CS-206 Concurrency

| ecture 8
Concurrent
Data structures

Spring 2015
Prof. Babak Falsafi
parsa.epfl.ch/courses/cs206/

Adapted from slides originally developed by Maurice Herlihy and Nir Shavit from the
Art of Multiprocessor Programming, and Babak Falsafi

EPFL Copyright 2015

EPFL CS-206 — Spring 2015

Where are We!

Lecture
& Lab

M T
16-Feb
23-Feb

2-Mar
9-Mar
16-Mar
23-Mar
30-Mar
6-Apr
13-Apr
20-Apr
27-Apr
4-May
11-May
18-May
25-May

EPFL CS-206 — Spring 2015

W

T

F

19-Feb

20-Feb

26-Feb

27-Feb

> Fine-grained locking

5-Mar

6-Mar

12-Mar

13-Mar

19-Mar

20-Mar

26-Mar

27-Mar

» Examples

2-Apr

3-Apr

9-Apr

10-Apr

> Linked lists

16-Apr

17-Apr

23-Apr

24-Apr

30-Apr

1-May

» Next week

/-May

8-May

14-May

15-May

> Higher-level data

21-May

22-May

structures

28-May

29-May

» Concurrent data structures

> Coarse-grained locking

> |ock-free data structures

Lec8 -2

Contention

» When many threads compete for a lock

» Prevents efficient multithreaded execution

> Threads spend more time waiting for lock than doing work

» Real problem in multiprocessor programming

EPFL CS-206 — Spring 2015 Lec8 -3

Today: Concurrent Objects

» Adding threads should not lower throughput
> Contention effects

» Should increase throughput
> Not possible if inherently sequential

> Surprising things are parallelizable

EPFL CS-206 — Spring 2015 Lec8 -4

Coarse-Grained Synchronization

» Each method locks the object
> Avoid contention using queue locks
> Easy to reason about

>In simple cases

» Example
> Solaris (Oracle’'s OS) first version had a single lock
> Every time there was an OS access, one thread could get in

> What is wrong with this picture?

EPFL CS-206 — Spring 2015 Lec8-5

Coarse-Grained Synchronization

» Sequential bottleneck
> Threads “stand in line”

» Adding more threads
> Does not improve throughput

> Struggle to keep it from getting worse

» So why even use a multiprocessor?

> Well, some apps are inherently parallel ...

EPFL CS-206 — Spring 2015 Lec8-6

Fine-Grained Synchronization

» Instead of using a single lock ...

» Split object into

> Independently-synchronized components

» Methods conflict when they access
> The same component ...
> At the same time

EPFL CS-206 — Spring 2015

Lec8 -7

Example with Linked List

» lllustrate these patterns ...

» Using a list-based Set
> Common application

> Building block for other apps

EPFL CS-206 — Spring 2015

Lec8 -8

List-Based Sets

public interface Set<T> ({
public boolean add (T x);
public boolean remove (T Xx);
public boolean contains (T x) ;

}

EPFL CS-206 — Spring 2015 Lec8-9

List-Based Sets

public interface SetT>
public boolean add (T x);

public boolean cyntaihs (T x);

Add item to set

EPFL CS-206 — Spring 2015

Lec8-10

List-Based Sets

public interface Set<T> {
]) -

public boolean remove (T x);

public boolIean cdntain ;

Remove item from set

EPFL CS-206 — Spring 2015 Lec8- Il

List-Based Sets

public interface Set<T> {
public boolean add (T x);

ublic boolean remove (T x):
public boolean contains (T x) ;]

}

Is item in set?

EPFL CS-206 — Spring 2015 Lec8- 12

List Node

public class Node ({
public T item;
public int key;
public Node next;

}

EPFL CS-206 — Spring 2015 Lec8- 13

List Node

public class Node {
public T item;
ke

public Node
}

item of interest

EPFL CS-206 — Spring 2015 Lec.8 - 14

List Node

public class Node {

Usually hash code

EPFL CS-206 — Spring 2015 Lec8- 15

List Node

public class Node {
public T item;
public int key;
public Node next;]

}

Reference to next node

EPFL CS-206 — Spring 2015 Lec8- 16

Reasoning about Concurrent Objec

» Invariant
> Property that always holds

» Why do we care about invariants?
> Invariant is true when object is created
> Invariant truth is preserved by each method
[>Each step of each method

EPFL CS-206 — Spring 2015

LS

Lec8- 17

Specifically ...

