code

```
__global__ void fadepic (int *a,
int fade,
int N)
{
int v = a[x][y];
v = v * fade;
```

```
a[x][y] = v;
```

}

This is the program for one thread

It processes one pixel

Which thread computes which pixel?

▶ gridDim.x = 7, gridDim.y = 6

How many blocks per dimension?

blockldx

- blockIdx = coordinates of block in the grid
- \blacktriangleright blockldx.x = 2, blockldx.y = 3
- ► blockIdx.x = 5, blockIdx.y = I

▶ blockDim.x= 7, blockDim.y = 7

How many threads in a block per dimension?

threadIdx

- threadIdx = coordinates of thread in the block
- \blacktriangleright threadidx.x= 2, threadIdx.y = 3
- ► threadIdx.x = 5, threadIdx.y = 4

Which thread computes which pixel?


```
__global__ void fade (int *a,
int fade,
int N)
```

int v = a[offset]; v = v * fade;a[offset] = v;

```
__global__ void fade (int *a,
int fade,
int N)
```

```
int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y * blockIdx.y + threadIdx.y
int offset = y * (blockDim.x * gridDim.x) + x;
if (offset > N) return;
int v = a[offset];
v = v * fade;
a[offset] = v;
```

Grids of Blocks of Threads

Cores and caches are clustered on chip for fast connectivity Hardware partitioned naturally into grids

Programmer's view: Memory Model

Grids of Thread Blocks: Dimension Limits

- Grid of Blocks ID, 2D, or 3D
 Max x, y and z: 2³²-1
 Machine dependent
- Block of Threads: ID, 2D, or 3D
 Max number of threads: 1024
 Max x: 1024
 Max y: 1024
 Max z: 64

Thread Batching

- Kernel executed as a grid of thread blocks
- Threads in block cooperate
 Synchronize their execution
 Efficiently share data in blocklocal memory
- Threads across blocks cannot cooperate

Thread Coordination Overview

Only across threads within the same block No communication across blocks

Arrows show whether read and/or write is possible

Memory	Location	Access	Scope	
Local	off-chip	R/W	thread	
Shared	on-chip	R/W	all threads in a block	
Global	off-chip	R/W	all threads + host	
Constant	off-chip	RO	all threads + host	
Texture	off-chip	RO	all threads + host	
Surface	off-chip	R/W	all threads + host	

Memory Model: Global, Constant, and Texture Memories

Global memory

- Communicating R/W data between host and device
- Contents visible to all threads
- May be cached (machine dependent)

Texture and Constant Memories

- Constants initialized by host
- Contents visible to all threads
- May be cached (machine dependent)

Execution Model: Ordering

- Execution order is undefined
- Do not assume and use:
 - ⊳block 0 executes before block I
 - ▷thread 10 executes before thread 20
 - ▷and any other ordering even if you can observe it
- Future implementations may break this ordering
- It's not part of the CUDA definition
- Why? More flexible hardware options

- Access GPU via cuda...() calls and kernel invocations
 CudaMalloc, cudaMemCpy
- Asynchronous from the CPU's perspective
 CPU places a request in a "CUDA" queue
 requests are handled in-order

Execution Model Summary (for your reference)

- Grid of blocks of threads
 - ▷ 1D/2D/3D grid of blocks of 1D/2D/3D threads
 - ▷ Threads and blocks have IDs
- Block execution order is undefined
- Same block threads can shared data fast

Across blocks, threads:

- ▷ Cannot cooperate
- ▷ Communicate (slowly) through global memory
- Blocks do not migrate: execute on the same processor
- Several blocks may run over the same core

CUDA API: Example

int a[N];

for (i =0; i < N; i++)</pre>

a[i] = a[i] + x;

- I. Allocate CPU Data Structure
- 2. Initialize Data on CPU
- 3. Allocate GPU Data Structure
- 4. Copy Data from CPU to GPU
- 5. Define Execution Configuration
- 6. Run Kernel
- 7. CPU synchronizes with GPU
- 8. Copy Data from GPU to CPU
- 9. De-allocate GPU and CPU memory

I. Allocate CPU data structure

```
float *ha;
main (int argc, char *argv[])
{
    int N = atoi (argv[1]);
    ha = (float *) malloc (sizeof (float) * N);
    ...
```

2. Initialize CPU data (dummy)

float *ha;

int i;

for (i = 0; i < N; i++)
ha[i] = i;</pre>

float *da;

cudaMalloc ((void **) &da, sizeof (float) * N);

Notice: no assignment side
 NOT: da = cudaMalloc (...)

