CS-206 Concurrency

Lecture /
Synchronization
Constructs

Spring 2015
Prof. Babak Falsafi
parsa.epfl.ch/courses/cs206/

Adapted from slides originally developed by Silberschatz, Galvin and Gagne
EPFL Copyright 2015

EPFL CS-206 — Spring 2015 Lec./ -

Where are We!

Lecture
& Lab

M T
16-Feb
23-Feb

2-Mar
9-Mar
16-Mar
23-Mar
30-Mar
6-Apr
13-Apr
20-Apr
27-Apr
4-May
11-May
18-May
25-May

EPFL CS-206 — Spring 2015

W

T

F

19-Feb

20-Feb

26-Feb

27-Feb

5-Mar

6-Mar

12-Mar

13-Mar

19-Mar

20-Mar

26-Mar

27-Mar

2-Apr

3-Apr

9-Apr

10-Apr

16-Apr

17-Apr

23-Apr

24-Apr

30-Apr

1-May

/-May

8-May

14-May

15-May

21-May

22-May

28-May

29-May

» Hardware atomics

» Sophisticated primitives
> Semaphores
> Monitors

> Conditional variables

» Common problems
> Bounded buffer
> Readers-Writers
> Dining Philosophers
» Next lecture (after break)
> Mid-term

Lec.7 -2

Synchronization Hardware

» Many systems provide hardware support for critical section

» Old days: Uniprocessors disabled interrupts
> Currently running code executes without preemption
> Too inefficient on multiprocessors
» Today all machines provide atomic instructions
>Atomic = non-interruptable
> Erther test memory word and set value
> Or swap contents of two memory words
» Recent machines provide support for transactions
> Transaction = atomic instruction sequence

> All memory changes visible before/after but not during

EPFL CS-206 — Spring 2015

Lec.7 -3

Solution to Critical-section Problem Using Locks

acquire lock
critical section

release lock

EPFL CS-206 — Spring 2015 Lec./ -4

Test&Set Instruction

» Definition

boolean Test&Set (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv;

EPFL CS-206 — Spring 2015 Lec./ -5

Solution using Test&Set

» Shared boolean variable lock, initialized to FALSE
» Solution

while (TestAndSet (&lock))
; // do nothing

// critical section

lock = FALSE;

EPFL CS-206 — Spring 2015 Lec./ -6

Swap Instruction

» Definition

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;
*a = *b;
*b = temp;

EPFL CS-206 — Spring 2015 Lec./ -7

Solution using Swap

» Shared Boolean variable lock initialized to FALSE

> Each process has a local Boolean variable key
» Solution

key = TRUE;

while (key)
Swap (&lock, &key);

// critical section

lock = FALSE;

EPFL CS-206 — Spring 2015 Lec.7 - 8

Examples iIn modem Instruction sets

» Oracle SPARC ISA

> swap [regl], reg?2 // swap contents at address regl w/ reg?

» Intel x86
> xchg [regl], reg? // swap contents at address reg| w/ reg?

EPFL CS-206 — Spring 2015 Lec.7 -9

Problems with Test&Set/Swap!?

» Threads wait spinning
> Constantly reading/writing to/from the lock
> Traffic out of the caches through the bus

> Bus Is a queue: > 50% utilization -> response time exponential

» Not fair
> There is no queue

> Any thread can be next independent of waiting

EPFL CS-206 — Spring 2015 Lec.7 - 10

Traffic

Critical
Section

xchg [&lock], reg
xchg [&lock], reg

memory

EPFL CS-206 — Spring 2015 Lec./ - Il

Bus Traffic vs. Waiting Time: M/M/| Queue

Bus waiting time

.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Bus utilization

EPFL CS-206 — Spring 2015 Lec.7 - 12

Test&Test&Set

do {
while (lock)
; // test spinning in cache

// lock is O
} while (TestAndSet (&lock));

// critical section

lock = FALSE;

EPFL CS-206 — Spring 2015 Lec.7 - 13

Test&Swap

do {
key = TRUE;
while (lock)
; // test spinning in cache

// lock is FALSE, quick!
Swap (&lock, é&key);
} while (key);