» Invanants preserved by
> add ()
> remove ()

> contains ()

» Example invariants to preserve for linked lists

> Tail reachable from head
> Sorted
> No duplicates

EPFL CS-206 — Spring 2015 Lec8- 18

Sequential List Based Set

add()

([3F—al 3 [3—ET]

remove()

(T3—>(a] - b 3=—>(c]

EPFL CS-206 — Spring 2015 Lec8- 19

Sequential List Based Set

add() EB\ -

remove()

(T3—r(a b[F—{c]_

EPFL CS-206 — Spring 2015 Lec.8 - 20

Coarse-Grained Locking

é6
([F—al3—>b[3—C1]

EPFL CS-206 — Spring 2015 Lec.8 - 21

Coarse-Grained Locking

i
(I3+—>E[3+

S

EPFL CS-206 — Spring 2015 Lec.8 - 22

Coarse-Grained Locking

$

D

Simple but hotspot + bottleneck

EPFL CS-206 — Spring 2015 Lec.8 - 23

Coarse-Grained Locking

» Easy, same as synchronized methods

> “One lock to rule them all ...”

» Simple, clearly correct

> Deserves respect!

» Works poorly with contention
> Queue locks help

> But bottleneck still an issue

EPFL CS-206 — Spring 2015

Lec.8 - 24

Fine-grained Locking

» Requires careful thought

> “Do not meddle in the affairs of wizards, for they are subtle and
quick to anger”

» Split object into pieces
> Each piece has own lock

> Methods that work on disjoint pieces need not exclude each
other

EPFL CS-206 — Spring 2015 Lec.8 - 25

Hand-over-Hand locking

([F—l3—blF—{]]

EPFL CS-206 — Spring 2015 Lec.8 - 26

Hand-over-Hand locking

6

=kl

O

Hand-over-Hand locking

Hand-over-Hand locking

6 6

Hand-over-Hand locking

Removing a Node

HE g CIE g (I g I g C1N

OO

EPFL CS-206 — Spring 2015 Lec.8 - 31

Removing a Node

EPFL CS-206 — Spring 2015 Lec.8 - 32

Removing a Node

6 6
3l 3l (]3]

Oo,

Removing a Node

6 6
=l 5 ([3—(e]]

Oo .

Removing a Node

6 O

Removing a Node

i
L rlaly BEagtlB

OO

Why hold 2 locks?

g

Concurrent Removes

HE g CIE g (I g I g C1N

O,

EPFL CS-206 — Spring 2015 Lec.8 - 37

Concurrent Removes

O,

EPFL CS-206 — Spring 2015 Lec.8 - 38

Concurrent Removes

Concurrent Removes

6
(13— I3l ([T

Concurrent Removes

Concurrent Removes

Concurrent Removes

6 6

Concurrent Removes

6 6

Concurrent Removes

6 6

Concurrent Removes

Uh, Oh

SEagth (e[3—>(a]]
Lk

Uh, Oh

Bad news, ¢ not removed

CB—»@@}@D

EPFL CS-206 — Spring 2015 Lec.8 - 48

Problem

» [o delete node ¢
> Swing node b’s next field to d

aly bly el3—

» Problem is,

> Someone deleting b concurrently could direct a pointer to C

EPFL CS-206 — Spring 2015 Lec.8 - 49

Insight

» If a node is locked

> No one can delete node’s successor

» If a thread locks
> Node to be deleted
> And its predecessor

> Then it works

EPFL CS-206 — Spring 2015 Lec.8 - 50

Hand-Over-Hand Again

HE g CIE g (I g I g C1N

OO.Q

Hand-Over-Hand Again

Hand-Over-Hand Again

2l 3> (c[(el]
SEN

O

Hand-Over-Hand Again

Hand-Over-Hand Again

6 6

Hand-Over-Hand Again

SEagth e[F—>{a]]
LS

EPFL CS-206 — Spring 2015 Lec.8 - 56

Removing a Node

HE g CIE g (I g I g C1N

Removing a Node

Removing a Node

Removing a Node

Removing a Node

6 o
a3l (]3]

Removing a Node

6 6 6
L ylal -

o] 3> (e[3> (o]]
\
ok

Removing a Node

Removing a Node

6 6 o
el I e[(e[3—(a]]

Removing a Node

6 6 o6 6o
B 05 (505 2C18

Must
acquire
lock for b

Removing a Node

6 6 o6 6o
B 05 (505 4C10

Cannot
acquire -
lock for b Q *

Removing a Node

6 6 o6 6o
L lals I!Bcﬂﬂ

o N e
Lk

Removing a Node

Removing a Node

Oo .