Assignment is done internally:

▷ That's why we pass &da

Space is allocated in Global Memory on the GPU

GPU Memory Allocation

► The host manages GPU memory allocation:

- b cudaMalloc (void **ptr, size_t nbytes)
- \triangleright Must explicitly cast to (void **)
 - ▷cudaMalloc ((void **) &da, sizeof (float) * N);

> cudaFree (void *ptr);

 \triangleright cudaFree (da);

> cudaMemset (void *ptr, int value, size_t nbytes);

▷ cudaMemset (da, 0, N * sizeof (int));

Check the CUDA Reference Manual

4. Copy Initialized CPU data to GPU

- float *da;
- float *ha;

cudaMemCpy ((void *) da, // DESTINATION
 (void *) ha, // SOURCE
 sizeof (float) * N, // #bytes
 cudaMemcpyHostToDevice);
 // DIRECTION

The host initiates all transfers:

Asynchronous from the CPU's perspective

▷ CPU thread continues

In-order processing with other CUDA requests

enum cudaMemcpyKind

D cudaMemcpyHostToDevice

D cudaMemcpyDeviceToHost

D cudaMemcpyDeviceToDevice

5. Define Execution Configuration

How many blocks and threads/block

int threads_block = 64; int blocks = N / threads_block; if (blocks % N != 0) blocks += 1;

► Alternatively:

blocks = (N + threads_block - 1) / threads_block;

GPU launch blocks x threads_block threads:

arradd <<<blocks, threads_block>>
 (da, 10f, N);
cudaDeviceSynchronize (); // forces CPU to wait

arradd: kernel name

<<<<...>>> execution configuration

(da, x, N): arguments

 \triangleright 256 byte limit / No variable arguments

 \triangleright Not sure this is still true

CPU/GPU Synchronization

CPU does not block on cuda...() calls Kernel/requests are queued and processed in-order Control returns to CPU immediately

Good if there is other work to be done

 \triangleright e.g., preparing for the next kernel invocation

Eventually, CPU must know when GPU is done

Then it can safely copy the GPU results

cudaDeviceSynchronize ()

Block CPU until all preceding cuda...() and kernel requests have completed

▷ Used to be cudaThreadSynchronize ()

8. Copy data from GPU to CPU &9. Deallocate Memory

- float *da;
- float *ha;

```
cudaMemCpy ((void *) ha,
                                // DESTINATION
                         // SOURCE
            (void *) da,
            sizeof (float) * N, // #bytes
            cudaMemcpyDeviceToHost);
                                // DIRECTION
cudaFree (da);
// display or process results here
free (ha);
```

```
__global__ darradd (float *da, float x, int
    N)
{
    int i = blockIdx.x * blockDim.x +
    threadIdx.x;
```

```
if (i < N) da[i] = da[i] + x;
```

}

CUDA Function Declarations

			Executed on the:	Only callable from the:
device fl	oat De	eviceFunc()	device	device
global vo	id Ke	ernelFunc()	device	host
host fl	oat Ho	ostFunc()	host	host

⊳ Must return void

▷ Can only call __device__ functions

____device___ and ____host___ can be used together

▷ Two difference versions generated

Can you do this one now?

$(\mathbf{C}) = (\mathbf{A}) \cdot (\mathbf{B})$

Data Parallel Computing

- ▷ Much of media processing is data parallel
- ▷ All of data analytics on datacenters & beyond
- Platforms for data parallel computing
 - ▷ Within CPU: SIMD/Vector
 - ▷ Across CPU: GPU
 - ▷ Across a single computer: cluster of servers
- ► GPUs: orders of magnitude more concurrent than CPU
- GPU programming
 - \triangleright It's complicated

▷ Take your time EPFL CS-206 – Spring 2015