CS-206 Concurrency

Lecture 5
Event

Events are
transrtions

Ordering

Spring 2015
Prof. Babak Falsafi
parsa.epfl.ch/courses/cs206/

Adapted from slides originally developed by Maurice Herlihy and Nir
Shavit from the Art of Multiprocessor Programming, and Babak Falsafi
EPFL Copyright 2015

EPFL CS-206 — Spring 2015 Lec5 - |

Where are We!

Lecture
& Lab

M T
16-Feb
23-Feb

2-Mar
9-Mar
16-Mar
23-Mar
30-Mar
6-Apr
13-Apr
20-Apr
27-Apr
4-May
11-May
18-May
25-May

EPFL CS-206 — Spring 2015

W

T

F

19-Feb

20-Feb

26-Feb

27-Feb

5-Mar

6-Mar

12-Mar

13-Mar

19-Mar

20-Mar

26-Mar

27-Mar

2-Apr

3-Apr

9-Apr

10-Apr

16-Apr

17-Apr

23-Apr

24-Apr

30-Apr

1-May

/-May

8-May

14-May

15-May

21-May

22-May

28-May

29-May

» Event Ordenng

> Formal definition

» Basic lock algorithms

> LockOne and LockTwo

» Next week

> Advanced lock algorithms

Lec5-2

Recall: Parallelizing Readers/Writers

» Use two billboards
> While Bob reads from one...

> Alice writes to the other

» How do they know where to read/write?
> Third billboard
> Tells Bob which board to read

EPFL CS-206 — Spring 2015 Lec5 -3

Wait-free protocol

e,

@%@@ el [
El—‘_‘ ~ ~ ~—

.m O©° °ﬂ
Lec5-4

Wait-free protocol

L@@ BOBIE IIEJ:]
We'lsg the' ”

EPFL CS-206 — Spring 2015

Wait-free protocol

L@@ BOBIE IIEJ:]

Yay, new

message on
board 1!

EPFL CS-206 — Spring 2015

Wait-free protocol

@@ BOB E@

H

SeER[TetEe
— N
0°°
Sell the dog?
N Ok! |

Wait-free protocol

» Is this protocol entirely wait-free?
» |s the protocol correct!

» How do you fix it?

EPFL CS-206 — Spring 2015 Lec5-8

Fixing the protocol

» Add a valid/invalid flag to each billboard
» Alice only writes to invalid billboards

> And marks them as valid afterwards

» Bob only reads from valid billboards

> And marks them as invalid afterwards

EPFL CS-206 — Spring 2015

Lec5-9

B

Wait-free protocol

[EEE EEE @E]

| CIE IZIEJEJ Ileilg]
Nothmg to
read"

Wait-free protocol

H

@%@% BEB @E]

~

- BFEDTD
ey ™

Wait-free protocol

@@@; =] @E]

ey

Wash the WY1
car. Got 1t!

EPFL CS-206 — Spring 2015 Lec5- 13

Wait-free protocol

@%@@; BEn @E]

T~

EPFL CS-206 — Spring 2015 LecS5- 14

Wait-free protocol

I G

LJI B0E @@Q

EPFL CS-206 — Spring 2015 Lec5- 15

Wait-free protocol

Sell the dog?
Ok!!
«

EPFL CS-206 — Spring 2015 Lec5-16

Wait-free protocol

» Bob only waits if there is no new message
» Alice only waits if both billboards are written

» They can read/write in parallel

> With locks, they could not
» But we have to use more billboards (memory)
» There is always such a trade-off

> We can use more memory

> Force less common operations to be slow

> Lock resources and risk long waiting times
> ...

EPFL CS-206 — Spring 2015 Lec5-17

Recall: Event Ordening Properties

Correctness:
» Safety
» Liveness

Quality:
» Fairness

» Performance

Need to formalize the problem to reason about correctness

EPFL CS-206 — Spring 2015 Lec5- 18

Mutual Exclusion

» We will clanify our understanding of mutual exclusion

» We will also show you how to reason about various
properties In an asynchronous concurrent setting

EPFL CS-206 — Spring 2015 Lec5- 19

Mutual Exclusion

In his 1965 paper E. W. Dijkstra wrote:

"Given in this paper is a solution to a problem which, to the
knowledge of the author, has been an open question since at

least 1962, irrespective of the solvabillity. [..] Although the setting
of the problem might seem somewhat academic at first, the

author trusts that anyone familiar with the logical problems that
arise in computer coupling will appreciate the significance of the
fact that this problem indeed can be solved."

