
EPFL CS-206 – Spring 2015 Lec.11 - 1

CS-206 Concurrency
���
Lecture 11

Data Parallel
Computing
Spring 2015
Prof. Babak Falsafi
parsa.epfl.ch/courses/cs206/
Adapted from slides originally developed by Andreas Di Blas,
Babak Falsafi, Simon Green, David Kirk, Andreas Moshovos, David
Patterson and Waqar Saleem
EPFL Copyright 2015

ID IF MEM WB EXE

EXE

EXE

EXE

EPFL CS-206 – Spring 2015 Lec.11 - 2

Lecture
& Lab

M T W T F
16-Feb 17-Feb 18-Feb 19-Feb 20-Feb
23-Feb 24-Feb 25-Feb 26-Feb 27-Feb
2-Mar 3-Mar 4-Mar 5-Mar 6-Mar
9-Mar 10-Mar 11-Mar 12-Mar 13-Mar
16-Mar 17-Mar 18-Mar 19-Mar 20-Mar
23-Mar 24-Mar 25-Mar 26-Mar 27-Mar
30-Mar 31-Mar 1-Apr 2-Apr 3-Apr
6-Apr 7-Apr 8-Apr 9-Apr 10-Apr
13-Apr 14-Apr 15-Apr 16-Apr 17-Apr
20-Apr 21-Apr 22-Apr 23-Apr 24-Apr
27-Apr 28-Apr 29-Apr 30-Apr 1-May
4-May 5-May 6-May 7-May 8-May
11-May 12-May 13-May 14-May 15-May
18-May 19-May 20-May 21-May 22-May
25-May 26-May 27-May 28-May 29-May

Where are We?
u  Data Parallel Computing

w Vector
w GPU

u  GPU architecture

u  CUDA

u  Next week
w More CUDA

EPFL CS-206 – Spring 2015 Lec.11 - 3

Recall: Historical View

Join	
 at:	
 	

Program	
 with:	
 	

P	
 P	
 P	

M	
 M	
 M	

IO	
 IO	
 IO	

I/O	
 (Network)	

Message	
 passing	

Hadoop	

SQL	
 (databases)	

P	
 P	
 P	

M	
 M	
 M	

IO	
 IO	
 IO	

Memory	

Shared	
 Memory	

Java	
 threads	

Posix	
 threads	

	

P	
 P	
 P	

M	
 M	
 M	

IO	
 IO	
 IO	

Processor	

Data	
 Parallel,	

SIMD,	
 Vector,	

GPU,	
 MapReduce	
 	
 	

EPFL CS-206 – Spring 2015 Lec.11 - 4

From now on: Data Parallel

Join	
 at:	
 	

Program	
 with:	
 	

P	
 P	
 P	

M	
 M	
 M	

IO	
 IO	
 IO	

I/O	
 (Network)	

Message	
 passing	

Hadoop	

SQL	
 (databases)	

P	
 P	
 P	

M	
 M	
 M	

IO	
 IO	
 IO	

Memory	

Shared	
 Memory	

Java	
 threads	

Posix	
 threads	

	

P	
 P	
 P	

M	
 M	
 M	

IO	
 IO	
 IO	

Processor	

Data	
 Parallel,	

SIMD,	
 Vector,	

GPU,	
 MapReduce	
 	
 	

EPFL CS-206 – Spring 2015 Lec.11 - 5

Recall: Forms of Parallelism
u  Throughput parallelism

w Perform many (identical) sequential tasks at the same time
w E.g., Google search, ATM (bank) transactions

u  Task parallelism
w Perform tasks that are functionally different in parallel
w E.g., iPhoto (face recognition with slide show)

u  Pipeline parallelism
w Perform tasks that are different in a particular order
w E.g., speech (signal, phonemes, words, conversation)

u  Data parallelism
w Perform the same task on different data
w E.g., Graphics, data analytics

}
Re

du
ce

 ti
m

e
fo

r o
ne

 jo
b

EPFL CS-206 – Spring 2015 Lec.11 - 6

Recall: Forms of Parallelism
u  Throughput parallelism

w Perform many (identical) sequential tasks at the same time
w E.g., Google search, ATM (bank) transactions

u  Task parallelism
w Perform tasks that are functionally different in parallel
w E.g., iPhoto (face recognition with slide show)

u  Pipeline parallelism
w Perform tasks that are different in a particular order
w E.g., speech (signal, phonemes, words, conversation)

u  Data parallelism
w Perform the same task on different data
w E.g., Graphics, data analytics