Removing a Node

Removing a Node

([~ o]]

OO

EPFL CS-206 — Spring 2015 Lec8 -7l

Removing a Node

([~ o]]

EPFL CS-206 — Spring 2015 Lec.8-72

Remove method

public boolean remove (Item item) ({
int key = item.hashCode() ;

Node pred, curr;

boolean foundNode = false;

try {

} finally {
curr.unlock () ;
pred.unlock () ;
}

return foundNode;

}

EPFL CS-206 — Spring 2015 Lec.8-73

Remove method

public boolean remove (Item item) {

|int key = item.hashCode();l

Node pred, curr)
boolean foundNoda = faise;

try {

} finally {
curr.unlock () ;
pred.unlock () ;
}

return foundNode;
} Key used to order node

EPFL CS-206 — Spring 2015 Lec.8 - 74

Remove method

public boolean remove (Item item) {
int key = item.hashCode() ;

[Node pred, curr;
boolean fo = false;

try {

} finally {
curr.unlock () ;
pred.unlock () ;

}

return foundNode;
} Predecessor and current nodes

EPFL CS-206 — Spring 2015 Lec.8-75

Remove method

public boolean remove (Item item) {
int key = item.hashCode() ;

Node pred, curr;

[boolean foundNode = false;

try {

} finally {
curr.unlock () ;
pred.unlock () ; Node search

}
[return £ oundNod%

}

EPFL CS-206 — Spring 2015 Lec8-76

Remove method

public boolean remove (Item item) {
int key = item.hashCode() ;

Node pred, curr;

boolean foundNode = false;

[try {

V 4

——__ Make sure

i finally ({ - locks released
curr.unlock () ;

kpred.unlock();

}

return foundNode;

}

EPFL CS-206 — Spring 2015 Lec8-77

Remove method

public boolean remove (Item item) ({
int key = item.hashCode() ;

Node pred, curr;
boolean foundNode = false;

try {

curr.unlock () ;
pred.unlock () ; Everything else

}

return foundNode;

}

EPFL CS-206 — Spring 2015 Lec.8 -78

Remove method

try {
pred = this.head;

pred.lock() ;
curr = pred.next;
curr.lock () ;

}mfinally { ..}

EPFL CS-206 — Spring 2015 Lec.8-79

Remove method

lock pred == head

pred = this.head;
pred.lock() ;

EPFL CS-206 — Spring 2015 Lec.8 - 80

Remove method

Lock current

curr = pred.next;
curr.lock() ;

-

EPFL CS-206 — Spring 2015 Lec.8 - 8l

Remove method

Traversing list
%]}I

EPFL CS-206 — Spring 2015 Lec.8 - 82

Remove: searching

while (curr.key <= key) {
i1f (item == curr.item) {
pred.next = curr.next;
foundNode = true;
break;

}

pred.unlock () ; ac Sus
pred = curr; % —
curr = curr.next; ‘ \

curr.lock () ;

EPFL CS-206 — Spring 2015 Lec.8 - 83

Remove: searching

[while (curr.key <= key) {

Search key range

=

EPFL CS-206 — Spring 2015 Lec.8 - 84

Remove: searching

[while (curr.key <= key) {

At start of each loop:
curr and pred locked

=

EPFL CS-206 — Spring 2015 Lec.8 - 85

Remove: searching

}

/ if (item ==

pred.next
foundNode
break;

curr.item) {
curr .next;
true;

-

If item found, remove node

EPFL CS-206 — Spring 2015

Lec.8 - 86

Remove: searching

/ if (item == curr.item) {
pred.next = curr.next;
foundNode = true;

break;

