
EPFL CS-206 – Spring 2015 Lec.7 - 1

CS-206 Concurrency
���
Lecture 7
Synchronization
Constructs
Spring 2015
Prof. Babak Falsafi
parsa.epfl.ch/courses/cs206/

Adapted from slides originally developed by Silberschatz, Galvin and Gagne
EPFL Copyright 2015

EPFL CS-206 – Spring 2015 Lec.7 - 2

Lecture
& Lab

M T W T F
16-Feb 17-Feb 18-Feb 19-Feb 20-Feb
23-Feb 24-Feb 25-Feb 26-Feb 27-Feb
2-Mar 3-Mar 4-Mar 5-Mar 6-Mar
9-Mar 10-Mar 11-Mar 12-Mar 13-Mar
16-Mar 17-Mar 18-Mar 19-Mar 20-Mar
23-Mar 24-Mar 25-Mar 26-Mar 27-Mar
30-Mar 31-Mar 1-Apr 2-Apr 3-Apr
6-Apr 7-Apr 8-Apr 9-Apr 10-Apr
13-Apr 14-Apr 15-Apr 16-Apr 17-Apr
20-Apr 21-Apr 22-Apr 23-Apr 24-Apr
27-Apr 28-Apr 29-Apr 30-Apr 1-May
4-May 5-May 6-May 7-May 8-May
11-May 12-May 13-May 14-May 15-May
18-May 19-May 20-May 21-May 22-May
25-May 26-May 27-May 28-May 29-May

Where are We?
u  Hardware atomics
u  Sophisticated primitives

w Semaphores
w Monitors
w Conditional variables

u  Common problems
w Bounded buffer
w Readers-Writers
w Dining Philosophers

u  Next lecture (after break)
w Mid-term

EPFL CS-206 – Spring 2015 Lec.7 - 3

Synchronization Hardware
u  Many systems provide hardware support for critical section
u  Old days: Uniprocessors disabled interrupts

w Currently running code executes without preemption
w Too inefficient on multiprocessors

u  Today all machines provide atomic instructions
w Atomic = non-interruptable

w Either test memory word and set value
w Or swap contents of two memory words

u  Recent machines provide support for transactions
w Transaction = atomic instruction sequence
w All memory changes visible before/after but not during

EPFL CS-206 – Spring 2015 Lec.7 - 4

Solution to Critical-section Problem Using Locks

acquire lock

critical section

release lock

EPFL CS-206 – Spring 2015 Lec.7 - 5

Test&Set Instruction

u  Definition

boolean Test&Set (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv;

}

EPFL CS-206 – Spring 2015 Lec.7 - 6

Solution using Test&Set

u  Shared boolean variable lock, initialized to FALSE
u  Solution

while (TestAndSet (&lock))

; // do nothing

// critical section

lock = FALSE;

EPFL CS-206 – Spring 2015 Lec.7 - 7

Swap Instruction

u  Definition

void Swap (boolean *a, boolean *b)
{

boolean temp = *a;
*a = *b;
*b = temp;

}

EPFL CS-206 – Spring 2015 Lec.7 - 8

Solution using Swap

u  Shared Boolean variable lock initialized to FALSE
w Each process has a local Boolean variable key

u  Solution
key = TRUE;

while (key)
 Swap (&lock, &key);

// critical section

lock = FALSE;

EPFL CS-206 – Spring 2015 Lec.7 - 9

Examples in modern instruction sets

u  Oracle SPARC ISA
w  swap [reg1], reg2 // swap contents at address reg1 w/ reg2

u  Intel x86
w xchg [reg1], reg2 // swap contents at address reg1 w/ reg2

EPFL CS-206 – Spring 2015 Lec.7 - 10

Problems with Test&Set/Swap?

u  Threads wait spinning
w Constantly reading/writing to/from the lock
w Traffic out of the caches through the bus
w Bus is a queue: > 50% utilization -> response time exponential

u  Not fair
w There is no queue
w Any thread can be next independent of waiting

EPFL CS-206 – Spring 2015 Lec.7 - 11

Traffic

Bus

cache

memory

cachecache

Critical
Section

xchg [&lock], reg
xchg [&lock], reg

EPFL CS-206 – Spring 2015 Lec.7 - 12

Bus Traffic vs. Waiting Time: M/M/1 Queue

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Bus utilization

Bu
s

wa
it

in
g

ti
m

e

EPFL CS-206 – Spring 2015 Lec.7 - 13

Test&Test&Set

do {

while (lock)
 ; // test spinning in cache

 // lock is 0

} while (TestAndSet (&lock));