}
Re

du
ce

 ti
m

e
fo

r o
ne

 jo
b

EPFL CS-206 – Spring 2015 Lec.11 - 7

Example: Image Processing/Graphics

int a[N]; // N is large
for (i =0; i < N; i++)

a[i] = a[i] * fade;

EPFL CS-206 – Spring 2015 Lec.11 - 8

Example: Speech Recognition (e.g., Siri)

u Signal processing: same algorithm run on a sample
u Neural network: propagate values across neurons

EPFL CS-206 – Spring 2015 Lec.11 - 9

Signal Processing: Data Parallel Transforms

Example: Discrete Fourier Transform (DFT) size 4

Mxx!
transform (a matrix) sampled signal (a vector)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−
=

1
1
1

1

11
11

11
11

1
1

1

11
11

11
11

11
1111

11
1111

4

iii

ii
DFT

Matrix operations are embarrassingly data parallel!

EPFL CS-206 – Spring 2015 Lec.11 - 10

A network of neurons

x2

xn

w1j

w2j

wnj

wkjxk
k=0

n

∑ + bj

bj

Yj

Hidden Layers

Signal

I:

eΩ

Phonemes

Each neuron

EPFL CS-206 – Spring 2015 Lec.11 - 11

Data Parallel Computation on Neurons

float nron [N]; // for large N for (each neu[i])

for (i=0; i < N; i++)

 for (j=0; j < nron[i].outputs; j++)

 nron[i].y[j] =

sigmoid() nron[i].wkjnron[i].xk

k=0

nron[i].inputs

∑ + nron[i].bj

EPFL CS-206 – Spring 2015 Lec.11 - 12

Example: Data Analytics

u Google processes 20 PB a day
u Wayback Machine has 3 PB + 100 TB/month
u  Facebook has 2.5 PB of user data + 15 TB/day
u  eBay has 6.5 PB of user data + 50 TB/day
u CERN’s Large Hydron Collider generates 15 PB a year

How do we aggregate this data?

EPFL CS-206 – Spring 2015 Lec.11 - 13

MapReduce in Data Analytics

u  It’s about aggregating statistics over data
u  Divide up the data among servers
u  Compute the stats (independently)
u  Then aggregate/reduce

u  Example: CloudSuite classification benchmark
w 10’s of GB of web pages
w Rank pages based on the word occurrence (popularity)
w Look for celebrities
w  It’s an embarrassingly (data) parallel problem!

EPFL CS-206 – Spring 2015 Lec.11 - 14

map map map

Aggregate values by keys

reduce reduce

5004 2513 Gaga Bieber

MapReduce from Google:
Data Parallel Computing on Volume Servers

 104 969 Gaga Bieber

…..

5004 104 Bieber ………………..…. 2513 969 Gaga …………………...

Bieber count Gaga count

EPFL CS-206 – Spring 2015 Lec.11 - 15

This Course:���
Data Parallel Processor Architecture

1.  Vector Processors
w Pipelined execution
w SIMD: Single instruction, multiple data
w Example: modern ISA extensions

2.  Graphics Processing Units (GPUs)
w Dense grid of ALUs
w SIMT: Single instruction, multiple threads
w  Integrated vs. discrete

EPFL CS-206 – Spring 2015 Lec.11 - 16

Recall: MIPS Processor (Instruction Cycle)

u  Instructions are fetched from instruction cache and decoded
u  Operands are fetched from register file
u  Execute is the ALU (arithmetic logic unit)
u  Memory access to data cache
u  Write results back to register file

ID IF MEM
EXE

WB

Instruction
Fetch

Instruction
Decode/
Operand
Fetch

Execute Memory
Access

Write back
Result

EPFL CS-206 – Spring 2015 Lec.11 - 17

Recall: MIPS Pipeline (Instruction Cycle)

ID IF MEM
EXE

WB

Instruction
Fetch

Instruction
Decode/
Operand
Fetch

Execute Memory
Access

Write back
Result

int a[N]; // N is large
for (i =0; i < N; i++)

a[i] = a[i] * fade;

EPFL CS-206 – Spring 2015 Lec.11 - 18

Fader loop in assembly

for (i =0; i < N; i++)
a[i] = a[i] * fade;

u  The loop iterates N
times (once for each
array element)

u  Same exact operation
for each element

u  Assume 32-bit “mul”