EPFL CS-206 — Spring 2015

Mutual Exclusion

» Formal problem definitions
» Solutions for 2 threads

» Solutions for n threads

» Fair solutions

» Inherent costs

EPFL CS-206 — Spring 2015 Lec.5 - 2|

Waming

» You will never use these protocols
> Get over it

» You are advised to understand them
> The same Issues show up everywhere

> Except hidden and more complex

EPFL CS-206 — Spring 2015 Lec.5-22

Why Is Concurrent Programming so Hard!?

» Try preparning a seven-course banquet
> By yourself
> With one friend
> With twenty-seven friends ...
» Before we can talk about programs
> Need a language

> Describing time and concurrency

EPFL CS-206 — Spring 2015 Lec.5 - 23

Time

> “Absolute, true and mathematical time, of itself and from its
own nature, flows equably without relation to anything
external.” (. Newton, 1689)

» “Time is, like, Nature's way of making sure that everything
doesn’t happen all at once.” (Anonymous, circa |968)

R

EPFL CS-206 — Spring 2015 Lec.5 - 24

Events

» An event a, of thread A is
> Instantaneous

> No simultaneous events (break ties)

|

E ——

EPFL CS-206 — Spring 2015 Lec5-25

Threads

» A thread A is (formally) a sequence a,, a,, ... of events
> “Trace” model

> Notation: a; =2 a, indicates order

dp 4d¢ ap

e —— o

EPFL CS-206 — Spring 2015 Lec.5 - 26

Example Thread Events

» Assign to shared variable

» Assign to local vanable

>
>
>

nvoke method
Returmn from method

_ots of other things ...

EPFL CS-206 — Spring 2015

Lec.5-27

Threads are State Machines

Events are
transitions

0O

EPFL CS-206 — Spring 2015 Lec.5 - 28

States

» Thread State
> Program counter
> Local variables
» System state
> Object fields (shared variables)
> Union of thread states

EPFL CS-206 — Spring 2015 Lec.5 - 29

Concurrency

» Thread A

e e

EPFL CS-206 — Spring 2015 Lec.5 - 30

Concurrency

» Thread A

e e

» Thread B

_

EPFL CS-206 — Spring 2015 Lec.5 - 31

Critical Section

» A critical section is a piece of code that accesses a shared
resource (data structure or device) that must not be
concurrently accessed by more than one thread of
execution.

EPFL CS-206 — Spring 2015 Lec.5- 32

Interleavings

» Events of two or more threads
> Interleaved

> Not necessarily independent (why?)

e 1) i

EPFL CS-206 — Spring 2015 Lec.5 - 33

Intervals

» An interval Ay=(apa,) Is

> Time between events ajand a,

EPFL CS-206 — Spring 2015 Lec.5 - 34

Intervals may Overlap

dg 1
| |
|
| I |

e e ——

EPFL CS-206 — Spring 2015 Lec.5 - 35

Intervals may be Disjoint

by

dg 1
| |

| |
_tme | |

EPFL CS-206 — Spring 2015 Lec.5- 36

Precedence

Interval A, precedes interval By

by

dg 1
| |

| |
_tme | |

EPFL CS-206 — Spring 2015

D4

Lec.5 - 37

Precedence

» Notation: A, = B,

» Formally,
> End event of A, before start event of B,

> Also called “happens before™ or “precedes”

EPFL CS-206 — Spring 2015 Lec.5 - 38

Precedence Ordering

» Remark: A, = B, is just like saying
> 1066 AD = 1492 AD,
> Middle Ages =» Renaissance,

» Oh wait,

> what about this week vs this month?

EPFL CS-206 — Spring 2015 Lec.5 - 39

Precedence Ordering

Loy

i

Never true that A= A

f A =»Bthen not true that B =2A

fA=2B& B=2Cthen A=C

-unny thing: A =B & B =»A might both be falsel

vV v VvV Y

EPFL CS-206 — Spring 2015 Lec.5 - 40

Partial Orders

(review)

» Irreflexive:
> Never true that A= A

» Antisymmetric:
> It A=» Bthen not true that B=> A

» [ransitive:
>IfA=>B&B=> Cthen A= C

EPFL CS-206 — Spring 2015 Lec5 - 4l

Total Orders

(review)

» Also
> |rreflexive
> Antisymmetric
> Transitive
» Except that for every distinct A, B,
> Either A> BorB=> A

EPFL CS-206 — Spring 2015 Lec.5 - 42

Repeated Events

while (mumble) {

a,; a;;
}
k-th occurrence of
event a,
[2.k k-th occurrence of
0

[Aok f interval A, =(aya,)