// critical section

lock = FALSE;

EPFL CS-206 – Spring 2015 Lec.7 - 14

Test&Swap

do {

key = TRUE;
while (lock)
 ; // test spinning in cache

 // lock is FALSE, quick!
Swap (&lock, &key);

} while (key);

// critical section

lock = FALSE;

EPFL CS-206 – Spring 2015 Lec.7 - 15

Traffic

Bus

cache

memory

cachecache

Critical
Section

(bus available)

load lock
(cache hit) load lock

(cache hit)

EPFL CS-206 – Spring 2015 Lec.7 - 16

Semaphore

u  A high-level abstraction
u  Semaphore S: an integer variable
u  Two standard operations modify S

w wait() & signal()
w Originally called P() & V()

u  Can only be accessed via two indivisible (atomic) operations
wait (S) {

while (S <= 0)
; // no-op

 S--;
}

signal (S) {
S++;

}

EPFL CS-206 – Spring 2015 Lec.7 - 17

Example Implementation with Test&Set

wait(semaphore s){
 done = FALSE; //done is a local variable
 do {
 while(s <= 0 || TestAndSet(&lock))
 ; // do nothing
 if (s > 0){
 done = TRUE;
 s--;
 }
 lock=FALSE;
 } while (!done);
}

signal(semaphore s){
 while(TestAndSet(&lock))
 ; /* do nothing */
 s++;
 lock=FALSE;
}

EPFL CS-206 – Spring 2015 Lec.7 - 18

Semaphore implementation

u  Old days on uniprocessors: disabling/enabling interrupts

u  Modern systems:
w Variety of ways including hardware primitives
w Test&Set, Swap, Transactional Memory (Intel Haswell)

u  From now on, assume wait & signal are atomic
w All of the operation is performed indivisibly

EPFL CS-206 – Spring 2015 Lec.7 - 19

Binary Semaphore

u  Counting semaphore: integer ranging over unrestricted domain
u  Binary semaphore: integer values of 0 or 1; simpler to implement

w Also known as mutex locks
u  Can implement a counting semaphore S as a binary semaphore
u  Provides mutual exclusion

Semaphore mutex; // initialized to 1

wait (mutex);
// Critical Section
signal (mutex);

EPFL CS-206 – Spring 2015 Lec.7 - 20

Simple Use of Semaphores: Rendez-Vous

 Semaphore rendezvous; // initialized to 0

 Thread 1 Thread 2

 // critical section 1 wait (rendezvous);
 signal (rendezvous); // critical section 2

EPFL CS-206 – Spring 2015 Lec.7 - 21

Semaphore with Busy Waiting

u Busy waiting is not the best use of resources
w Operating system (OS) can run other threads

u For each wait, there has to be signal
w To satisfy liveness

u Counting semaphores also suffer from fairness
w No notion when a thread arrived

EPFL CS-206 – Spring 2015 Lec.7 - 22

Semaphore without Busy Waiting

u With each semaphore there is a waiting queue
w  linked list

u  Each entry in a waiting queue has two data items:
w value (of type integer)
w pointer to next record in the list

u Two OS operations:
w block places the process invoking the operation on

the appropriate waiting queue
w wakeup removes one of processes in the waiting

queue and place it in the ready queue

EPFL CS-206 – Spring 2015 Lec.7 - 23

Semaphore with Queues (atomic Wait & Signal)

u  Wait (and queue):

u  Signal (and wakeup):

wait(semaphore *S) {
 S->value--;
 if (S->value < 0) {
 add this thread to S->list;
 block();
 }
}

signal(semaphore *S) {
 S->value++;
 if (S->value <= 0) {
 remove a thread P from S->list;
 wakeup(P);
 }
}

EPFL CS-206 – Spring 2015 Lec.7 - 24

Deadlock & Starvation

u  Let S and Q be two semaphores initialized to 1

P0 P1
wait(S); wait(Q);
wait(Q); wait(S);

- -
- -
- -

signal(S); signal(Q);
signal(Q); signal(S);