; a[] -> $2,

; fade -> $3,

; &a[N] -> $4,

; $5 is a temp

loop:

 lw $5, 0($2)

 mul $5, $3, $5

 sw $5, 0($2)

 addi $2, $2, 4

 bne $2, $4, loop

EPFL CS-206 – Spring 2015 Lec.11 - 19

Vector Processor: One instruction, multiple data
Instruction
Fetch

Instruction
Decode/
Operand
Fetch

Execute Memory
Access

Write back
Result

ID IF MEM WB EXE

EXE

EXE

EXE

EPFL CS-206 – Spring 2015 Lec.11 - 20

Vector Processing

*

r1 r2

r3

mul r3, r1, r2

SCALAR
(1 operation)

v1 v2

v3
*

vector
length

mul.v v3, v1, v2

VECTOR
(N operations)

u  Vector processors have high-level operations that work
on linear arrays of numbers: "vectors"

EPFL CS-206 – Spring 2015 Lec.11 - 21

Example vector instructions

Each vector register is multiple scalar registers
u  In our example, a vector register V has 4 scalars

So,
u  mul.v v1, v2, v1 vector dot product v1*v2
u  mul.sv v1, r1, v1 multiplies scalar r1 to all elements of v1
u  lw.v v1, 0(r1) loads vector v1 from address r1
u  sw.v v1, 0(r1) stores vector v1 at address r1

EPFL CS-206 – Spring 2015 Lec.11 - 22

lw.v loads four integers like 4 parallel lw

ID IF MEM WB EXE

EXE

EXE

EXE lw.v v1, 0(r1)

 v1[0]

lw address 4(r1)

lw address 8(r1)

lw address 12(r1)

 v1[1]

lw address 0(r1)

 v1[2]

 v1[3]

EPFL CS-206 – Spring 2015 Lec.11 - 23

mul.v vector dot product (4 parallel multiplies)

ID IF MEM WB EXE

EXE

EXE

EXE mul.v v1, v2, v1

 v1[0]

v1[1]*v2[1]

v1[2]*v2[2]

v1[3]*v2[3]

 v1[1]

v1[0] *v2[0]

 v1[2]

 v1[3]

EPFL CS-206 – Spring 2015 Lec.11 - 24

add.v adds two vectors (4 parallel adds)

ID IF MEM WB EXE

EXE

EXE

EXE mul.sv v1, r1, v1

 v1[0]

v1[1]*r1

v1[2]*r1

v1[3]*r1

 v1[1]

v1[0]*r1

 v1[2]

 v1[3]

EPFL CS-206 – Spring 2015 Lec.11 - 25

Fader loop in Vector MIPS assembly

for (i =0; i < N; i++)
a[i] = a[i] * fade;

u  Should do it four
elements at a time

; a[] -> $2,

; fade -> $3,

; &a[N] -> $4

; $v1 is temp

loop:

EPFL CS-206 – Spring 2015 Lec.11 - 26

Fader loop in Vector MIPS assembly

for (i =0; i < N; i++)
a[i] = a[i] * fade;

u  Should do it four
elements at a time

u  How many fewer
instructions?

; a[] -> $2,

; fade -> $3,

; &a[N] -> $4

; $v1 is temp

loop:

 lw.v $v1, 0($2)

 mul.sv $v1, $3, $v1

 sw.v $v1, 0($2)

 addi $2, $2, 16

 bne $2, $4, loop

EPFL CS-206 – Spring 2015 Lec.11 - 27

Spec92fp Operations (Millions) Instructions (M)
Program Scalar Vector S/V Scalar Vector S/V
swim256 115 95 1.1x 115 0.8 142x
hydro2d 58 40 1.4x 58 0.8 71x
nasa7 69 41 1.7x 69 2.2 31x
su2cor 51 35 1.4x 51 1.8 29x
tomcatv 15 10 1.4x 15 1.3 11x
wave5 27 25 1.1x 27 7.2 4x
mdljdp2 32 52 0.6x 32 15.8 2x

Operation & Instruction Count
(from F. Quintana, U. Barcelona.)

 Vector reduces ops by 1.2X, instructions by 20X

EPFL CS-206 – Spring 2015 Lec.11 - 28

Automatic Code Vectorization

for (i =0; i < N; i++)
 a[i] = a[i] * fade;

Compiler can detect vector operations
u  Inspect the code
u Vectorize automatically
But, what about

for (i =0; i < N; i++)

 a[i] = a[b[i]] * fade;

EPFL CS-206 – Spring 2015 Lec.11 - 29

Automatic Code Vectorization

for (i =0; i < N; i++)
 a[i] = a[i] * fade;

Compiler can detect vector operations
u  Inspect the code
u Vectorize automatically
But, what about

for (i =0; i < N; i++)

 a[i] = a[b[i]] * fade;

b[i] unknown
at compile
time!

