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Where are We?
u  Data Parallel Computing

w Vector
w GPU

u  GPU architecture

u  CUDA

u  Next week
w More CUDA
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From now on: Data Parallel
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Recall: Forms of Parallelism
u  Throughput parallelism

w Perform many (identical) sequential tasks at the same time
w E.g., Google search, ATM (bank) transactions

u  Task parallelism
w Perform tasks that are functionally different in parallel
w E.g., iPhoto (face recognition with slide show)

u  Pipeline parallelism
w Perform tasks that are different in a particular order
w E.g., speech (signal, phonemes, words, conversation)

u  Data parallelism
w Perform the same task on different data
w E.g., Graphics, data analytics
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Example: Image Processing/Graphics

int a[N]; // N is large 
for (i =0; i < N; i++) 

a[i] = a[i] * fade; 



EPFL CS-206 – Spring 2015  Lec.11 - 8

Example: Speech Recognition (e.g., Siri)

u Signal processing: same algorithm run on a sample
u Neural network: propagate values across neurons
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Signal Processing: Data Parallel Transforms

Example: Discrete Fourier Transform (DFT) size 4 
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Matrix operations are embarrassingly data parallel! 



EPFL CS-206 – Spring 2015  Lec.11 - 10

A network of neurons 
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Data Parallel Computation on Neurons

float nron [N]; // for large N for (each neu[i]) 
 
for (i=0; i < N; i++) 
             
    for (j=0; j < nron[i].outputs; j++) 
                    
                      nron[i].y[j] =  
 
sigmoid(                                                                 ) nron[i].wkjnron[i].xk

k=0

nron[i].inputs

∑ + nron[i].bj
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Example: Data Analytics

u Google processes 20 PB a day
u Wayback Machine has 3 PB + 100 TB/month
u  Facebook has 2.5 PB of user data + 15 TB/day
u  eBay has 6.5 PB of user data + 50 TB/day
u CERN’s Large Hydron Collider generates 15 PB a year

How do we aggregate this data? 
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MapReduce in Data Analytics 

u  It’s about aggregating statistics over data
u  Divide up the data among servers
u  Compute the stats (independently)
u  Then aggregate/reduce

u  Example: CloudSuite classification benchmark
w 10’s of GB of web pages
w Rank pages based on the word occurrence (popularity)
w Look for celebrities
w  It’s an embarrassingly (data) parallel problem!
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map map map 

Aggregate values by keys 

reduce reduce 

5004 2513 Gaga Bieber 

MapReduce from Google: 
Data Parallel Computing on Volume Servers

 104 969 Gaga Bieber 

….. 

5004 104 Bieber ………………..…. 2513 969 Gaga …………………... 

Bieber count Gaga count 
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This Course:���
Data Parallel Processor Architecture

1.  Vector Processors
w Pipelined execution
w SIMD: Single instruction, multiple data
w Example: modern ISA extensions

2.  Graphics Processing Units (GPUs)
w Dense grid of ALUs
w SIMT: Single instruction, multiple threads
w  Integrated vs. discrete
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Recall: MIPS Processor (Instruction Cycle)

u  Instructions are fetched from instruction cache and decoded
u  Operands are fetched from register file
u  Execute is the ALU (arithmetic logic unit)
u  Memory access to data cache
u  Write results back to register file

ID IF MEM 
EXE 

WB 

Instruction 
Fetch 

Instruction 
Decode/ 
Operand 
Fetch 

Execute Memory 
Access 

Write back 
Result 
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Recall: MIPS Pipeline (Instruction Cycle)

ID IF MEM 
EXE 

WB 

Instruction 
Fetch 

Instruction 
Decode/ 
Operand 
Fetch 

Execute Memory 
Access 

Write back 
Result 

int a[N]; // N is large 
for (i =0; i < N; i++) 

a[i] = a[i] * fade; 



EPFL CS-206 – Spring 2015  Lec.11 - 18

Fader loop in assembly

for (i =0; i < N; i++) 
a[i] = a[i] * fade; 

