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Contention

» When many threads compete for a lock

» Prevents efficient multithreaded execution

> Threads spend more time waiting for lock than doing work

» Real problem in multiprocessor programming
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Today: Concurrent Objects

» Adding threads should not lower throughput
> Contention effects

» Should increase throughput
> Not possible if inherently sequential

> Surprising things are parallelizable
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Coarse-Grained Synchronization

» Each method locks the object
> Avoid contention using queue locks
> Easy to reason about

>In simple cases

» Example
> Solaris (Oracle’'s OS) first version had a single lock
> Every time there was an OS access, one thread could get in

> What is wrong with this picture?
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Coarse-Grained Synchronization

» Sequential bottleneck
> Threads “stand in line”

» Adding more threads
> Does not improve throughput

> Struggle to keep it from getting worse

» So why even use a multiprocessor?

> Well, some apps are inherently parallel ...
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Fine-Grained Synchronization

» Instead of using a single lock ...

» Split object into

> Independently-synchronized components

» Methods conflict when they access
> The same component ...
> At the same time
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Example with Linked List

» lllustrate these patterns ...

» Using a list-based Set
> Common application

> Building block for other apps
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List-Based Sets

public interface Set<T> ({
public boolean add (T x);
public boolean remove (T Xx);
public boolean contains (T x) ;

}

EPFL CS-206 — Spring 2015 Lec8-9



List-Based Sets

public interface SetT>
public boolean add (T x);

public boolean cyntaihs (T x);

Add item to set
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List-Based Sets

public interface Set<T> {
] ) -

public boolean remove (T x);

public boolIean cdntain ;

Remove item from set
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List-Based Sets

public interface Set<T> {
public boolean add (T x);

ublic boolean remove (T x):
public boolean contains (T x) ; ]

}

Is item in set?
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List Node

public class Node ({
public T item;
public int key;
public Node next;

}
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List Node

public class Node {
public T item;
ke

public Node
}

item of interest
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List Node

public class Node {

Usually hash code

EPFL CS-206 — Spring 2015 Lec8- 15



List Node

public class Node {
public T item;
public int key;
public Node next;]

}

Reference to next node
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Reasoning about Concurrent Objec

» Invariant
> Property that always holds

» Why do we care about invariants?
> Invariant is true when object is created
> Invariant truth is preserved by each method
[>Each step of each method
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Specifically ...

» Invanants preserved by
> add ()
> remove ()

> contains ()

» Example invariants to preserve for linked lists

> Tail reachable from head
> Sorted
> No duplicates
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Sequential List Based Set

add()

([3F—al 3 [3—ET]

remove()
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Sequential List Based Set

add() EB\ -

remove()
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Coarse-Grained Locking
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Coarse-Grained Locking
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Coarse-Grained Locking

$

D

Simple but hotspot + bottleneck
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Coarse-Grained Locking

» Easy, same as synchronized methods

> “One lock to rule them all ...”

» Simple, clearly correct

> Deserves respect!

» Works poorly with contention
> Queue locks help

> But bottleneck still an issue
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Fine-grained Locking

» Requires careful thought

> “Do not meddle in the affairs of wizards, for they are subtle and
quick to anger”

» Split object into pieces
> Each piece has own lock

> Methods that work on disjoint pieces need not exclude each
other
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Hand-over-Hand locking

([F—l3—blF—{]]
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Hand-over-Hand locking

6

=kl

O




Hand-over-Hand locking




Hand-over-Hand locking
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Hand-over-Hand locking




Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Why hold 2 locks?
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Concurrent Removes
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Concurrent Removes

O,
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Concurrent Removes




Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes
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Concurrent Removes




Uh, Oh
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Uh, Oh

Bad news, ¢ not removed

CB—»@@}@D
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Problem

» [o delete node ¢
> Swing node b’s next field to d

aly bly el3—

» Problem is,

> Someone deleting b concurrently could direct a pointer to C
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Insight

» If a node is locked

> No one can delete node’s successor

» If a thread locks
> Node to be deleted
> And its predecessor

> Then it works
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Hand-Over-Hand Again
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Hand-Over-Hand Again




Hand-Over-Hand Again
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Hand-Over-Hand Again