EPFL CS-206 – Spring 2015 Lec.11 - 30

x86 architecture SIMD support
u  Both current AMD and Intel’s x86 processors have ISA and

microarchitecture support SIMD operations.
u  ISA SIMD support

w MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX
w See the flag field in /proc/cpuinfo

w SSE (Streaming SIMD extensions): ISA extensions to x86
w SIMD/vector operations

u  Micro architecture support
w Many functional units
w 8 128-bit vector registers, XMM0, XMM1, …, XMM7

EPFL CS-206 – Spring 2015 Lec.11 - 31

SSE programming
u Vector registers support three data types:

w  Integer (16 bytes, 8 shorts, 4 int, 2 long long int, 1 dqword)
w  single precision floating point (4 floats)
w double precision float point (2 doubles).

EPFL CS-206 – Spring 2015 Lec.11 - 32

SSE instructions

u  Arithmetic instructions
w ADD, SUB, MUL, DIV, SQRT, MAX, MIN, RCP, etc
w PD: two doubles, PS: 4 floats, SS: scalar

w ADDPS – add four floats, ADDSS: scalar add
u  Logical instructions

w AND, OR, XOR, ANDN, etc
w ANDPS – bitwise AND of operands
w ANDNPS – bitwise AND NOT of operands

u  Comparison instruction:
w CMPPS, CMPSS – compare operands and return all 1’s or 0’s

EPFL CS-206 – Spring 2015 Lec.11 - 33

u  32 x 64-bit registers (also used as 16 x 128-bit registers)
u  Registers considered as vectors of same data type
u  Data types: signed/uns. 8-bit, 16-bit, 32-bit, 64-bit, single prec. float
u  Instructions perform the same operation in all lanes

SIMD extensions in ARM: NEON

Dn

Dm

Dd

Lane

Source
Registers
Source
Registers

Operation

Destination
Register

Elements Elements Elements

EPFL CS-206 – Spring 2015 Lec.11 - 34

This Course:���
Data Parallel Processor Architecture

1.  Vector Processors
w Pipelined execution
w SIMD: Single instruction, multiple data
w Example: modern ISA extensions

2.  Graphics Processing Units (GPUs)
w Dense grid of ALUs
w SIMT: Single instruction, multiple threads
w  Integrated vs. discrete

EPFL CS-206 – Spring 2015 Lec.11 - 35

u Tens of cores
u Mostly control logic
u  Large caches
u Regular threads (e.g., Java)

u Thousands of tiny cores
u Mostly ALU
u  Little cache
u  Special threads (e.g., CUDA)

CPU vs. GPU

Cache

Cache

EPFL CS-206 – Spring 2015 Lec.11 - 36

GPUs are highly concurrent!

G
FL

O
PS

/s
ec

Pe
rf

or
m

an
ce

 g
ap

EPFL CS-206 – Spring 2015 Lec.11 - 37

Integrated (e.g., AMD)
u  Shared cache hierarchy
u One memory

Discrete (e.g., nVidia)
u  Specialized GPU memory
u Must move data back/forth

Integrated vs. Discrete GPU

Memory Memory GPU
Memory

CPU
I/O
Bus

GPU

EPFL CS-206 – Spring 2015 Lec.11 - 38

Integrated (e.g., AMD)
u  Shared cache hierarchy
u One memory

Discrete (e.g., nVidia)
u  Specialized GPU memory
u Must move data back/forth

This course: Discrete GPU

Memory Memory GPU
Memory

CPU
I/O
Bus

GPU

EPFL CS-206 – Spring 2015 Lec.11 - 39

Warning! CPU/GPU connection is a bottleneck

Memory GPU
Memory

CPU GPU

300
GB/s

30 GB/s

3 GB/s

EPFL CS-206 – Spring 2015 Lec.11 - 40

Sequential Execution Model / SISD
 int a[N]; // N is large

 for (i =0; i < N; i++)
 a[i] = a[i] * fade;

ti
m

e Flow of control / Thread
One instruction at the time
Optimizations possible at
the machine level

EPFL CS-206 – Spring 2015 Lec.11 - 41

Data Parallel Execution Model / SIMD
 int a[N]; // N is large

 for all elements do in parallel
 a[i] = a[i] * fade;

ti
m

e

EPFL CS-206 – Spring 2015 Lec.11 - 42

Single Program Multiple Data / SPMD
 int a[N]; // N is large

 for all elements do in parallel
 if (a[i] > threshold) a[i]*= fade;

ti
m

e

Code is statically identical across all threads
Execution path may differ
The model used in today’s Graphics Processors