 

 

u  The loop iterates N 
times (once for each 
array element) 

u  Same exact operation 
for each element 

u  Assume 32-bit “mul” 

; a[] -> $2,  

; fade -> $3,  

; &a[N] -> $4, 

; $5 is a temp 

 

loop: 

 lw   $5, 0($2) 

  mul  $5, $3, $5 

  sw   $5, 0($2) 

  addi $2, $2, 4 

  bne  $2, $4, loop  
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Vector Processor: One instruction, multiple data 
Instruction 
Fetch 

Instruction 
Decode/ 
Operand 
Fetch 

Execute Memory 
Access 

Write back 
Result 

ID IF MEM WB EXE 

EXE 

EXE 

EXE 
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Vector Processing

* 

r1 r2 

r3 

mul r3, r1, r2 

SCALAR 
(1 operation) 

v1 v2 

v3 
* 

vector 
length 

mul.v v3, v1, v2 

VECTOR 
(N operations) 

u  Vector processors have high-level operations that work 
on linear arrays of numbers: "vectors" 
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Example vector instructions

 
Each vector register is multiple scalar registers 
u  In our example, a vector register V has 4 scalars 
 
So, 
u  mul.v       v1, v2, v1     vector dot product v1*v2 
u  mul.sv     v1, r1, v1      multiplies scalar r1 to all elements of v1 
u  lw.v         v1, 0(r1)       loads vector v1 from address r1 
u  sw.v        v1, 0(r1)       stores vector v1 at address r1 
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lw.v loads four integers like 4 parallel lw

ID IF MEM WB EXE 

EXE 

EXE 

EXE lw.v  v1, 0(r1)  

 v1[0] 

lw address 4(r1)  

lw address 8(r1)  

lw address 12(r1)  

 v1[1] 

lw address 0(r1)  

 v1[2] 

 v1[3] 
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mul.v vector dot product (4 parallel multiplies)

ID IF MEM WB EXE 

EXE 

EXE 

EXE mul.v v1, v2, v1 

 v1[0] 

v1[1]*v2[1] 

v1[2]*v2[2] 

v1[3]*v2[3] 

 v1[1] 

v1[0] *v2[0]  

 v1[2] 

 v1[3] 
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add.v adds two vectors (4 parallel adds)

ID IF MEM WB EXE 

EXE 

EXE 

EXE mul.sv v1, r1, v1 

 v1[0] 

v1[1]*r1 

v1[2]*r1 

v1[3]*r1 

 v1[1] 

v1[0]*r1  

 v1[2] 

 v1[3] 
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Fader loop in Vector MIPS assembly

for (i =0; i < N; i++) 
a[i] = a[i] * fade; 

 

 

u  Should do it four 
elements at a time 

; a[] -> $2,  

; fade -> $3,  

; &a[N] -> $4 

; $v1 is temp 

 

loop: 
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Fader loop in Vector MIPS assembly

for (i =0; i < N; i++) 
a[i] = a[i] * fade; 

 

 

u  Should do it four 
elements at a time 

u  How many fewer 
instructions? 

; a[] -> $2,  

; fade -> $3,  

; &a[N] -> $4 

; $v1 is temp 

 

loop: 

 lw.v   $v1, 0($2) 

  mul.sv $v1, $3, $v1 

  sw.v   $v1, 0($2) 

  addi   $2, $2, 16 

  bne    $2, $4, loop  
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Spec92fp           Operations (Millions)            Instructions (M) 
Program          Scalar   Vector   S/V           Scalar  Vector         S/V  
swim256  115  95   1.1x   115  0.8  142x 
hydro2d  58  40  1.4x    58  0.8   71x 
nasa7  69  41  1.7x      69  2.2   31x 
su2cor  51  35  1.4x      51  1.8   29x 
tomcatv  15  10  1.4x      15  1.3   11x 
wave5  27  25  1.1x      27  7.2    4x 
mdljdp2  32  52  0.6x      32  15.8    2x 
 

Operation & Instruction Count  
(from F. Quintana, U. Barcelona.) 