Hand-Over-Hand Again
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Hand-Over-Hand Again
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node




Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node
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Removing a Node




Removing a Node
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Removing a Node




Removing a Node
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Removing a Node

([~ o] ]
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Remove method

public boolean remove (Item item) ({
int key = item.hashCode() ;

Node pred, curr;

boolean foundNode = false;

try {

} finally {
curr.unlock () ;
pred.unlock () ;
}

return foundNode;

}
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Remove method

public boolean remove (Item item) {

|int key = item.hashCode();l

Node pred, curr)
boolean foundNoda = faise;

try {

} finally {
curr.unlock () ;
pred.unlock () ;
}

return foundNode;
} Key used to order node
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Remove method

public boolean remove (Item item) {
int key = item.hashCode() ;

[Node pred, curr;
boolean fo = false;

try {

} finally {
curr.unlock () ;
pred.unlock () ;

}

return foundNode;
} Predecessor and current nodes
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Remove method

public boolean remove (Item item) {
int key = item.hashCode() ;

Node pred, curr;

[boolean foundNode = false;

try {

} finally {
curr.unlock () ;
pred.unlock () ; Node search

}
[ return £ oundNod%

}
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Remove method

public boolean remove (Item item) {
int key = item.hashCode() ;

Node pred, curr;

boolean foundNode = false;

[try {

V 4

——__ Make sure

i finally ({ - locks released
curr.unlock () ;

kpred.unlock();

}

return foundNode;

}
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Remove method

public boolean remove (Item item) ({
int key = item.hashCode() ;

Node pred, curr;
boolean foundNode = false;

try {

curr.unlock () ;
pred.unlock () ; Everything else

}

return foundNode;

}
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Remove method

try {
pred = this.head;

pred.lock() ;
curr = pred.next;
curr.lock () ;

}mfinally { ..}
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Remove method

lock pred == head

pred = this.head;
pred.lock() ;
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Remove method

Lock current

curr = pred.next;
curr.lock() ;

-
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Remove method

Traversing list
%]}I
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Remove: searching

while (curr.key <= key) {
i1f (item == curr.item) {
pred.next = curr.next;
foundNode = true;
break;

}

pred.unlock () ; ac Sus
pred = curr; % —
curr = curr.next; ‘ \

curr.lock () ;
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Remove: searching

[while (curr.key <= key) {

Search key range

=
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Remove: searching

[while (curr.key <= key) {

At start of each loop:
curr and pred locked

=
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Remove: searching

}

/ if (item ==

pred.next
foundNode
break;

curr.item) {
curr .next;
true;

-

If item found, remove node
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Remove: searching

/ if (item == curr.item) {
pred.next = curr.next;
foundNode = true;

break;

} J

-
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Remove: searching

Unlock predecessor

[pred.unlock();

==
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Remove: searching

Only enernode locked]

[pred.unlock();
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Remove: searching

demote current

l

[pred = currT]
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Remove: searching

Find and lock new current

curr.lock () ;

[curr = curr.next;
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Remove: searching

Lock invariant restored

curr = curr.next;:] § []

curr.lock () ;
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Why does this work?

» [o remove node e
> Must lock e

> Must lock e's predecessor

» Therefore, if you lock a node
> |t can't be removed

> And nerther can its successor
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Adding Nodes

» To add node e
> Must lock predecessor

> Must lock successor

» Add/remove must acquire locks in the same order
> What happens in the order is compromised?

> E.g., remove code lock predecessor first, add successor first
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Properties to prove for add/remove

» Does safetyness hold?

» Does the liveness property hold?

» Are the invariants maintained?
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Drawbacks

» Better than coarse-grained lock

> Threads can traverse in parallel

» Still not ideal

> Long chain of acquire/release
> Inefficient
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Traffic Jam

» Any concurrent data structure based on mutual exclusion
has a weakness

» If one thread
> Enters critical section
> And “eats the big muffin”
>Cache miss, page fault, descheduled ...
> Everyone else using that lock is stuck!
> Need to trust the scheduler....
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Other patterns: Optimistic Synchronization

» Search without locking...