EPFL CS-206 — Spring 2015 Lec.5 - 43

Implementing a Counter

public class Counter {
private long value;

public long getAndIncrement () {
temp = wvalue;

[value = temp + 1;

return temp;

} Make these steps
} indivisible using locks

EPFL CS-206 — Spring 2015 Lec5 - 44

Locks (Mutual Exclusion)

public interface ILock {
public void lock() ;

public void unlock() ;

}

EPFL CS-206 — Spring 2015 Lec.5 - 45

Locks (Mutual Exclusion)

public interface Lock {

[public void lock () ;]; acquire lock

public void unlock() ;

}

EPFL CS-206 — Spring 2015 Lec5 - 46

Locks (Mutual Exclusion)

public interface Lock {

[Public void lock() ;]; acquire lock

[public void unlock () ;]> release lock

EPFL CS-206 — Spring 2015 Lec5-47

Using Locks

public class Counter ({
private long value;
private Lock lock;
public long getAndIncrement () ({
lock.lock() ;
try {
int temp = value;
value = value + 1;
} finally {
lock.unlock () ;
}

return temp;

H}

EPFL CS-206 — Spring 2015 Lec.5 - 48

Using Locks

public class Counter ({
private long value;
private Lock lock;

rublig long ge;AidIncrement() {
lock.lock () ; ,
acquire Lock

try 1
int temp = value;

value = value + 1;
} finally ({
lock.unlock () ;

}

return temp;

H}

EPFL CS-206 — Spring 2015 Lec.5 - 49

Using Locks

public class Counter ({

private long value;

private Lock lock;

public long getAndIncrement () ({
lock.lock () ;
try {
int temp = value;
value = value + 1;

} finally {
lock.unlock() ; Release lock

} (no matter what)
return temp;

}}

EPFL CS-206 — Spring 2015 Lec.5 - 50

Using Locks

public class Counter ({
private long value;
private Lock lock;
public long getAndIncrement () ({

lock.lock () ;
{

int temp = value; critical section
value = wvalue + 1;

Y

lock.unlock () ;

}

return temp;

H}

EPFL CS-206 — Spring 2015 Lec5-5I

Mutual Exclusion

> Let CS)¢=) be thread i's k-th critical section execution

EPFL CS-206 — Spring 2015 Lec.5-52

Mutual Exclusion

b Let CSf ¢ be thread i's k-th critical section execution
> And C5™ “ be thread |'s m-th critical section execution

EPFL CS-206 — Spring 2015 Lec.5 - 53

Mutual Exclusion

» Let CSK <:> be thread I's k-th critical section execution
> And C5™ ﬁ be j's m-th execution
» Then erther

D@ o @S

EPFL CS-206 — Spring 2015 Lec5 - 54

Mutual Exclusion

b Let CSk¢=) be thread i’s k-th critical section execution
> And C5™ “ be j's m-th execution
» Then erther

D@ﬁ or ﬁ<:>

csk>csm |

EPFL CS-206 — Spring 2015 Lec.5-55

Mutual Exclusion

» Let CSK <:> be thread I's k-th critical section execution
> And C5™ ﬁ be j's m-th execution
» Then erther

csm > Csk |

EPFL CS-206 — Spring 2015 Lec5-56

Deadlock-Free @)

» |f some thread calls lock()
> And never returns

> Then other threads must complete lock() and unlock() calls
infinrtely often

» System as a whole makes progress

> Even if individuals starve

EPFL CS-206 — Spring 2015 Lec5-57

Starvation-Free @

» |f some thread calls lock()

> It will eventually return

» Individual threads make progress

EPFL CS-206 — Spring 2015 Lec.5 - 58

Two-Thread vs n-Thread Solutions

» 2-thread solutions first
> |llustrate most basic ideas

> Fits on one slide

» [hen n-thread solutions

EPFL CS-206 — Spring 2015 Lec.5 - 59

Two-Thread Conventions

class .. implements Lock {

// thread-local index, 0 or 1
public void lock () {

int 1 = ThreadID.get() ;

int j =1 - 1i;

EPFL CS-206 — Spring 2015 Lec.5 - 60

Two-Thread Conventions

class .. implements Lock ({

// thread-local index, 0 or 1
public void lock () {

[int i ThreadID.get () ;

int j 1 - 1i;