 Vector reduces ops by 1.2X, instructions by 20X 
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Automatic Code Vectorization

for (i =0; i < N; i++) 
    a[i] = a[i] * fade; 

Compiler can detect vector operations
u  Inspect the code
u Vectorize automatically
But, what about
 

for (i =0; i < N; i++) 

    a[i] = a[b[i]] * fade; 
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Automatic Code Vectorization

for (i =0; i < N; i++) 
    a[i] = a[i] * fade; 

Compiler can detect vector operations
u  Inspect the code
u Vectorize automatically
But, what about
 

for (i =0; i < N; i++) 

    a[i] = a[b[i]] * fade; 

b[i] unknown 
at compile 
time! 
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x86 architecture SIMD support
u  Both current AMD and Intel’s x86 processors have ISA and 

microarchitecture support SIMD operations.
u  ISA SIMD support

w MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX
w See the flag field in /proc/cpuinfo

w SSE (Streaming SIMD extensions): ISA extensions to x86
w SIMD/vector operations

u  Micro architecture support
w Many functional units
w 8 128-bit vector registers, XMM0, XMM1, …, XMM7
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SSE programming
u Vector registers support three data types: 

w  Integer (16 bytes, 8 shorts, 4 int, 2 long long int, 1 dqword)
w  single precision floating point (4 floats)
w double precision float point (2 doubles).
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SSE instructions

u  Arithmetic instructions
w ADD, SUB, MUL, DIV, SQRT, MAX, MIN, RCP, etc
w PD: two doubles, PS: 4 floats, SS: scalar

w ADDPS – add four floats, ADDSS: scalar add  
u  Logical instructions

w AND, OR, XOR, ANDN, etc
w ANDPS – bitwise AND of operands
w ANDNPS – bitwise AND NOT of operands

u  Comparison instruction:
w CMPPS, CMPSS – compare operands and return all 1’s or 0’s
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u  32 x 64-bit registers (also used as 16 x 128-bit registers)
u  Registers considered as vectors of same data type
u  Data types: signed/uns. 8-bit, 16-bit, 32-bit, 64-bit, single prec. float
u  Instructions perform the same operation in all lanes

SIMD extensions in ARM: NEON

Dn 

Dm 

Dd 

Lane 

Source 
Registers 
Source 
Registers 

Operation 

Destination 
Register 

Elements Elements Elements 
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This Course:���
Data Parallel Processor Architecture

1.  Vector Processors
w Pipelined execution
w SIMD: Single instruction, multiple data
w Example: modern ISA extensions

2.  Graphics Processing Units (GPUs)
w Dense grid of ALUs
w SIMT: Single instruction, multiple threads
w  Integrated vs. discrete
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u Tens of cores
u Mostly control logic
u  Large caches
u Regular threads (e.g., Java)

u Thousands of tiny cores
u Mostly ALU
u  Little cache
u  Special threads (e.g., CUDA)

CPU vs. GPU

Cache 

Cache 
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GPUs are highly concurrent!
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Integrated (e.g., AMD)
u  Shared cache hierarchy
u One memory

Discrete (e.g., nVidia)
u  Specialized GPU memory
u Must move data back/forth

Integrated vs. Discrete GPU

Memory Memory GPU 
Memory 

CPU 
I/O   
Bus 

GPU 
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Integrated (e.g., AMD)
u  Shared cache hierarchy
u One memory

Discrete (e.g., nVidia)
u  Specialized GPU memory
u Must move data back/forth

This course: Discrete GPU

Memory Memory GPU 
Memory 

CPU 
I/O   
Bus 

GPU 
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Warning! CPU/GPU connection is a bottleneck