EPFL CS-206 – Spring 2015 Lec.11 - 43

Killer app? 3D Graphics
Example apps:

w Games
w Engineering/CAD

Computation:
w Start with triangles (points in 3D space)
w Transform (move, rotate, scale)
w Paint / Texture mapping
w Rasterize à convert into pixels
w Light & Hidden “surface” elimination

Bottom line:
w Tons of independent calculations
w Lots of identical calculations���

EPFL CS-206 – Spring 2015 Lec.11 - 44

Target Applications

 int a[N]; // N is large

 for all elements of an array
 a[i] = a[i]* fade

u  Lots of independent computations
w CUDA threads need not be completely independent

Kernel

THREAD

EPFL CS-206 – Spring 2015 Lec.11 - 45

Programmer’s View of the GPU

u  GPU: a compute device that:
w  Is a coprocessor to the CPU or host
w Has its own DRAM (device memory)
w Runs many threads in parallel

u  Data-parallel portions of an application are executed on the
device as kernels which run in parallel on many threads

EPFL CS-206 – Spring 2015 Lec.11 - 46

GPU vs. CPU Threads

u GPU threads are extremely lightweight
w Little creation overhead (unlike Java)
w e.g., ~microseconds
w All done in hardware

u GPU needs 1000s of threads for full efficiency
w Multi-core CPU needs only a few

EPFL CS-206 – Spring 2015 Lec.11 - 47

GPU threads help in two ways!

…..* fade

Parallelize
computation

Overlap
memory
access Memory

GPU
Memory

… = a[i]….
a[i] = …

CPU

GPU

EPFL CS-206 – Spring 2015 Lec.11 - 48

Execution Timeline
ti

m
e

1. Copy to GPU mem
2. Launch GPU Kernel

GPU / Device

2’. Synchronize with GPU
3. Copy from GPU mem

CPU / Host

EPFL CS-206 – Spring 2015 Lec.11 - 49

Programmer’s view
u  First create data in CPU memory

CPU

Memory

GPU

GPU Memory

EPFL CS-206 – Spring 2015 Lec.11 - 50

Programmer’s view
u  Then Copy to GPU

CPU

Memory

GPU

GPU Memory

EPFL CS-206 – Spring 2015 Lec.11 - 51

Programmer’s view
u  GPU starts computation à runs a kernel
u  CPU can also continue

CPU

Memory

GPU

GPU Memory

EPFL CS-206 – Spring 2015 Lec.11 - 52

Programmer’s view
u  CPU and GPU Synchronize

CPU

Memory

GPU

GPU Memory

EPFL CS-206 – Spring 2015 Lec.11 - 53

Programmer’s view
u  Copy results back to CPU

CPU

Memory

GPU

GPU Memory

EPFL CS-206 – Spring 2015 Lec.11 - 54

Programming Languages

u  CUDA
w nVidia
w Has market lead

u  OpenCL
w Many including nVidia
w CUDA superset
w Targets many different devices, e.g., CPUs + programmable

accelerators
w Fairly new

u  Both are evolving

EPFL CS-206 – Spring 2015 Lec.11 - 55

Computation partitioning

u  Think of computation as a series of loops
u  Think of data as an array

for (i = 0; i < big_number; i++)
a[i] = some function

for (i = 0; i < big_number; i++)
a[i] = some other function

for (i = 0; i < big_number; i++)
a[i] = some other function

Kernels

EPFL CS-206 – Spring 2015 Lec.11 - 56

What is the kernel here?

EPFL CS-206 – Spring 2015 Lec.11 - 57

My first CUDA Program
__global__ void fadepic(int *a, int fade, int N)
 {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) a[i] = a[i] * fade;
}

int main()
{
 int h[N];
 int *d;
 cudaMalloc ((void **) &d, SIZE);
 …..

 cudaThreadSynchronize ();
 cudaMemcpy (d, h, SIZE, cudaMemcpyHostToDevice));

 fadepic<<< n_blocks, block_size >>> (d, 10.0, N);

 cudaDeviceSynchronize ();
 cudaMemcpy (h, d, SIZE, cudaMemcpyDeviceToHost));
 CUDA_SAFE_CALL (cudaFree (d));
}

GPU

CPU

EPFL CS-206 – Spring 2015 Lec.11 - 58

Per Kernel Computation Partitioning

Threads within a block can communicate/synchronize
w Run on the same core

Threads across blocks can’t communicate
w Shouldn’t touch each others data (undefined behavior)

