CS-206 Concurrency

Lecture 8
Concurrent
Data structures

Spring 2015
Prof. Babak Falsafi
parsa.epfl.ch/courses/cs206/

Adapted from slides originally developed by Maurice Herlihy and Nir Shavit from the Art of Multiprocessor Programming, and Babak Falsafi EPFL Copyright 2015

Where are We?

		Lecture		
		& Lab		
M	Т	W	Т	F
16-Feb	17-Feb	18-Feb	19-Feb	20-Feb
23-Feb	24-Feb	25-Feb	26-Feb	27-Feb
2-Mar	3-Mar	4-Mar	5-Mar	6-Mar
9-Mar	10-Mar	11-Mar	12-Mar	13-Mar
16-Mar	17-Mar	18-Mar	19-Mar	20-Mar
23-Mar	24-Mar	25-Mar	26-Mar	27-Mar
30-Mar	31-Mar	1-Apr	2-Apr	3-Apr
6-Apr	7-Apr	8-Apr	9-Apr	10-Apr
13-Apr	14-A	15-Apr	16-Apr	17-Apr
20-Apr		22-Apr	23-Apr	24-Apr
27-Apr	28-A /r	29-Apr	30-Apr	1-May
4-May	5-May	6-May	7-May	8-May
11-May	12-May	13-May	14-May	15-May
18-May	19-May	20-May	21-May	22-May
25-May	26-May	27-May	28-May	29-May

► Concurrent data structures

Examples

▷ Linked lists

▶ Next week

Contention

- ► When many threads compete for a lock
- Prevents efficient multithreaded execution
 - > Threads spend more time waiting for lock than doing work

Real problem in multiprocessor programming

Today: Concurrent Objects

- ► Adding threads should not lower throughput

- ► Should increase throughput
 - Not possible if inherently sequential
 - > Surprising things are parallelizable

Coarse-Grained Synchronization

► Each method locks the object

- - De la simple cases De la simple cases

Example

- > Solaris (Oracle's OS) first version had a single lock
- > Every time there was an OS access, one thread could get in

Coarse-Grained Synchronization

- Sequential bottleneck
 - ▷ Threads "stand in line"

- ► Adding more threads
 - Does not improve throughput
 - > Struggle to keep it from getting worse
- ▶ So why even use a multiprocessor?

Fine-Grained Synchronization

- ▶ Instead of using a single lock ...
- Split object into
 - ▷ Independently-synchronized components
- ► Methods conflict when they access
 - ▶ The same component ...
 - > At the same time

Example with Linked List

- ► Illustrate these patterns ...
- ► Using a list-based Set

```
public interface Set<T> {
  public boolean add(T x);
  public boolean remove(T x);
  public boolean contains(T x);
}
```

```
public interface Set<T> {
  public boolean add(T x);
  public boolean remove(T x);
  public boolean contains(T x);
}
```

Add item to set

```
public interface Set<T> {
  public boolean add(T x);
  public boolean remove(T x);
  public boolean contains(T x);
}
```

Remove item from set

```
public interface Set<T> {
 public boolean add(T x);
 public boolean remove(T x);
public boolean contains(T x);
                      Is item in set?
```

```
public class Node {
  public T item;
  public int key;
  public Node next;
}
```

```
public class Node {
  public T item;
  public int key;
  public Node xext;
}

item of interest
```

```
public class Node {
   public T item;
   public int key;
   public Node next;
}
Usually hash code
```

```
public class Node {
  public T item;
  public int key;
  public Node next;
}
```

Reasoning about Concurrent Objects

- ▶ Invariant
 - ▷ Property that always holds
- ▶ Why do we care about invariants?
 - ▷ Invariant is true when object is created
 - ▷ Invariant truth is preserved by each method
 - ▷ Each step of each method

Specifically ...

- ► Invariants preserved by

 - > remove()
 - > contains()
- ► Example invariants to preserve for linked lists

 - No duplicates

Sequential List Based Set

Sequential List Based Set

Simple but hotspot + bottleneck

- Easy, same as synchronized methods
 - > "One lock to rule them all ..."