EPFL CS-206 – Spring 2015 Lec.7 - 25

Deadlock and Starvation

u  Starvation
w Indefinite blocking
w Thread may never be removed from the semaphore

queue in which it is suspended
u Priority Inversion

w Scheduling problem when lower-priority thread
holds a lock needed by higher-priority thread

w Solved via priority (inheritance) protocol

EPFL CS-206 – Spring 2015 Lec.7 - 26

Classical Problems of Synchronization

u Classical problems solved via semaphores
w Bounded-Buffer Problem
w Readers and Writers Problem
w Dining-Philosophers Problem

EPFL CS-206 – Spring 2015 Lec.7 - 27

Bounded-Buffer Problem

u 1 buffer that holds N items
u  Semaphore mutex initialized to value 1
u  Semaphore full initialized to value 0
u  Semaphore empty initialized to value N

EPFL CS-206 – Spring 2015 Lec.7 - 28

Bounded-Buffer Problem (Cont.)

u  The structure of the producer thread

do {
// produce an item in nextp
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);

} while (TRUE);

EPFL CS-206 – Spring 2015 Lec.7 - 29

Bounded-Buffer Problem (Cont.)

u  The structure of the producer thread

do {
// produce an item in nextp
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);

} while (TRUE);

Wait for space
in the buffer

EPFL CS-206 – Spring 2015 Lec.7 - 30

Bounded-Buffer Problem (Cont.)

u  The structure of the producer thread

do {
// produce an item in nextp
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);

} while (TRUE);

Wait for
permission to

access

EPFL CS-206 – Spring 2015 Lec.7 - 31

Bounded-Buffer Problem (Cont.)

u  The structure of the producer thread

do {
// produce an item in nextp
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);

} while (TRUE);

Give permission
to other threads

EPFL CS-206 – Spring 2015 Lec.7 - 32

Bounded-Buffer Problem (Cont.)

u  The structure of the producer thread

do {
// produce an item in nextp
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);

} while (TRUE);

Announce an
item was added

EPFL CS-206 – Spring 2015 Lec.7 - 33

Bounded-Buffer Problem (Cont.)

u  The structure of the consumer thread

do {
wait (full);
wait (mutex);
// remove an item from buffer to
nextc

signal (mutex);
signal (empty);
// consume the item in nextc

} while (TRUE);

EPFL CS-206 – Spring 2015 Lec.7 - 34

Bounded-Buffer Problem (Cont.)

u  The structure of the consumer thread

do {
wait (full);
wait (mutex);
// remove an item from buffer to
nextc

signal (mutex);
signal (empty);
// consume the item in nextc

} while (TRUE);

Wait for an item
in the buffer

EPFL CS-206 – Spring 2015 Lec.7 - 35

Bounded-Buffer Problem (Cont.)

u  The structure of the consumer thread

do {
wait (full);
wait (mutex);
// remove an item from buffer to
nextc

signal (mutex);
signal (empty);
// consume the item in nextc

} while (TRUE);

Wait for
permission to

access

EPFL CS-206 – Spring 2015 Lec.7 - 36

Bounded-Buffer Problem (Cont.)

u  The structure of the consumer thread

do {
wait (full);
wait (mutex);
// remove an item from buffer to
nextc

signal (mutex);
signal (empty);
// consume the item in nextc

} while (TRUE);

Give permission
to other threads

EPFL CS-206 – Spring 2015 Lec.7 - 37

Bounded-Buffer Problem (Cont.)

u  The structure of the consumer thread

do {
wait (full);
wait (mutex);
// remove an item from buffer to
nextc

signal (mutex);
signal (empty);
// consume the item in nextc

} while (TRUE);

Announce an
item was
removed

EPFL CS-206 – Spring 2015 Lec.7 - 38

Readers-Writers Problem
u Data set shared among concurrent threads

w Readers only read the data set – no updates
w Writers can both read and write

u Multiple readers can read at the same time
w Only single writer can access shared data at same time

u  Shared Data
w Data set
w Semaphore mutex initialized to 1
w Semaphore wrt initialized to 1
w Integer readcount initialized to 0

EPFL CS-206 – Spring 2015 Lec.7 - 39

Readers-Writers Problem (Cont.)
Reader-Writer decisions:
u When is the writer done?
u When are the readers done?