Block

thread

EPFL CS-206 – Spring 2015 Lec.11 - 59

Per Kernel Computation Partitioning

u  One thread can process multiple data elements
u  Other mappings are possible and often desirable

w We will talk about this later

Block

thread

EPFL CS-206 – Spring 2015 Lec.11 - 60

Fade example
u  Each thread will process one pixel
for all elements do in parallel

 a[i] = a[i] * fade;

EPFL CS-206 – Spring 2015 Lec.11 - 61

Code Skeleton

u  CPU:
w  Initialize image from file
w Allocate buffer on GPU
w Copy image to buffer
w Launch GPU kernel

w Reads and writes into buffer
w Copy buffer back to CPU
w Write image to a file

u  GPU:
w Launch a thread per pixel

EPFL CS-206 – Spring 2015 Lec.11 - 62

GPU Kernel pseudo-code
__global__ void fadepic (int *a, ���

 int fade, ���
 int N)

{
 int v = a[x][y];
 v = v * fade;
 a[x][y] = v;
}
u  This is the program for one thread
u  It processes one pixel

EPFL CS-206 – Spring 2015 Lec.11 - 63

Which thread computes which pixel?

blockDim.y

gridDim.y

blockDim.x gridDim.x

threadIdx.y

threadIdx.x

EPFL CS-206 – Spring 2015 Lec.11 - 64

gridDim

u  gridDim.x = 7, gridDim.y = 6
u  How many blocks per dimension?

EPFL CS-206 – Spring 2015 Lec.11 - 65

blockIdx
u  blockIdx = coordinates of block in the grid
u  blockIdx.x = 2, blockIdx.y = 3
u  blockIdx.x = 5, blockIdx.y = 1

(0,0)

EPFL CS-206 – Spring 2015 Lec.11 - 66

blockDim

u  blockDim.x= 7, blockDim.y = 7
u  How many threads in a block per dimension?

EPFL CS-206 – Spring 2015 Lec.11 - 67

threadIdx
u  threadIdx = coordinates of thread in the block
u  threadidx.x= 2, threadIdx.y = 3
u  threadIdx.x = 5, threadIdx.y = 4

(0,0)

EPFL CS-206 – Spring 2015 Lec.11 - 68

Which thread computes which pixel?

blockDim.y

gridDim.y

blockDim.x gridDim.x

threadIdx.y

threadIdx.x

x = blockIdx.x * blockDim.x + threadIdx.x
y = blockIdx.y * blockDim.y + threadIdx.y

EPFL CS-206 – Spring 2015 Lec.11 - 69

GPU Kernel pseudo-code

__global__ void fade (int *a, ���
 int fade, ���
 int N)

{
 int x = blockDim.x * blockIdx.x + threadIdx.x;
 int y = blockDim.y * blockIdx.y + threadIdx.y
 int offset = y * (blockDim.x * gridDim.x) + x;
 // offset within unidimensional array
 int v = a[offset];
 v = v * fade;
 a[offset] = v;
}

EPFL CS-206 – Spring 2015 Lec.11 - 70

GPU Kernel pseudo-code w/ limits

__global__ void fade (int *a, ���
 int fade, ���
 int N)

{
 int x = blockDim.x * blockIdx.x + threadIdx.x;
 int y = blockDim.y * blockIdx.y + threadIdx.y
 int offset = y * (blockDim.x * gridDim.x) + x;
 if (offset > N) return;
 int v = a[offset];
 v = v * fade;
 a[offset] = v;
}

EPFL CS-206 – Spring 2015 Lec.11 - 71

Grids of Blocks of Threads

Cores and caches are clustered on chip for fast connectivity
Hardware partitioned naturally into grids

Ti
m

e

EPFL CS-206 – Spring 2015 Lec.11 - 72

Programmer’s view: Memory Model

EPFL CS-206 – Spring 2015 Lec.11 - 73

Device
Grid 1

Block
(0, 0) Block

(1, 0) Block
(2, 0)

Block
(0, 1) Block

(1, 1) Block
(2, 1)

Block (1, 1)

Thread
(0, 1) Thread

(1, 1) Thread
(2, 1) Thread

(3, 1) Thread
(4, 1)

Thread
(0, 2) Thread

(1, 2) Thread
(2, 2) Thread

(3, 2) Thread
(4, 2)

Thread
(0, 0) Thread

(1, 0) Thread
(2, 0) Thread

(3, 0) Thread
(4, 0)