} J

-

EPFL CS-206 — Spring 2015 Lec.8 - 87

If node found, remove it

Remove: searching

Unlock predecessor

[pred.unlock();

==

EPFL CS-206 — Spring 2015 Lec.8 - 88

Remove: searching

Only enernode locked]

[pred.unlock();

EPFL CS-206 — Spring 2015 Lec.8 - 89

Remove: searching

demote current

l

[pred = currT]

EPFL CS-206 — Spring 2015 Lec.8 - 90

Remove: searching

Find and lock new current

curr.lock () ;

[curr = curr.next;

EPFL CS-206 — Spring 2015 Lec.8-91

Remove: searching

Lock invariant restored

curr = curr.next;:] § []

curr.lock () ;

EPFL CS-206 — Spring 2015 Lec.8 - 92

Why does this work?

» [o remove node e
> Must lock e

> Must lock e's predecessor

» Therefore, if you lock a node
> |t can't be removed

> And nerther can its successor

EPFL CS-206 — Spring 2015

Lec.8 - 93

Adding Nodes

» To add node e
> Must lock predecessor

> Must lock successor

» Add/remove must acquire locks in the same order
> What happens in the order is compromised?

> E.g., remove code lock predecessor first, add successor first

EPFL CS-206 — Spring 2015 Lec.8 - 94

Properties to prove for add/remove

» Does safetyness hold?

» Does the liveness property hold?

» Are the invariants maintained?

EPFL CS-206 — Spring 2015 Lec.8 - 95

Drawbacks

» Better than coarse-grained lock

> Threads can traverse in parallel

» Still not ideal

> Long chain of acquire/release
> Inefficient

EPFL CS-206 — Spring 2015 Lec.8 - 96

Traffic Jam

» Any concurrent data structure based on mutual exclusion
has a weakness

» If one thread
> Enters critical section
> And “eats the big muffin”
>Cache miss, page fault, descheduled ...
> Everyone else using that lock is stuck!
> Need to trust the scheduler....

EPFL CS-206 — Spring 2015 Lec.8 - 97

Other patterns: Optimistic Synchronization

» Search without locking...

» If you find it, lock an check...
> Ok =2 we are done
> Opps =2 start over

» Evaluation
> Usually cheaper than locking

> Mistakes are expensive

EPFL CS-206 — Spring 2015 Lec.8 - 98

Optimistic: Traverse wrthout Locking

EPFL CS-206 — Spring 2015 Lec.8 - 99

Optimistic: Lock and Load

EPFL CS-206 — Spring 2015 Lec.8 - 100

Optimistic: Lock and Load

EPFL CS-206 — Spring 2015 Lec.8 - 101

What could go wrong!

EPFL CS-206 — Spring 2015

Lec.8 - 102

What could go wrong!

EPFL CS-206 — Spring 2015 Lec.8 - 103

What could go wrong!

6 6

e[3—

EPFL CS-206 — Spring 2015 Lec.8 - 104

What could go wrong!

EPFL CS-206 — Spring 2015

|

Lec.8 - 105

What could go wrong!

EPFL CS-206 — Spring 2015 Lec.8 - 106

What could go wrong!

What could go wrong!

([3—GD @3~

Uh-oh
O OQ

EPFL CS-206 — Spring 2015 Lec.8 - 108

Check after lock

» By traversing optimistically, we give up any guarantees we
had about the list during traversal

» The node we locked might have just been removed
» Need to check the pointers to It

EPFL CS-206 — Spring 2015 Lec.8 - 109

What Else Could Go Wrong!

What Else Could Go Wrong!

6 6
(13— EE—>E 343~ El—

\A

What Else Could Go Wrong!

What Else Could Go Wrong!

What Else Could Go Wrong!