- ► Simple, clearly correct
 - Deserves respect!
- Works poorly with contention

Fine-grained Locking

► Requires careful thought

> "Do not meddle in the affairs of wizards, for they are subtle and quick to anger"

Split object into pieces

- Methods that work on disjoint pieces need not exclude each other

Uh, Oh

Uh, Oh

Bad news, c not removed

Problem

- ► To delete node c
 - Swing node b's next field to d

- ▶ Problem is,
 - > Someone deleting b concurrently could direct a pointer to C

Insight

- ▶ If a node is locked
 - No one can delete node's successor

- ▶ If a thread locks
 - Node to be deleted
 - > And its predecessor
 - ▶ Then it works


```
public boolean remove(Item item) {
 int key = item.hashCode();
Node pred, curr;
boolean foundNode = false;
 try {
 } finally {
  curr.unlock();
  pred.unlock();
 return foundNode;
```

```
public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
boolean foundNode = false;
 try {
 } finally {
  curr.unlock();
  pred.unlock();
 return foundNode;
              Key used to order node
```

```
public boolean remove(Item item) {
 int key = item.hashCode();
Node pred, curr;
boolean foundNode = false;
 try {
 } finally {
  curr.unlock();
  pred.unlock();
 return foundNode;
          Predecessor and current nodes
```

```
public boolean remove(Item item) {
 int key = item.hashCode();
Node pred, curr;
boolean foundNode = false;
  finally {
  curr.unlock();
                           Node search
  pred.unlock();
 return foundNode;
```

```
public boolean remove(Item item) {
 int key = item.hashCode();
Node pred, curr;
boolean foundNode = false;
try {
                             Make sure
  finally {
                           locks released
  curr.unlock();
 pred.unlock();
 return foundNode;
```

```
public boolean remove(Item item) {
 int key = item.hashCode();
Node pred, curr;
boolean foundNode = false;
 try {
  curr.unlock();
                        Everything else
  pred.unlock();
 return foundNode;
```

```
try {
  pred = this.head;
  pred.lock();
  curr = pred.next;
  curr.lock();
...
} finally { ... }
```

```
lock pred == head
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
} finally { ... }
```

```
try {
                       Lock current
pred = this.head;
 pred lock (
 curr = pred.next;
 curr.lock();
} finally { ... }
```

```
try {
pred = this.head;
                   Traversing list
pred.lock();
curr = pred mext;
 curr
                       finally { ... }
```

```
while (curr.key <= key) {</pre>
  if (item == curr.item) {
   pred.next = curr.next;
   foundNode = true;
   break;
  pred.unlock();
  pred = curr;
  curr = curr.next;
  curr.lock();
```

```
while (curr.key <= key) {</pre>
  if (item == curr.item)
   pred.next = curr.next
   foundNode = true;
   break;
                    Search key range
  pred.unlock();
  pred = curr;
  curr = curr.next;
  curr.lock();
```

```
while (curr.key <= key) {</pre>
  if (item == curr item)
   pred.next = curr.next;
   foundNode = true;
                      At start of each loop:
   break;
                       curr and pred locked
  pred.unlock();
  pred = curr;
  curr = curr.next;
  curr.lock();
```

```
while (curr.key <= key) {
  if (item == curr.item)
   pred.next = curr.next;
   foundNode = true;
   break;
  pred.unlock();
  pred = curr;
  curr = curr.next;
  curr.lock();
 If item found, remove node
```

```
while (curr.key <= key) {
  if (item == curr.item)
   pred.next = curr.next;
   foundNode = true;
   break;
  pred.unlock();
  pred = curr;
  curr = curr.next;
  curr.lock();
  If node found, remove it
```

```
while (curr.key <= Unjock predecessor
  if (item == curr.item)
  pred.next = curr mext;
   foundNode = tr
   break;
 pred.unlock();
  pred = curr;
  curr = curr.next;
  curr.lock();
```

```
whOnly(onernøde locked) {
  if (item == curr.item) {
   pred.next = curr.next;
   foundNode = true;
   break;
 pred.unlock();
  pred = curr;
  curr = curr.next;
  curr.lock();
```

```
while (curr.key <= key) {</pre>
  demote current
               curr.next;
   foundNode = true;
   break;
 pred = curr;
  curr = curr.next;
  curr.lock();
```

```
while (curr.key <= key) {
  if (item == curr.item) {
  Find and lock new current
   foundNode = true;
   break;
  pred.unlock()
  pred = curr;
  curr = curr.next;
  curr.lock();
```

```
while (curr.key <= key) {
  Lock invariant restored
   pred.next = curr.next;
   foundNode = true;
   break
  pred.unlock();
  curr = curr.next;
  curr.lock();
```

Why does this work?