Grids of Thread Blocks: Dimension Limits

u  Grid of Blocks 1D, 2D, or 3D
w Max x, y and z: 232-1
w Machine dependent

u  Block of Threads: 1D, 2D, or 3D
w Max number of threads: 1024
w Max x: 1024
w Max y: 1024
w Max z: 64

EPFL CS-206 – Spring 2015 Lec.11 - 74

Thread Batching

u Kernel executed as a grid of
thread blocks

u Threads in block cooperate
w Synchronize their execution
w Efficiently share data in block-

local memory

u Threads across blocks cannot
cooperate

Host

Kernel
1

Kernel
2

Device
Grid 1

Block
(0, 0) Block

(1, 0) Block
(2, 0)

Block
(0, 1) Block

(1, 1) Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1) Thread

(1, 1) Thread
(2, 1) Thread

(3, 1) Thread
(4, 1)

Thread
(0, 2) Thread

(1, 2) Thread
(2, 2) Thread

(3, 2) Thread
(4, 2)

Thread
(0, 0) Thread

(1, 0) Thread
(2, 0) Thread

(3, 0) Thread
(4, 0)

EPFL CS-206 – Spring 2015 Lec.11 - 75

Thread Coordination Overview

u  Race-free access to data

Only across threads within the same block
No communication across blocks

EPFL CS-206 – Spring 2015 Lec.11 - 76

Programmer’s view: Memory Model: Thread vs. Host

Arrows show whether read and/or write is possible

EPFL CS-206 – Spring 2015 Lec.11 - 77

Memory Model Summary

Memory Location Access Scope

Local off-chip R/W thread

Shared on-chip R/W all threads in a block

Global off-chip R/W all threads + host

Constant off-chip RO all threads + host

Texture off-chip RO all threads + host
Surface off-chip R/W all threads + host

EPFL CS-206 – Spring 2015 Lec.11 - 78

Memory Model: ���
Global, Constant, and Texture Memories

u Global memory
–  Communicating R/W data between host and device
–  Contents visible to all threads
–  May be cached (machine dependent)

u Texture and Constant Memories
–  Constants initialized by host
–  Contents visible to all threads
–  May be cached (machine dependent)

EPFL CS-206 – Spring 2015 Lec.11 - 79

Execution Model: Ordering

u  Execution order is undefined
u Do not assume and use:

w block 0 executes before block 1
w thread 10 executes before thread 20
w and any other ordering even if you can observe it

u  Future implementations may break this ordering
u  It’s not part of the CUDA definition
u Why? More flexible hardware options

EPFL CS-206 – Spring 2015 Lec.11 - 80

Reasoning about CUDA call ordering

u Access GPU via cuda…() calls and kernel invocations
w cudaMalloc, cudaMemCpy

u Asynchronous from the CPU’s perspective
w CPU places a request in a “CUDA” queue
w requests are handled in-order

EPFL CS-206 – Spring 2015 Lec.11 - 81

Execution Model Summary (for your reference)
u  Grid of blocks of threads

w  1D/2D/3D grid of blocks of 1D/2D/3D threads
w  Threads and blocks have IDs

u  Block execution order is undefined

u  Same block threads can shared data fast

u  Across blocks, threads:
w  Cannot cooperate
w  Communicate (slowly) through global memory

u  Blocks do not migrate: execute on the same processor

u  Several blocks may run over the same core

EPFL CS-206 – Spring 2015 Lec.11 - 82

CUDA API: Example
int a[N];
 for (i =0; i < N; i++)

 a[i] = a[i] + x;
1.  Allocate CPU Data Structure
2.  Initialize Data on CPU
3.  Allocate GPU Data Structure
4.  Copy Data from CPU to GPU
5.  Define Execution Configuration
6.  Run Kernel
7.  CPU synchronizes with GPU
8.  Copy Data from GPU to CPU
9.  De-allocate GPU and CPU memory

EPFL CS-206 – Spring 2015 Lec.11 - 83

1. Allocate CPU data structure

float *ha;
main (int argc, char *argv[])

{

 int N = atoi (argv[1]);

 ha = (float *) malloc (sizeof (float) * N);

 ...