Check after lock

» By traversing optimistically, we give up any guarantees we
nad about the list during traversal

» New nodes might just have been added

» Need to check the pointers between the locked nodes

EPFL CS-206 — Spring 2015 Lec8- 115

Optimistic Traversal

» Traverse optimistically, get the lock and then check if we can
move on

» Need to check after we get the lock
> We know nothing about the items locked

> Need to check if they are in the same situation as they were
before we locked

> After checking, we know that we hold the lock, and thus they
cannot suffer further changes

EPFL CS-206 — Spring 2015 Lec8- 116

Other pattemns: Lazy Synchronization

» Postpone hard work

» E.g., break remove into two parts
> Logical removal = marks component to be deleted

> Physical removal = do what needs to be done

EPFL CS-206 — Spring 2015 Lec8- 117

Reminder: Lock-Free Data Structures

®

» No matter what ...
> Guarantees minimal progress in any execution
> 1.e. Some thread will always complete a method call
> Even If others halt at malicious times

> Implies that implementation can't use locks

EPFL CS-206 — Spring 2015 Lec8- 118

Recall: Using atomics

» compareAndSet(expectedValue,newValue) method
> Compares a variable with an “expectedValue” given as input

> Sets it to “newValue” if comparison is successful

> Does everything atomically

EPFL CS-206 — Spring 2015 Lec8- 119

Lock-free Lists

» Next logical step
> Walit-free contains()

> lock-free add() and remove()

» How about turning adds/removes into atomics?
> Use compareAndSet() or CAS

What could go wrong with only CAS?

EPFL CS-206 — Spring 2015 Lec.8 - 120

Lock-free Lists

]

Use CAS to verify pointer Removal
IS correct

Not enough!

EPFL CS-206 — Spring 2015 Lec.8 - 121

Problem...

Node added

EPFL CS-206 — Spring 2015 Lec.8 - 122

The Solution: Combine Bit and Pointer

Logical Removal =
Set Mark Bit

Physical

Removal - :
Mark-Bit and Pointer Fail CAS: Node not

CAS :
are CASed together aRde(:sgvjter logical
(AtomicMarkableReference)

EPFL CS-206 — Spring 2015 Lec.8 - 123

Solution

» Use AtomicMarkableReference

» Atomically
> Swing reference and
> Update flag

» Remove in two steps
> Set mark bit in next field

> Redirect predecessor's pointer

EPFL CS-206 — Spring 2015

Lec.8 - 124

Marking a Node

» AtomicMarkableReference class
> Java.util.concurrent.atomic package

Reference

mark bit

EPFL CS-206 — Spring 2015 Lec.8 - 125

Extracting Reference & Mark

Public Object get(boolean|[] marked) ;

EPFL CS-206 — Spring 2015 Lec.8 - 126

Extracting Reference & Mark

Object] Emolean []

Returns mark at array
index 0!
(funny use of Java arrays
to pass a pointer)

Returns
reference

EPFL CS-206 — Spring 2015

Lec.8 - 127

Extracting Mark Only

boolean]

Value of
mark

EPFL CS-206 — Spring 2015

Lec.8 - 128

Changing State

Public boolean compareAndSet (
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark) ;

EPFL CS-206 — Spring 2015 Lec.8 - 129

Changing State

If this is the current
reference ...

Public booleaq/CGElifﬁAndSet(
IObject expectedRef,
Object updateRef,
lboolean expectedMark,
boolean updateMark) ;
And this is the

current mark ...

EPFL CS-206 — Spring 2015

Lec.8 - 130

Changing State

...then change to this
new reference ...

Public boolean/c¢mpareAndSet (
Object expgctefdRef,
|Object updateRef,
boolean expectedMark
boolean updateMark) ;

... and this new
mark

EPFL CS-206 — Spring 2015 Lec.8 - 131

Changing State

public boolean attemptMark (
Object expectedRef,
boolean updateMark) ;

EPFL CS-206 — Spring 2015 Lec.8 - 132

Changing State

public boolean attemptMark (
Object ex ectedRef]
updateMark) ;

If this is the current
reference ...

EPFL CS-206 — Spring 2015 Lec.8 - 133

Changing State

public boolean attemptMark (
Object expectedRef,
|boolean updateMarkLb

.. then change to
this new mark.

EPFL CS-206 — Spring 2015 Lec.8 - 134

Removing a Node

CB—»@D

e
Loy

Removing a Node

Removing a Node

SELgCINERT = gl Sugtil
L

Lec.8 - 137

Removing a Node

([~

Lo 3 o

EPFL CS-206 — Spring 2015

Lec.8 - 138

Summary

» Coarse-grained locking
» Fine-grained locking
> Basic synchronization
> Optimistic synchronization

> Lazy synchronization

» Lock-free synchronization

EPFL CS-206 — Spring 2015

Lec.8 - 139