// critical section

lock = FALSE;

EPFL CS-206 — Spring 2015 Lec./ - 14

load lock
(cache hit)

load lock
(cache hit)

memory

EPFL CS-206 — Spring 2015 Lec./ - I5

Semaphore

» A high-level abstraction
» Semaphore S: an integer vanable

» Two standard operations modify S
> wait () & signal ()
> Originally called P () &V ()

» Can only be accessed via two indivisible (atomic) operations

wait (S) { signal (S) {
while (S <= 0) S++;
; // no-op }
S——;

}

EPFL CS-206 — Spring 2015 Lec./ - 16

Example Implementation with Test&Set

wait (semaphore s) {

done =
do {

while(s <= 0 ||

; // do nothing

if (s > 0){
done = TRUE;
s--;

}
lock=FALSE;

} while ('done) ;
}

FALSE; //done is a local wvariable

TestAndSet (&lock))

EPFL CS-206 — Spring 2015

signal (semaphore s) {
while (TestAndSet (&lock))
; /* do nothing */
s++;
lock=FALSE;

Lec.7 - 17

Semaphore implementation

» Old days on uniprocessors: disabling/enabling interrupts

» Modem systems:
> Vaniety of ways including hardware primrtives

> Test&Set, Swap, Transactional Memory (Intel Haswell)

» From now on, assume wait & signal are atomic
> All of the operation Is performed indivisibly

EPFL CS-206 — Spring 2015

Lec.”7 - 18

Binary Semaphore

» Counting semaphore: integer ranging over unrestricted domain
» Binary semaphore: integer values of O or |; simpler to implement

> Also known as mutex locks
» Can implement a counting semaphore S as a binary semaphore

» Provides mutual exclusion

Semaphore mutex; // initialized to 1
wait (mutex);

// Critical Section
signal (mutex) ;

EPFL CS-206 — Spring 2015 Lec.7 - 19

Simple Use of Semaphores: Rendez-Vous

Semaphore rendezvous; // initialized to O
Thread | Thread 2

// critical section | wait (rendezvous);
signal (rendezvous); // critical section 2

EPFL CS-206 — Spring 2015 Lec.7 - 20

Semaphore with Busy Waiting

» Busy waiting is not the best use of resources
> Operating system (OS) can run other threads

» For each walt, there has to be signal

> To satisfy liveness

» Counting semaphores also suffer from fairmess

> No notion when a thread arrived

EPFL CS-206 — Spring 2015

Lec.7 - 21

Semaphore without Busy Waiting

» With each semaphore there is a warting queue
> linked list

» Each entry in a waiting queue has two data items:
>value (of type integer)
> pointer to next record In the list

» Two OS operations:

>block places the process invoking the operation on
the appropriate waiting queue

>wakeup removes one of processes Iin the waiting
queue and place 1t In the ready queue

EPFL CS-206 — Spring 2015 Lec.7 - 22

Semaphore with Queues (atomic Wait & Signal)

» Wait (and queue):
wait (semaphore *S) {
S->value--;
if (S->value < 0) {
add this thread to S->list;
block() ;

}
}
» Signal (and wakeup):

signal (semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a thread P from S->list;
wakeup (P) ;

}
}

EPFL CS-206 — Spring 2015 Lec.7 - 23

Deadlock & Starvation

» Let S and Q be two semaphores initialized to |

wait(S);
wait(Q);

signal(S);
signal(Q);

wait(Q);
wait(S);

signal(Q);
signal(S);

EPFL CS-206 — Spring 2015

Lec./ - 24

Deadlock and Starvation

» Starvation
>Indefinrte blocking

> Thread may never be removed from the semaphore
queue In which It Is suspended

» Priority Inversion

> Scheduling problem when lower-priority thread
holds a lock needed by higher-priority thread

> Solved via priority (Inherrtance) protocol

EPFL CS-206 — Spring 2015 Lec.7 - 25

Classical Problems of Synchronization

» Classical problems solved via semaphores
> Bounded-Buffer Problem
>Readers and Writers Problem

> Dining-Philosophers Problem

EPFL CS-206 — Spring 2015 Lec.7 - 26

Bounded-Buffer Problem

» | buffer that holds N items

» Semap
» Semap
» Semap

nore mutex inrtialized to value |

nore full inrtialized to value O

nore empty Iinrtialized to value N

EPFL CS-206 — Spring 2015

Lec.7 - 27

Bounded-Buffer Problem (Cont.)