Memory GPU 
Memory 

CPU GPU 

300 
GB/s 

30 GB/s 

3 GB/s 
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Sequential Execution Model / SISD
 int a[N]; // N is large 

 for (i =0; i < N; i++) 
 a[i] = a[i] * fade; 

ti
m

e Flow of control / Thread 
One instruction at the time 
Optimizations possible at 
the machine level 
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Data Parallel Execution Model / SIMD
 int a[N]; // N is large 

 for all elements do in parallel 
 a[i] = a[i] * fade; 

ti
m

e 
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Single Program Multiple Data / SPMD
 int a[N]; // N is large 

 for all elements do in parallel 
 if (a[i] > threshold) a[i]*= fade; 

ti
m

e 

Code is statically identical across all threads 
Execution path may differ 
The model used in today’s Graphics Processors 
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Killer app? 3D Graphics
Example apps:

w Games
w Engineering/CAD

Computation:
w Start with triangles (points in 3D space)
w Transform (move, rotate, scale)
w Paint / Texture mapping
w Rasterize à convert into pixels
w Light & Hidden “surface” elimination

Bottom line:
w Tons of independent calculations
w Lots of identical calculations���
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Target Applications

 int a[N]; // N is large 

 for all elements of an array 
 a[i] = a[i]* fade 

u  Lots of independent computations
w CUDA threads need not be completely independent

Kernel 

THREAD 
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Programmer’s View of the GPU

u  GPU: a compute device that:
w  Is a coprocessor to the CPU or host
w Has its own DRAM (device memory)
w Runs many threads in parallel

u  Data-parallel portions of an application are executed on the 
device as kernels which run in parallel on many threads
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GPU vs. CPU Threads

u GPU threads are extremely lightweight
w Little creation overhead (unlike Java)
w e.g., ~microseconds
w All done in hardware

u GPU needs 1000s of threads for full efficiency
w Multi-core CPU needs only a few
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GPU threads help in two ways!

…..* fade 

Parallelize  
computation 

Overlap 
memory  
access Memory 

GPU 
Memory 

… = a[i]…. 
a[i] = … 

CPU 

GPU 
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Execution Timeline
ti

m
e 

1. Copy to GPU mem 
2. Launch GPU Kernel 

GPU / Device 

2’. Synchronize with GPU 
3. Copy from GPU mem 

CPU / Host 
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Programmer’s view
u  First create data in CPU memory

CPU 

Memory 

GPU 

GPU Memory 
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Programmer’s view
u  Then Copy to GPU

CPU 

Memory 

GPU 

GPU Memory 
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Programmer’s view
u  GPU starts computation à runs a kernel
u  CPU can also continue

CPU 

Memory 

GPU 

GPU Memory 
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Programmer’s view
u  CPU and GPU Synchronize

CPU 

Memory 

GPU 

GPU Memory 
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Programmer’s view
u  Copy results back to CPU

CPU 

Memory 

GPU 

GPU Memory 
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Programming Languages

u  CUDA
w nVidia
w Has market lead

u  OpenCL
w Many including nVidia
w CUDA superset
w Targets many different devices, e.g., CPUs + programmable 

accelerators
w Fairly new

u  Both are evolving
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Computation partitioning 

u  Think of computation as a series of loops
u  Think of data as an array

for (i = 0; i < big_number; i++)
a[i] = some function

for (i = 0; i < big_number; i++)
a[i] = some other function

for (i = 0; i < big_number; i++)
a[i] = some other function

 

Kernels 
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What is the kernel here?
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My first CUDA Program
__global__ void fadepic(int *a, int fade, int N) 
 { 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  if (i < N) a[i] = a[i] * fade; 
} 
 
int main() 
{ 
  int h[N]; 
  int *d; 
  cudaMalloc ((void **) &d, SIZE); 
  ….. 
 
  cudaThreadSynchronize (); 
  cudaMemcpy (d, h, SIZE, cudaMemcpyHostToDevice)); 
 
  fadepic<<< n_blocks, block_size >>> (d, 10.0, N); 
 
  cudaDeviceSynchronize (); 
  cudaMemcpy (h, d, SIZE, cudaMemcpyDeviceToHost)); 
  CUDA_SAFE_CALL (cudaFree (d)); 
} 