Henceforth: | Is current thread,
] 1S other thread

EPFL CS-206 — Spring 2015 Lec5 -6l

LockOne

class LockOne implements Lock ({
private boolean[] flag = new boolean|[2];
public void lock () {

flag[i] = true;

while (flag[j]) {}
}

EPFL CS-206 — Spring 2015 Lec.5 - 62

LockOne

class L.ockOne implements Lock {
lprivate boolean|[] flag = new boolean[Z];]

public void lock()

flag[1] = true;
while (flag[j]) {} Each thread has ﬂag

J

EPFL CS-206 — Spring 2015 Lec.5 - 63

LockOne

class LockOne implements Lock {
private boolean[] flag = new boolean[2];
public void lock () {

[Elag[i] — true;L====‘.-
while (flag[3j]) {}

J

Set my flag

EPFL CS-206 — Spring 2015 Lec5 - 64

LockOne

[while (f1ag[31) 1)

Wait for other flag to become
false

EPFL CS-206 — Spring 2015 Lec5 - 65

LockOne Satisfies Mutual Exclusion

» Assume CS,j overlaps CSy

» Consider each thread's last (j-th and k-th) read
and write in the lock() method before entering

» Derive a contradiction
> Assume the two enter critical section together

>Show it Is not possible!

EPFL CS-206 — Spring 2015 Lec5-66

From the Code
» write,(flag[A]=true) > read,(flag[B]==false) =>CS,

» writeg(flag[B]=true) > readg(flaglA]==false) = CS;

class LockOne implements Lock ({
public void lock() {

glag[i] = true;
while (flag[3j]) {}
}

EPFL CS-206 — Spring 2015 Lec5-67

From the Assumption
» read,(flag[B]==false) => writey(flag[B]=true)

» read,(flagA]==false) > write,(flag[A]=true)

EPFL CS-206 — Spring 2015 Lec.5 - 68

Combining

» Assumptions:
> read,(flag[B]==false) => write(flag[B]=true)
> read;(flag[A]==false) => write,(flag[A]=true)

» From the code
> write,(flag[A]=true) => read,(flag[B]==false)
> writeg(flag[B]=true) = read;(flag[A]==false)

EPFL CS-206 — Spring 2015

Lec.5 - 69

Combining

» Assumptions:
> read ,(flag[B]==false) = writeg(flag[B]=true)
> read;(flag[A]==false) => write,(flag[A]=true)

» From the
> write,(flag[A]=true) => read,(flag[B]==false)
> writeg(flag[B]=true) = read;(flag[A]==false)

EPFL CS-206 — Spring 2015

Lec.5-70

Combining

» Assumptions:
read, (flag[B]==false) = write,(flag[B]=true)
> readp(flag[A]==false) = write,(flag[A]=true)

|

» From the cqde

> wrlteA({ag[A]—true) - read, (flag[B]==false)
itex(flag[B]=true) = read(fl

I_I

==false)

EPFL CS-206 — Spring 2015

Lec5-71

Combining

» Assumptions:
.o = Dpread, (flag[B]==false) = write;(flag[B]=true)
> ready(flag[A]==false) = write,(flag[4]=true)

» From the

st EEsSEEEEEEEEEEnnnunun®

., D writeAMa Al=true) = read,(flag[B]==false)
* D aytites(flag[B]=true) > reads(flaglA]==false)

-.....
| |

||
“

EPFL CS-206 — Spring 2015

Lec5-72

Combining

» Assumptions:
== Wrread,(fl — ey =true)
> read;(tlag[A]==false) = write,(flagfA]=t

> FI"Om tbﬁme-""""--m’:: nus®
. D> write E{f Iatg[A] =true) > read,(flag[B]==falsg)
" B wfi_tge!{f I_a_g.['B] =true) = reads (ﬂa.g[A] ==false)

“‘-llll..

EPFL CS-206 — Spring 2015

Lec5-73

Combining

» Assu

> readWlag — seen(FegrEdotrye)

h e)
»Fro

[> Wl”i't L1139 4 e)

> write, . s tag[A]==false)

EPFL CS-206 — Spring 2015

Lec5-74

Cyclel

EPFL CS-206 — Spring 2015 Lec5-7/5

LockOne Satisfies Mutual Exclusion

flag[A] [ElSE] (S

flaglB] [false] | [falsel [true]
! | | q
I I : I xﬁfc; ©
Write flag[A] Read flag[B] 1 | 5
| ' Q&
true false | o
| e
| |
| [

| |
A enter CS Write flag[B] Read flag[A]