» The structure of the producer thread

do {
// produce an item in nextp
wait (empty)
wait (mutex) ;
// add the item to the buffer
signal (mutex) ;
signal (full);

} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec.7 - 28

Bounded-Buffer Problem (Cont.)

» The structure of the producer thread

do {
// produce an item in nextp

(wait (empty); | Wait for space
wait (mutex); in the buffer

// add the item to the buffer
signal (mutex) ;
signal (full);

} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec.7 - 29

Bounded-Buffer Problem (Cont.)

» The structure of the producer thread

do {
// produce an item in nextp \A/jt for
wait (empty) ;
| wait (mutex);
/7 add the item to the buffer 2“3
signal (mutex) ;
signal (full);
} while (TRUE);

e permission to

EPFL CS-206 — Spring 2015 Lec.7 - 30

Bounded-Buffer Problem (Cont.)

» The structure of the producer thread

do {
// produce an item in nextp
wait (empty)
wait (mutex) ;
// add the item to the buffer

| signal (mutex);L_——— Give permission

signal (full); to other threads
} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec.7 - 31

Bounded-Buffer Problem (Cont.)

» The structure of the producer thread

do {
// produce an item in nextp
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex); Announce an

| signal (full); | item was added
} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec.7 - 32

Bounded-Buffer Problem (Cont.)

» The structure of the consumer thread

do {
wait (full);
wait (mutex) ;

// remove an item from buffer to
nextc

signal (mutex) ;

signal (empty);

// consume the item in nextc
} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec.7 - 33

Bounded-Buffer Problem (Cont.)

» The structure of the consumer thread

do {
| wait (full); | _ Wait for an item
wait (mutex); in the buffer
// remove an item from buffer to
nextc

signal (mutex) ;

signal (empty);

// consume the item in nextc
} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec.7 - 34

Bounded-Buffer Problem (Cont.)

» The structure of the consumer thread

do { Wait for
wait (full); permission to
| wait (mutex); | access
// remove an item from buffer to
nextc

signal (mutex) ;

signal (empty);

// consume the item in nextc
} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec.7 - 35

Bounded-Buffer Problem (Cont.)

» The structure of the consumer thread

do {
wait (full);
wait (mutex);
// remove an item from buffer to
nextc Give permission

[signal (mutex); to other threads
signal (empty) ;

// consume the item in nextc
} while (TRUE);

EPFL CS-206 — Spring 2015 Lec.7 - 36

Bounded-Buffer Problem (Cont.)

» The structure of the consumer thread

do {
wait (full);
wait (mutex);
// remove an item from buffer to
nextc Announce an
dsj:' nai EmUtix; ; / item was
signa empty) ;
// consume the item in nextcremoved
} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec.7 - 37

Readers-Writers Problem

» Data set shared among concurrent threads

>Readers only read the data set — no updates

>Writers can both read and write
» Multiple readers can read at the same time

> Only single writer can access shared data at same time
» Shared Data

>Data set

>Semaphore mutex initialized to |

>Semaphore wrt initialized to |

> Integer readcount initialized to O

Readers-Wniters Problem (Cont.)

Reader-Writer decisions:
» When is the writer done?
» When are the readers done?

Must do book-keeping:

» The first reader waits on wrt to allow the writer to finish
> Other readers go through

» The last reader signals on wrt to allow the writer to start
> Other readers go through

EPFL CS-206 — Spring 2015 Lec.7 - 39

Readers-Wniters Problem (Cont.)