GPU 

CPU 
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Per Kernel Computation Partitioning

Threads within a block can communicate/synchronize
w Run on the same core

Threads across blocks can’t communicate
w Shouldn’t touch each others data (undefined behavior)

Block 

thread 
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Per Kernel Computation Partitioning

u  One thread can process multiple data elements
u  Other mappings are possible and often desirable

w We will talk about this later

Block 

thread 
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Fade example
u  Each thread will process one pixel
for all elements do in parallel 

 a[i] = a[i] * fade; 
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Code Skeleton

u  CPU:
w  Initialize image from file
w Allocate buffer on GPU
w Copy image to buffer
w Launch GPU kernel

w Reads and writes into buffer
w Copy buffer back to CPU
w Write image to a file

u  GPU:
w Launch a thread per pixel
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GPU Kernel pseudo-code
__global__ void fadepic (int *a, ���

   int fade, ���
    int N)

{
  int v = a[x][y];
  v = v * fade;  
  a[x][y] = v;
}
u  This is the program for one thread
u  It processes one pixel
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Which thread computes which pixel?

blockDim.y 

gridDim.y 

blockDim.x gridDim.x 

threadIdx.y 

threadIdx.x 
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gridDim

u  gridDim.x = 7, gridDim.y = 6
u  How many blocks per dimension?
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blockIdx
u  blockIdx = coordinates of block in the grid
u  blockIdx.x = 2, blockIdx.y = 3
u  blockIdx.x = 5, blockIdx.y = 1

(0,0) 
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blockDim

u  blockDim.x= 7, blockDim.y = 7
u  How many threads in a block per dimension?
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threadIdx
u  threadIdx = coordinates of thread in the block
u  threadidx.x= 2, threadIdx.y = 3
u  threadIdx.x = 5, threadIdx.y = 4

(0,0) 
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Which thread computes which pixel?

blockDim.y 

gridDim.y 

blockDim.x gridDim.x 

threadIdx.y 

threadIdx.x 

x = blockIdx.x * blockDim.x + threadIdx.x 
y = blockIdx.y * blockDim.y + threadIdx.y 
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GPU Kernel pseudo-code

__global__ void fade (int *a, ���
                           int fade, ���
                           int N)

{
  int x = blockDim.x * blockIdx.x + threadIdx.x;
  int y = blockDim.y * blockIdx.y + threadIdx.y
  int offset = y * (blockDim.x * gridDim.x) + x;   
                           // offset within unidimensional array
  int v = a[offset];
  v = v * fade;  
  a[offset] = v;
}



EPFL CS-206 – Spring 2015  Lec.11 - 70

GPU Kernel pseudo-code w/ limits

__global__ void fade (int *a, ���
                           int fade, ���
                           int N)

{
  int x = blockDim.x * blockIdx.x + threadIdx.x;
  int y = blockDim.y * blockIdx.y + threadIdx.y
  int offset = y * (blockDim.x * gridDim.x) + x;
  if (offset > N) return;
  int v = a[offset];
  v = v * fade;  
  a[offset] = v;
}
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Grids of Blocks of Threads

Cores and caches are clustered on chip for fast connectivity 
Hardware partitioned naturally into grids 

Ti
m

e 
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Programmer’s view: Memory Model
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Device 
Grid 1 

Block 
(0, 0) Block 

(1, 0) Block 
(2, 0) 

Block 
(0, 1) Block 

(1, 1) Block 
(2, 1) 

Block (1, 1) 

Thread 
(0, 1) Thread 

(1, 1) Thread 
(2, 1) Thread 

(3, 1) Thread 
(4, 1) 

Thread 
(0, 2) Thread 

(1, 2) Thread 
(2, 2) Thread 

(3, 2) Thread 
(4, 2) 

Thread 
(0, 0) Thread 

(1, 0) Thread 
(2, 0) Thread 

(3, 0) Thread 
(4, 0) 