» If you find it, lock an check...
> Ok =2 we are done
> Opps =2 start over

» Evaluation
> Usually cheaper than locking

> Mistakes are expensive
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Optimistic: Traverse wrthout Locking
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Optimistic: Lock and Load
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Optimistic: Lock and Load
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What could go wrong!
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What could go wrong!
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What could go wrong!
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What could go wrong!
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What could go wrong!
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What could go wrong!




What could go wrong!
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Uh-oh
O OQ
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Check after lock

» By traversing optimistically, we give up any guarantees we
had about the list during traversal

» The node we locked might have just been removed
» Need to check the pointers to It
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What Else Could Go Wrong!




What Else Could Go Wrong!
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What Else Could Go Wrong!




What Else Could Go Wrong!




What Else Could Go Wrong!




Check after lock

» By traversing optimistically, we give up any guarantees we
nad about the list during traversal

» New nodes might just have been added

» Need to check the pointers between the locked nodes
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Optimistic Traversal

» Traverse optimistically, get the lock and then check if we can
move on

» Need to check after we get the lock
> We know nothing about the items locked

> Need to check if they are in the same situation as they were
before we locked

> After checking, we know that we hold the lock, and thus they
cannot suffer further changes
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Other pattemns: Lazy Synchronization

» Postpone hard work

» E.g., break remove into two parts
> Logical removal = marks component to be deleted

> Physical removal = do what needs to be done
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Reminder: Lock-Free Data Structures

®

» No matter what ...
> Guarantees minimal progress in any execution
> 1.e. Some thread will always complete a method call
> Even If others halt at malicious times

> Implies that implementation can't use locks
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Recall: Using atomics

» compareAndSet(expectedValue,newValue) method
> Compares a variable with an “expectedValue” given as input

> Sets it to “newValue” if comparison is successful

> Does everything atomically
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Lock-free Lists

» Next logical step
> Walit-free contains()

> lock-free add() and remove()

» How about turning adds/removes into atomics?
> Use compareAndSet() or CAS

What could go wrong with only CAS?
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Lock-free Lists

]

Use CAS to verify pointer Removal
IS correct

Not enough!
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Problem...

Node added
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The Solution: Combine Bit and Pointer

Logical Removal =
Set Mark Bit

Physical

Removal - :
Mark-Bit and Pointer Fail CAS: Node not

CAS :
are CASed together aRde(:sgvjter logical
(AtomicMarkableReference)
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Solution

» Use AtomicMarkableReference

» Atomically
> Swing reference and
> Update flag

» Remove in two steps
> Set mark bit in next field

> Redirect predecessor's pointer
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Marking a Node

» AtomicMarkableReference class
> Java.util.concurrent.atomic package

Reference

mark bit
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Extracting Reference & Mark

Public Object get(boolean|[] marked) ;
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Extracting Reference & Mark

Object ] Emolean []

Returns mark at array
index 0!
(funny use of Java arrays
to pass a pointer)

Returns
reference

EPFL CS-206 — Spring 2015

Lec.8 - 127



Extracting Mark Only

boolean]

Value of
mark
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Changing State

Public boolean compareAndSet (
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark) ;
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Changing State

If this is the current
reference ...

Public booleaq/CGElifﬁAndSet(
IObject expectedRef,
Object updateRef,
lboolean expectedMark,
boolean updateMark) ;
And this is the

current mark ...
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Changing State

...then change to this
new reference ...

Public boolean/c¢mpareAndSet (
Object expgctefdRef,
|Object updateRef,
boolean expectedMark
boolean updateMark) ;

... and this new
mark
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Changing State

public boolean attemptMark (
Object expectedRef,
boolean updateMark) ;
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Changing State

public boolean attemptMark (
Object ex ectedRef]
updateMark) ;

If this is the current
reference ...
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Changing State

public boolean attemptMark (
Object expectedRef,
|boolean updateMarkLb

.. then change to
this new mark.
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Removing a Node
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Removing a Node




Removing a Node
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Removing a Node

([~

Lo 3 o
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Summary

» Coarse-grained locking
» Fine-grained locking
> Basic synchronization
> Optimistic synchronization

> Lazy synchronization

» Lock-free synchronization
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