Must do book-keeping:
u The first reader waits on wrt to allow the writer to finish

w Other readers go through
u The last reader signals on wrt to allow the writer to start

w Other readers go through

EPFL CS-206 – Spring 2015 Lec.7 - 40

Readers-Writers Problem (Cont.)

u  The structure of a writer thread

do {
wait(wrt);
// writing is performed
signal (wrt) ;

} while (TRUE);

EPFL CS-206 – Spring 2015 Lec.7 - 41

Readers-Writers Problem (Cont.)

u  The structure of a writer thread

do {
wait(wrt);
// writing is performed
signal (wrt) ;

} while (TRUE);

Wait for permission to
access the data set

EPFL CS-206 – Spring 2015 Lec.7 - 42

Readers-Writers Problem (Cont.)

u  The structure of a writer thread

do {
wait(wrt);
// writing is performed
signal (wrt) ;

} while (TRUE);

Give permission
to other threads

EPFL CS-206 – Spring 2015 Lec.7 - 43

Readers-Writers Problem (Cont.)

u  The structure of a reader thread
do {

wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)
// reading is performed
wait (mutex) ;
readcount -- ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

Wait for permission to
increase the readcount

EPFL CS-206 – Spring 2015 Lec.7 - 44

Readers-Writers Problem (Cont.)

u  The structure of a reader thread
do {

wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)
// reading is performed
wait (mutex) ;
readcount -- ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

Wait for permission to
increase the readcount

EPFL CS-206 – Spring 2015 Lec.7 - 45

Readers-Writers Problem (Cont.)

u  The structure of a reader thread
do {

wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)
// reading is performed
wait (mutex) ;
readcount -- ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

If you are the first
reader, wait for

permission to access the
data set

EPFL CS-206 – Spring 2015 Lec.7 - 46

Readers-Writers Problem (Cont.)

u  The structure of a reader thread
do {

wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)
// reading is performed
wait (mutex) ;
readcount -- ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

Give permission to
other readers to access

the readcount

EPFL CS-206 – Spring 2015 Lec.7 - 47

Readers-Writers Problem (Cont.)

u  The structure of a reader thread
do {

wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)
// reading is performed
wait (mutex) ;
readcount -- ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

Wait for permission to
decrease the readcount

EPFL CS-206 – Spring 2015 Lec.7 - 48

Readers-Writers Problem (Cont.)

u  The structure of a reader thread
do {

wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)
// reading is performed
wait (mutex) ;
readcount -- ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

If you are the last reader
give permission to other

threads

EPFL CS-206 – Spring 2015 Lec.7 - 49

Readers-Writers Problem (Cont.)

u  The structure of a reader thread
do {

wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)
// reading is performed
wait (mutex) ;
readcount -- ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

Give permission to
other readers to access

the readcount

EPFL CS-206 – Spring 2015 Lec.7 - 50

Readers-Writers Problem Variations

Many variations possible

E.g.,
1.  No reader kept waiting unless writer has permission to

use shared object
2.  Or, once writer is ready, it performs write asap

u These variations may suffer from starvation
u Problem can be solved through reader-writer locks

EPFL CS-206 – Spring 2015 Lec.7 - 51

Dining-Philosophers Problem

u Philosophers spend their lives thinking and eating
u Don’t interact with their neighbors
u Occasionally try to pick up 2 chopsticks (one at a time)

to eat from bowl
w Need both to eat, then release both when done

u  In case of 5 philosophers, shared data
w Bowl of rice (data set)
w Semaphore chopstick [5] initialized to 1

EPFL CS-206 – Spring 2015 Lec.7 - 52

 Dining-Philosophers Problem Algorithm

u  The structure of Philosopher i:

u  What is the problem with this algorithm?

do {
wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]);
// eat
signal (chopstick[i]);
signal (chopstick[(i + 1) % 5]);
// think

} while (TRUE);

EPFL CS-206 – Spring 2015 Lec.7 - 53

Dining-Philosophers: Deadlock!

u  Each philosopher
w Grabs their left chopstick
w Waits for their right chopstick

u  Deadlock!