Grids of Thread Blocks: Dimension Limits

u  Grid of Blocks 1D, 2D, or 3D
w Max x, y and z: 232-1
w Machine dependent

u  Block of Threads: 1D, 2D, or 3D
w Max number of threads: 1024
w Max x: 1024
w Max y: 1024
w Max z: 64
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Thread Batching

u Kernel executed as a grid of 
thread blocks

u Threads in block cooperate
w Synchronize their execution
w Efficiently share data in block-

local memory

u Threads across blocks cannot 
cooperate

Host 

Kernel 
1 

Kernel 
2 

Device 
Grid 1 

Block 
(0, 0) Block 

(1, 0) Block 
(2, 0) 

Block 
(0, 1) Block 

(1, 1) Block 
(2, 1) 

Grid 2 

Block (1, 1) 

Thread 
(0, 1) Thread 

(1, 1) Thread 
(2, 1) Thread 

(3, 1) Thread 
(4, 1) 

Thread 
(0, 2) Thread 

(1, 2) Thread 
(2, 2) Thread 

(3, 2) Thread 
(4, 2) 

Thread 
(0, 0) Thread 

(1, 0) Thread 
(2, 0) Thread 

(3, 0) Thread 
(4, 0) 
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Thread Coordination Overview

u  Race-free access to data

Only across threads within the same block 
No communication across blocks 
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Programmer’s view: Memory Model: Thread vs. Host

Arrows show whether read and/or write is possible 
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Memory Model Summary

Memory Location Access Scope 

Local off-chip R/W thread 

Shared on-chip R/W all threads in a block 

Global off-chip R/W all threads + host 

Constant off-chip RO all threads + host 
 

Texture off-chip RO all threads + host 
Surface off-chip R/W all threads + host 
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Memory Model: ���
Global, Constant, and Texture Memories

u Global memory
–  Communicating R/W data between host and device
–  Contents visible to all threads
–  May be cached (machine dependent)

u Texture and Constant Memories
–  Constants initialized by host 
–  Contents visible to all threads
–  May be cached (machine dependent)
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Execution Model: Ordering

u  Execution order is undefined
u Do not assume and use:

w block 0 executes before block 1
w thread 10 executes before thread 20
w and any other ordering even if you can observe it

u  Future implementations may break this ordering
u  It’s not part of the CUDA definition
u Why? More flexible hardware options
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Reasoning about CUDA call ordering

u Access GPU via cuda…() calls and kernel invocations
w cudaMalloc, cudaMemCpy
 

u Asynchronous from the CPU’s perspective
w CPU places a request in a “CUDA” queue
w requests are handled in-order
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Execution Model Summary (for your reference)
u  Grid of blocks of threads

w  1D/2D/3D grid of blocks of 1D/2D/3D threads
w  Threads and blocks have IDs

u  Block execution order is undefined 

u  Same block threads can shared data fast

u  Across blocks, threads:
w  Cannot cooperate
w  Communicate (slowly) through global memory

u  Blocks do not migrate: execute on the same processor

u  Several blocks may run over the same core
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CUDA API: Example
int a[N];  
 for (i =0; i < N; i++) 

 a[i] = a[i] + x; 
1.  Allocate CPU Data Structure
2.  Initialize Data on CPU
3.  Allocate GPU Data Structure
4.  Copy Data from CPU to GPU
5.  Define Execution Configuration
6.  Run Kernel
7.  CPU synchronizes with GPU
8.  Copy Data from GPU to CPU
9.  De-allocate GPU and CPU memory
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1. Allocate CPU data structure

float *ha; 
main (int argc, char *argv[]) 

{ 

  int N = atoi (argv[1]); 

  ha = (float *) malloc (sizeof (float) * N); 

 ... 