» The structure of a writer thread

do {
wait (wrt) ;
// writing is performed
signal (wrt)

} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec.7 - 40

Readers-Wniters Problem (Cont.)

» The structure of a writer thread

do { Wart for permission to
| wait(wrt) ; access the data set
// writing is performed
signal (wrt)
} while (TRUE) ;

EPFL CS-206 — Spring 2015 Lec./ - 4l

Readers-Wniters Problem (Cont.)

» The structure of a writer thread

do {
wait (wrt) ; | o
// writing is performed Give permission
lsignal (wrt) ; to other threads
} while (TRUE)

EPFL CS-206 — Spring 2015 Lec.7 - 42

Readers-Wniters Problem (Cont.)

» The structure of a reader thread

do { Wart for permission to
wait (mutex) ; Increase the readcount
readcount ++ ;
1f (readcount == 1)

wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount -- ;

i1f (readcount == 0)
signal (wrt)

signal (mutex) ;

} while (TRUE) ;

EPFL CS206 cpvig co o

Readers-Wniters Problem (Cont.)

» The structure of a reader thread

do { Wart for permission to
wait (mutex) ; Increase the readcount
readcount ++ ;
1f (readcount == 1)

wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount -- ;

i1f (readcount == 0)
signal (wrt)

signal (mutex) ;

} while (TRUE) ;

EPFL CS‘ZOé v ng v

Readers-Wniters Problem (Cont.)

» The structure of a reader thread

do {
wait (mutex) ; If you are the first
readcount ++ ; reader, wait for

if (r_eadcount == 1) permission to access the
wait (wrt) ;
data set

signal (mutex)

// reading is performed

wait (mutex) ;

readcount -- ;

i1f (readcount == 0)
signal (wrt)

signal (mutex) ;

} while (TRUE) ;

EPFL CS-206 _piwi,

Readers-Wniters Problem (Cont.)

» The structure of a reader thread
do {

wait (mutex) ;

readcount ++ ; . o

if (readcount == 1) Clive permission to
wait (wrt) ; other readers to access

|signal (mutex) |~ the readcount

// reading is performed
wait (mutex) ;
readcount -- ;
i1f (readcount == 0)
signal (wrt)
signal (mutex) ;
} while (TRUE) ;

EPFL CS‘ZOé v ng v

Readers-Wniters Problem (Cont.)

» The structure of a reader thread
do {

wait (mutex)

readcount ++ ;

1f (readcount == 1)
wait (wrt)

signal (mutex)

// reading is performed

wait (mutex) ; Wart for permission to

readcount -- ; decrease the readcount
i1f (readcount == 0)

signal (wrt)
signal (mutex) ;
} while (TRUE) ;

g evio

°
4

°
14

°
14

EPFL CS-206

Readers-Wniters Problem (Cont.)

» The structure of a reader thread
do {

wait (mutex) ;

readcount ++ ;

1f (readcount == 1)
wait (wrt) ;

signal (mutex)

// reading is performed

ait (mute ;
wait (mutex) If you are the last reader
readcount -- ;

[j_f (readcount == 0)] give permission to other

signal (wrt) ; —threads
signal (mutex) ;
} while (TRUE) ;

EPFL CS-206 _piwi,

Va

Readers-Wniters Problem (Cont.)

» The structure of a reader thread
do {

wait (mutex) ;

readcount ++ ;

1f (readcount == 1)
wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount -- ;

it (readcount == 0) Give permission to
signal (wrt)
— other readers to access
} while (TRUE); the readcount

EPFL CS‘ZOé v ng v

Readers-Writers Problem Variations

Many variations possible

Eg,
I. No reader kept waiting unless writer has permission to
use shared object

2. Or, once writer is ready, it performs write asap

» These variations may suffer from starvation

» Problem can be solved through reader-writer locks

EPFL CS-206 — Spring 2015 Lec.7 - 50

Dining-Philosophers Problem

» Philosophers spend their lives thinking and eating
» Don't interact with their neighbors