: true trye

T E—

EPFL CS-206 — Spring 2015 Lec5-76

LockOne Satisfies Mutual Exclusion

flag[A] (Sl

flaglB’ [true]
I

|

Write flag[A] Read flag[B]
true true ozl

|
Write flag[B] Read flag[A] P

true false

: B enter C5q

EPFL CS-206 — Spring 2015 Lec5-77

Deadlock Freedom

» |LockOne Fails deadlock-freedom
> Concurrent execution can deadlock

flag[i] = true; flag[j] = true;
while (flag[j]){} while (flag[i]){}

> Sequential executions OK

EPFL CS-206 — Spring 2015

Lec5-78

LockOne May Lead to Deadlock

flag[A
flag[B’

|

|

|

| Write flag[A] Read flag[B]

: true true

: A cannot enter CS,

Write flag[B] Read flaglA]l B cannot enter CS

true true i

T

EPFL CS-206 — Spring 2015 Lec5-79

LockTwo

public class LockTwo implements Lock {

private int victim;
public void lock() {

int i = ThreadID.get() ;

victim = i;

while (victim == i) {};

}

public void unlock () {}
}

EPFL CS-206 — Spring 2015

Lec.5 - 80

LockTwo

public class LockTwo implements Lock ({
private int wvictim;

public void lock() { Let other gO ﬂI’"S't
\ e
victim = 1i;
while (victim == 1i) {};

}

public void unlock() {}
}

EPFL CS-206 — Spring 2015 Lec.5 - 8l

LockTwo

public class LockTwo implements Lock ({
private int wvictim; .
public void lock() ({ Wait for

- | permission
\'A — .'
|while (victim == i) {};

public void unlock() {}
}

EPFL CS-206 — Spring 2015

Lec.5 - 82

LockTwo

public class LockTwo implements Lock ({
private int wvictim;
public void lock() {
Nothing to do
victim = 1i;
while (victim == 1i) {};

}

[?ublic void unlock () {}
}

EPFL CS-206 — Spring 2015 Lec.5 - 83

LockTwo Claims

» Satisfies mutual exclusion
> If thread 1 in CS
> Then victim ==
> Cannot be both 0 and |
» Not deadlock free }

> Sequential execution deadlocks

public void LockTwo () {

victim = i;
while (victim == i) {};

> Concurrent execution does not

EPFL CS-206 — Spring 2015 Lec.5 - 84

Caveats about our model (1):
All variables to spin on must be “volatile”

» On your laptop, cell phone, server, the “while (flag[j]) {}"
would loop non-stop

» Independent of what threads do
» Why!?

class LockOne implements Lock {
private boolean[] flag = new boolean[2];
public void lock () {

Elag[i] = true;
while (flag[j]) {!}
}

EPFL CS-206 — Spring 2015 Lec.5 - 85

Non “volatile” vaniables are register allocated!

class LockOne implements Lock ({
private boolean[] flag = new boolean[2];
public void lock() {

flag[i] = true;

while (flag[j]) {}

}

Optimizing compilers register allocate flag[j] outside the loop!

SW $t0, O($tl) ; flag[i] = true
Iw $t3, 0($t2) ; read flag[j] into $t3
wait: ; while ($t3) {}

bne $t3, $zero, wait

EPFL CS-206 — Spring 2015 Lec.5 - 86

Making flag[] volatile

class LockOne implements Lock ({
private boolean[] flag = new boolean[2];
public void lock() {

flag[i] = true;

while (flag[j]) {}

}

sw $t0, O($tl) ;flag[i] = true

Iw $t3, 0($t2) ; read flag[j] into $t3
wait: ; while ($t3) {}

w $t3, O($t2) ; read flag[j] into $t3

bne $t3, $zero, wait

EPFL CS-206 — Spring 2015

Lec.5 - 87

Caveats about our model (2):
Events are not instantaneous

» For now assume events are instantaneous

» In modemn processors
> Variable assignments are not!
> Loads/stores to memory are overlapped
> Are not atomic
> There are ISA extensions to help make them atomic
> Wil learn more about this later + in C5370

EPFL CS-206 — Spring 2015 Lec.5 - 88

Summary

» Need
> Mutual exclusion (make sure you are not in there together)
> Deadlock freedom (avoid freezing)

> Starvation freedom (not all protocols satisfy this)

» LockOne
> Implements mutual exclusion

> Concurrent execution can deadlock
» LockTwo

> Also implements mutual exclusion
> Concurrent execution cannot deadlock

> Sequential execution deadlocks

EPFL CS-206 — Spring 2015 Lec.5 - 89