} 
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2. Initialize CPU data (dummy)

float *ha; 
 

int i; 

 

for (i = 0; i < N; i++) 

 ha[i] = i; 
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3. Allocate GPU data structure
 
float *da; 

 

cudaMalloc ((void **) &da, sizeof (float) * N); 

 

u  Notice: no assignment side
w  NOT: da = cudaMalloc (…)

u  Assignment is done internally:
w  That’s why we pass &da

u  Space is allocated in Global Memory on the GPU
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GPU Memory Allocation

u The host manages GPU memory allocation:
w cudaMalloc (void **ptr, size_t nbytes) 

w Must explicitly cast to (void **) 
w cudaMalloc ((void **) &da, sizeof (float) * N); 

w cudaFree (void *ptr); 
w cudaFree (da); 

w cudaMemset (void *ptr, int value,       
size_t nbytes); 
w cudaMemset (da, 0, N * sizeof (int)); 

u Check the CUDA Reference Manual
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4. Copy Initialized CPU data to GPU

 
float *da; 

float *ha; 

 

cudaMemCpy ((void *) da,    // DESTINATION 

     (void *) ha,    // SOURCE 

     sizeof (float) * N, // #bytes 

     cudaMemcpyHostToDevice);  

         // DIRECTION 
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Host/Device Data Transfers

The host initiates all transfers:
u cudaMemcpy( void *dst, void *src,  

  size_t nbytes,  
  enum cudaMemcpyKind direction) 

u Asynchronous from the CPU’s perspective
w CPU thread continues

u  In-order processing with other CUDA requests
u enum cudaMemcpyKind 

w cudaMemcpyHostToDevice 

w cudaMemcpyDeviceToHost 

w cudaMemcpyDeviceToDevice
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5. Define Execution Configuration

u  How many blocks and threads/block

int threads_block = 64; 

int blocks = N / threads_block; 

if (blocks % N != 0) blocks += 1; 

 

u Alternatively:

blocks = (N + threads_block – 1) / 
    threads_block; 
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6. Launch Kernel & ���
7. CPU/GPU Synchronization

u GPU launch blocks x threads_block threads: 
 

 arradd <<<blocks, threads_block>>  

       (da, 10f, N); 

 cudaDeviceSynchronize (); // forces CPU to wait

u  arradd: kernel name
u <<<…>>> execution configuration
u  (da, x, N): arguments

w 256 byte limit / No variable arguments
w Not sure this is still true
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CPU/GPU Synchronization

u CPU does not block on cuda…() calls
w Kernel/requests are queued and processed in-order
w Control returns to CPU immediately

u Good if there is other work to be done
w e.g., preparing for the next kernel invocation

u  Eventually, CPU must know when GPU is done
u Then it can safely copy the GPU results
u cudaDeviceSynchronize () 

w Block CPU until all preceding cuda…() and kernel requests 
have completed

w Used to be cudaThreadSynchronize ()
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8. Copy data from GPU to CPU & ���
9. Deallocate Memory

float *da; 
float *ha; 

 

cudaMemCpy ((void *) ha,    // DESTINATION 

     (void *) da,    // SOURCE 

     sizeof (float) * N, // #bytes 

     cudaMemcpyDeviceToHost);  

         // DIRECTION 

cudaFree (da); 

// display or process results here 

free (ha); 
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The GPU Kernel

__global__ darradd (float *da, float x, int 
N) 

{ 

  int i = blockIdx.x * blockDim.x + 
threadIdx.x; 

 

  if (i < N) da[i] = da[i] + x; 

}
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CUDA Function Declarations

u __global__ defines a kernel function
w Must return void
w Can only call __device__ functions

u __device__ and __host__ can be used together
w Two difference versions generated

Executed 
on the: 

Only callable 
from the: 

__device__ float DeviceFunc() device device 

__global__ void  KernelFunc() device host 

__host__   float HostFunc() host host 
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Can you do this one now?

( ) ( ) ( )BAC •=
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Summary

u  Data Parallel Computing
w Much of media processing is data parallel
w All of data analytics on datacenters & beyond 

u  Platforms for data parallel computing
w Within CPU: SIMD/Vector
w Across CPU: GPU
w Across a single computer: cluster of servers

u  GPUs: orders of magnitude more concurrent than CPU
u  GPU programming

w  It’s complicated
w Take your time