» Occasionally try to pick up 2 chopsticks (one at a time)
to eat from bowl

> Need both to eat, then release both when done

» In case of 5 philosophers, shared data
>Bowl of rice (data set)
>Semaphore chopstick [5] initialized to |

EPFL CS-206 — Spring 2015 Lec./ - 51

Dining-Philosophers Problem Algorithm

» The structure of Philosopher i:

do {
wait (chopstick[i])
wait (chopStick[(1 + 1) % 5]).
// eat
signal (chopstick[i])
signal (chopstick[(i + 1) % 5]);
// think

} while (TRUE) ;

» What is the problem with this algorithm?

EPFL CS-206 — Spring 2015 Lec.7 - 52

» Each philosopher
> Grabs their left chopstick
> Walits for their right chopstick [{]

» Deadlock!

EPFL CS-206 — Spring 2015 Lec.7 - 53

Problems with Semaphores

» Incorrect use of semaphore operations:
> signal(mutex) wart(mutex)
> walt(mutex) wart(mutex)
> Omitting of wart(mutex) or signal(mutex) (or both)

» Deadlock and starvation

EPFL CS-206 — Spring 2015 Lec./ - 54

Monitors

» Abstraction providing convenient/effective synchronization

» Abstract data type, internal variables only accessible by code
within the procedure

» Only one thread may be active within the monitor at a time

monitor monitor—-name

{

// shared wvariable declarations
procedure P1 (.) { ... }

procedure Pn (..) {....}
Initialization code (..) { .. }

}

EPFL CS-206 — Spring 2015 Lec./ - 55

Schematic view of a Monitor

entry queue

shared data

N

operations

initialization
code
EPFL CS-206 — oo —o .=

Condition Variables

condrtion X, Y;

» Two operations on a condition vanable:
>x.walrt() suspends the thread until x.signal()
>x.signal() resumes a thread (if any) that invoked x.wairt()

>If no x.wart() on variable, then it has no effect

EPFL CS-206 — Spring 2015 Lec./ - 57

Monitor with Condition Variables

entry queue

shared data

queues associated with

X, y conditions y —~EE

~

operations

initialization
code

EPFL CS-206 — Spring 2015 Lec./ - 5%

Condition Variables Choices

» If P invokes x.signal(), with Q in x.wart(), what happens next?

> If Q iIs resumed, then P must wait

» Options include
> Signal & wait: P waits until Q leaves or waits for another condition

> Signal & continue: Q waits until P leaves the monitor or waits for
another condition

> Both have pros and cons, language implementer can decide

> Implemented in many languages including Mesa, C#, Java

EPFL CS-206 — Spring 2015 Lec.7 - 59

Solution to Dining Philosophers

monitor DiningPhilosophers

{
enum { THINKING; HUNGRY, EATING) state[5];

condition self([5];

void pickup (int 1) ({
state[1] = HUNGRY;
test (i) ;
if (state[i] '= EATING) self[i].wait();

EPFL CS-206 — Spring 2015 Lec.7 - 60

Solution to Dining Philosophers

monitor DiningPhilosophers

{
enum { THINKING; HUNGRY, EATING) state[5];

condition self([5];

Philosopher 1 is hungry

void pickup (int 1) {
[;Eate [i] = HUNGRY;
test (i) ;
if (state[i] '= EATING) self[i] .wait()

EPFL CS-206 — Spring 2015 Lec./ - 6l

Solution to Dining Philosophers

monitor DiningPhilosophers

{
enum { THINKING; HUNGRY, EATING) state[5];

condition self([5];

void pickup (int 1) {

state[i] = HUNGRY;
[test(i);

| tries to eat
if (state[i] '= EATING) self[i].wait();

EPFL CS-206 — Spring 2015 Lec.7 - 62

Solution to Dining Philosophers

monitor DiningPhilosophers

{
enum { THINKING; HUNGRY, EATING) state[5];
condition self[5];

void pickup (int i) {
state[1i] = HUNGRY;
test (i) ;
|if (state[i] != EATING) self[i].wait()|;