EPFL CS-206 – Spring 2015 Lec.7 - 54

Problems with Semaphores

u  Incorrect use of semaphore operations:
w  signal(mutex) wait(mutex)
w  wait(mutex) wait(mutex)
w  Omitting of wait(mutex) or signal(mutex) (or both)

u Deadlock and starvation

EPFL CS-206 – Spring 2015 Lec.7 - 55

Monitors

u  Abstraction providing convenient/effective synchronization
u  Abstract data type, internal variables only accessible by code

within the procedure
u  Only one thread may be active within the monitor at a time

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }
…
procedure Pn (…) {……}
Initialization code (…) { … }

}

EPFL CS-206 – Spring 2015 Lec.7 - 56

Schematic view of a Monitor

EPFL CS-206 – Spring 2015 Lec.7 - 57

Condition Variables

condition x, y;

u Two operations on a condition variable:
w x.wait() suspends the thread until x.signal()
w x.signal() resumes a thread (if any) that invoked x.wait()

w If no x.wait() on variable, then it has no effect

EPFL CS-206 – Spring 2015 Lec.7 - 58

Monitor with Condition Variables

EPFL CS-206 – Spring 2015 Lec.7 - 59

Condition Variables Choices

u  If P invokes x.signal(), with Q in x.wait(), what happens next?
w  If Q is resumed, then P must wait

u  Options include
w Signal & wait: P waits until Q leaves or waits for another condition
w Signal & continue: Q waits until P leaves the monitor or waits for

another condition
w Both have pros and cons, language implementer can decide
w  Implemented in many languages including Mesa, C#, Java

EPFL CS-206 – Spring 2015 Lec.7 - 60

Solution to Dining Philosophers

monitor DiningPhilosophers
{
 enum { THINKING; HUNGRY, EATING) state[5];
 condition self[5];

 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self[i].wait();
 }

EPFL CS-206 – Spring 2015 Lec.7 - 61

Solution to Dining Philosophers

monitor DiningPhilosophers
{
 enum { THINKING; HUNGRY, EATING) state[5];
 condition self[5];

 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self[i].wait();
 }

Philosopher i is hungry

EPFL CS-206 – Spring 2015 Lec.7 - 62

Solution to Dining Philosophers

monitor DiningPhilosophers
{
 enum { THINKING; HUNGRY, EATING) state[5];
 condition self[5];

 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self[i].wait();
 }

i tries to eat

EPFL CS-206 – Spring 2015 Lec.7 - 63

Solution to Dining Philosophers

monitor DiningPhilosophers
{
 enum { THINKING; HUNGRY, EATING) state[5];
 condition self[5];

 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self[i].wait();
 }
 If i can’t eat, ���

i goes to sleep

EPFL CS-206 – Spring 2015 Lec.7 - 64

Solution to Dining Philosophers

 void putdown (int i) {
 state[i] = THINKING;
 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }

EPFL CS-206 – Spring 2015 Lec.7 - 65

Solution to Dining Philosophers

 void putdown (int i) {
 state[i] = THINKING;
 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }

i starts thinking

EPFL CS-206 – Spring 2015 Lec.7 - 66

Solution to Dining Philosophers

 void putdown (int i) {
 state[i] = THINKING;
 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }

Puts chopsticks down and
lets neighbors use them

EPFL CS-206 – Spring 2015 Lec.7 - 67

Solution to Dining Philosophers (Cont.)

 void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }
}

EPFL CS-206 – Spring 2015 Lec.7 - 68

Solution to Dining Philosophers (Cont.)

 void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }
}

Checks if i’s left
neighbor is eating

EPFL CS-206 – Spring 2015 Lec.7 - 69

Solution to Dining Philosophers (Cont.)

 void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }
}

Checks if i
is hungry

EPFL CS-206 – Spring 2015 Lec.7 - 70

Solution to Dining Philosophers (Cont.)

 void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }
}

Checks if i’s right
neighbor is eating

EPFL CS-206 – Spring 2015 Lec.7 - 71

Solution to Dining Philosophers (Cont.)

 void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }
}

If i’s neighbors are not eating
and i is hungry, i starts eating

EPFL CS-206 – Spring 2015 Lec.7 - 72

Solution to Dining Philosophers (Cont.)

u  Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

u  No deadlock, but starvation is possible
w Why?
w Can you address it?

DiningPhilosophers.pickup (i);
EAT
DiningPhilosophers.putdown (i);

EPFL CS-206 – Spring 2015 Lec.7 - 73

Summary

u  Need simple, efficient atomic ops
w Hardware primitives: test&set, swap, transactional memory
w Think about traffic while busy waiting

u  Need higher level abstractions for programmability
w Semaphores, Monitors & Condition Variables
w Support in the OS for waiting/sleeping and waking up

u  A few classical problems
w Bounded buffer
w Readers/writer
w Dining philosophers