- ▶ To remove node e
- ► Therefore, if you lock a node
 - ▷ It can't be removed
 - > And neither can its successor

Adding Nodes

- ▶ To add node e

- ► Add/remove must acquire locks in the same order
 - > What happens in the order is compromised?
 - ▷ E.g., remove code lock predecessor first, add successor first

Properties to prove for add/remove

▶ Does safetyness hold?

▶ Does the liveness property hold?

▶ Are the invariants maintained?

Drawbacks

- ► Better than coarse-grained lock
 - > Threads can traverse in parallel
- ► Still not ideal

 - ▶ Inefficient

Traffic Jam

Any concurrent data structure based on mutual exclusion has a weakness

▶ If one thread

- ▷ And "eats the big muffin"
 - Cache miss, page fault, descheduled ...
- ▷ Everyone else using that lock is stuck!
- Need to trust the scheduler....

Other patterns: Optimistic Synchronization

- Search without locking...
- ▶ If you find it, lock an check...
 - \triangleright Ok \rightarrow we are done
 - Dopps → start over
- Evaluation
 - □ Usually cheaper than locking

Optimistic: Traverse without Locking

Optimistic: Lock and Load

Optimistic: Lock and Load

Check after lock

- ▶ By traversing optimistically, we give up any guarantees we had about the list during traversal
- ▶ The node we locked might have just been removed
- ▶ Need to check the pointers to it

Check after lock

- ▶ By traversing optimistically, we give up any guarantees we had about the list during traversal
- New nodes might just have been added
- ▶ Need to check the pointers between the locked nodes

Optimistic Traversal

- Traverse optimistically, get the lock and then check if we can move on
- ► Need to check after we get the lock
 - > We know nothing about the items locked
 - Need to check if they are in the same situation as they were before we locked
 - After checking, we know that we hold the lock, and thus they cannot suffer further changes

Other patterns: Lazy Synchronization

- Postpone hard work
- ► E.g., break remove into two parts

 - ▷ Physical removal → do what needs to be done

Reminder: Lock-Free Data Structures

No matter what ...

- Description Guarantees minimal progress in any execution
- ▷ i.e. Some thread will always complete a method call
- > Even if others halt at malicious times
- ▷ Implies that implementation can't use locks

Recall: Using atomics

- compareAndSet(expectedValue,newValue) method
 - Decompares a variable with an "expected Value" given as input
 - ▷ Sets it to "newValue" if comparison is successful
 - Does everything atomically

Lock-free Lists

- ▶ Next logical step

 - ▷ lock-free add() and remove()

- ▶ How about turning adds/removes into atomics?

What could go wrong with only CAS?

Lock-free Lists

Use CAS to verify pointer is correct

Removal

Not enough!

Problem...

The Solution: Combine Bit and Pointer

Solution

Use AtomicMarkableReference

- ▶ Atomically
 - Swing reference and
 ■
 Swing reference and
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 - □ Update flag
- ► Remove in two steps
 - > Set mark bit in next field

Marking a Node

- ► AtomicMarkableReference class

Extracting Reference & Mark

```
Public Object get(boolean[] marked);
```

Extracting Reference & Mark

Extracting Mark Only


```
Public boolean compareAndSet(
   Object expectedRef,
   Object updateRef,
   boolean expectedMark,
   boolean updateMark);
```

```
If this is the current
                       reference ...
Public boolean compareAndSet(
  Object expectedRef,
  Object updateRef
  boolean expectedMark,
  boolean updateMark
                        And this is the
                        current mark ...
```

```
...then change to this
                   new reference ...
Public boolean/compareAndSet(
  Object expectedRef,
  Object updateRef,
  boolean expectedMark
  boolean updateMark);
                       .. and this new
                            mark
```

```
public boolean attemptMark(
   Object expectedRef,
   boolean updateMark);
```

```
public boolean attemptMark(
 Object expectedRef,
  boolean updateMark);
If this is the current
    reference ...
```

```
public boolean attemptMark(
   Object expectedRef,
   boolean updateMark);

.. then change to
   this new mark.
```


Summary

- Coarse-grained locking
- ▶ Fine-grained locking

 - Optimistic synchronization
- ▶ Lock-free synchronization