} \/
1 can't eat,
| goes to sleep

EPFL CS-206 — Spring 2015 Lec.7 - 63

Solution to Dining Philosophers

void putdown (int i) {
state[i] = THINKING;
// test left and right neighbors
test((1 + 4) %

5);
test((i + 1) % 5);

EPFL CS-206 — Spring 2015 Lec./ - 64

Solution to Dining Philosophers

void putdown (int 1 | starts thinking
(state[i] = THINKING;[
// test left and right neighbors
test((1 + 4) %

test((1 + 1) %

5);
5);

EPFL CS-206 — Spring 2015 Lec./ - 65

Solution to Dining Philosophers

void putdown (int 1) {
state[i] = THINKING;
// test left and right neighbors
test((1 + 4)
[test((1 + 1)

Puts chopsticks down and
lets neighbors use them

EPFL CS-206 — Spring 2015 Lec./ - 66

Solution to Dining Philosophers (Cont.)

void test (int 1) {

if ((state[(i + 4) % 5] '= EATING) &&
(state[i] == HUNGRY) &&
(state[(1 + 1) % 5] !'= EATING)) {

state[i] = EATING ;
self[i] .signal () ;

}

initialization code() {
for (int i = 0; 1 < 5; i++)
state[1i] = THINKING;
}
}

EPFL CS-206 — Spring 2015 Lec./ - 67

Solution to Dining Philosophers (Cont.)

void test (int i) {
if (|[(state[(i + 4) % 5] '= EATING)| &s
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] '= EATI
state[1] = EATING ;
self[i] .signal () ; Checks if I's left

} neighbor Is eating

}

initialization code() {
for (int i = 0; 1 < 5; i++)
state[i] = THINKING;
}
}

EPFL CS-206 — Spring 2015 Lec./ - 68

Solution to Dining Philosophers (Cont.)

void test (int 1) {
if ((state[(i + 4) % 5] != EATING) &&

[(state[i] == HUNGRY) &&
(state[(1 + 2 1= EATING)) {
state[1] = EATING

self[i].signal () ; Checksif
} Is hungry

}

initialization code() {
for (int i = 0; 1 < 5; i++)
state[i] = THINKING;
}
}

EPFL CS-206 — Spring 2015 Lec./ - 69

Solution to Dining Philosophers (Cont.)

void test (int 1) {
if ((state[(1 + 4) % 5] !'= EATING) &&
(state[i] == HUNGRY) &&

l(state[(i + 1) % 5] !'= EATING)|) {
state[i] = EA ;
Checks if i's right

self[i] .signal () ;

} neighbor Is eating
}

initialization code() {
for (int i = 0; 1 < 5; i++)
state[i] = THINKING;
}
}

EPFL CS-206 — Spring 2015 Lec./-7/0

Solution to Dining Philosophers (Cont.)

void test (int 1) {

/Af ((state[(i + 4) % 5] '= EATING) &&)
(state[i] == HUNGRY) &&
(state[(1 + 1) % 5] !'= EATING)) {

state[1] = EATING ;
self[i] .signal ()
} \L_ J

—

If I's neighbors are not eating
initialization_code () { and 1 Is hungry, | starts eating
for (int 1 = 0; 1 < 5; i++4)

state[i] = THINKING;

}
}

EPFL CS-206 — Spring 2015 Lec./ - 71

Solution to Dining Philosophers (Cont.)

» Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup (1),
EAT
DiningPhilosophers.putdown (1) ;

» No deadlock, but starvation is possible
> Why!
> Can you address it?

EPFL CS-206 — Spring 2015

Lec.7 - 72

Summary

» Need simple, efficient atomic ops
> Hardware primitives: test&set, swap, transactional memory
> Think about traffic while busy waiting
» Need higher level abstractions for programmability
> Semaphores, Monrtors & Condition Variables
> Support in the OS for warting/sleeping and waking up
» A few classical problems
> Bounded buffer
> Readers/writer

> Dining philosophers

EPFL CS-206 — Spring 2015 Lec.7 -73