}

EPFL CS-206 – Spring 2015 Lec.11 - 84

2. Initialize CPU data (dummy)

float *ha;

int i;

for (i = 0; i < N; i++)

 ha[i] = i;

EPFL CS-206 – Spring 2015 Lec.11 - 85

3. Allocate GPU data structure

float *da;

cudaMalloc ((void **) &da, sizeof (float) * N);

u  Notice: no assignment side
w  NOT: da = cudaMalloc (…)

u  Assignment is done internally:
w  That’s why we pass &da

u  Space is allocated in Global Memory on the GPU

EPFL CS-206 – Spring 2015 Lec.11 - 86

GPU Memory Allocation

u The host manages GPU memory allocation:
w cudaMalloc (void **ptr, size_t nbytes)

w Must explicitly cast to (void **)
w cudaMalloc ((void **) &da, sizeof (float) * N);

w cudaFree (void *ptr);
w cudaFree (da);

w cudaMemset (void *ptr, int value,
size_t nbytes);
w cudaMemset (da, 0, N * sizeof (int));

u Check the CUDA Reference Manual

EPFL CS-206 – Spring 2015 Lec.11 - 87

4. Copy Initialized CPU data to GPU

float *da;

float *ha;

cudaMemCpy ((void *) da, // DESTINATION

 (void *) ha, // SOURCE

 sizeof (float) * N, // #bytes

 cudaMemcpyHostToDevice);

 // DIRECTION

EPFL CS-206 – Spring 2015 Lec.11 - 88

Host/Device Data Transfers

The host initiates all transfers:
u cudaMemcpy(void *dst, void *src,

 size_t nbytes,
 enum cudaMemcpyKind direction)

u Asynchronous from the CPU’s perspective
w CPU thread continues

u  In-order processing with other CUDA requests
u enum cudaMemcpyKind

w cudaMemcpyHostToDevice

w cudaMemcpyDeviceToHost

w cudaMemcpyDeviceToDevice

EPFL CS-206 – Spring 2015 Lec.11 - 89

5. Define Execution Configuration

u  How many blocks and threads/block

int threads_block = 64;

int blocks = N / threads_block;

if (blocks % N != 0) blocks += 1;

u Alternatively:

blocks = (N + threads_block – 1) /
 threads_block;

EPFL CS-206 – Spring 2015 Lec.11 - 90

6. Launch Kernel & ���
7. CPU/GPU Synchronization

u GPU launch blocks x threads_block threads:

 arradd <<<blocks, threads_block>>

 (da, 10f, N);

 cudaDeviceSynchronize (); // forces CPU to wait

u  arradd: kernel name
u <<<…>>> execution configuration
u  (da, x, N): arguments

w 256 byte limit / No variable arguments
w Not sure this is still true

EPFL CS-206 – Spring 2015 Lec.11 - 91

CPU/GPU Synchronization

u CPU does not block on cuda…() calls
w Kernel/requests are queued and processed in-order
w Control returns to CPU immediately

u Good if there is other work to be done
w e.g., preparing for the next kernel invocation

u  Eventually, CPU must know when GPU is done
u Then it can safely copy the GPU results
u cudaDeviceSynchronize ()

w Block CPU until all preceding cuda…() and kernel requests
have completed

w Used to be cudaThreadSynchronize ()

EPFL CS-206 – Spring 2015 Lec.11 - 92

8. Copy data from GPU to CPU & ���
9. Deallocate Memory

float *da;
float *ha;

cudaMemCpy ((void *) ha, // DESTINATION

 (void *) da, // SOURCE

 sizeof (float) * N, // #bytes

 cudaMemcpyDeviceToHost);

 // DIRECTION

cudaFree (da);

// display or process results here

free (ha);

EPFL CS-206 – Spring 2015 Lec.11 - 93

The GPU Kernel

__global__ darradd (float *da, float x, int
N)

{

 int i = blockIdx.x * blockDim.x +
threadIdx.x;

 if (i < N) da[i] = da[i] + x;

}

EPFL CS-206 – Spring 2015 Lec.11 - 94

CUDA Function Declarations

u __global__ defines a kernel function
w Must return void
w Can only call __device__ functions

u __device__ and __host__ can be used together
w Two difference versions generated

Executed
on the:

Only callable
from the:

__device__ float DeviceFunc() device device

__global__ void KernelFunc() device host

__host__ float HostFunc() host host

EPFL CS-206 – Spring 2015 Lec.11 - 95

Can you do this one now?

() () ()BAC •=

EPFL CS-206 – Spring 2015 Lec.11 - 96

Summary

u  Data Parallel Computing
w Much of media processing is data parallel
w All of data analytics on datacenters & beyond

u  Platforms for data parallel computing
w Within CPU: SIMD/Vector
w Across CPU: GPU
w Across a single computer: cluster of servers

u  GPUs: orders of magnitude more concurrent than CPU
u  GPU programming

w  It’s complicated
w Take your time

