
EPFL CS-206 – Spring 2015	
 Lec2 - 1	

CS-206 	
Concurrency	

���
Lecture 2	

Multiprocessors	

	

	

Spring 2015	

Prof. Babak Falsafi	

parsa.epfl.ch/courses/cs206/	

Adapted from slides originally developed by Maurice Herlihy and Nir
Shavit from the Art of Multiprocessor Programming, and Babak Falsafi	

EPFL Copyright 2015	

memory

EPFL CS-206 – Spring 2015	
 Lec2 - 2	

Lecture
& Lab

M T W T F
16-Feb 17-Feb 18-Feb 19-Feb 20-Feb
23-Feb 24-Feb 25-Feb 26-Feb 27-Feb
2-Mar 3-Mar 4-Mar 5-Mar 6-Mar
9-Mar 10-Mar 11-Mar 12-Mar 13-Mar
16-Mar 17-Mar 18-Mar 19-Mar 20-Mar
23-Mar 24-Mar 25-Mar 26-Mar 27-Mar
30-Mar 31-Mar 1-Apr 2-Apr 3-Apr
6-Apr 7-Apr 8-Apr 9-Apr 10-Apr
13-Apr 14-Apr 15-Apr 16-Apr 17-Apr
20-Apr 21-Apr 22-Apr 23-Apr 24-Apr
27-Apr 28-Apr 29-Apr 30-Apr 1-May
4-May 5-May 6-May 7-May 8-May
11-May 12-May 13-May 14-May 15-May
18-May 19-May 20-May 21-May 22-May
25-May 26-May 27-May 28-May 29-May

Where are We?	

u Today	

w Multicore Architecture	

w Memory Hierarchies	

u Next Wednesday	

w Concurrency vs. Parallelism	

w Performance	

u Labs	

w HW1: Today	

EPFL CS-206 – Spring 2015	
 Lec2 - 3	

Multiprocessor Architecture	

u  Abstract models are (mostly) OK to understand algorithm
correctness and progress	

u  To understand how concurrent algorithms actually perform	

u  You need to understand something about multiprocessor
architectures	

u  Detailed nuts & bolts? next year	

EPFL CS-206 – Spring 2015	
 Lec2 - 4	

Pieces	

u  Processors	

u  Threads	

u  Interconnect	

u  Memory	

u  Caches	

EPFL CS-206 – Spring 2015	
 Lec2 - 5	

cache	

Bus	

Old-School Multiprocessor	

Bus	

memory	

cache	
cache	

EPFL CS-206 – Spring 2015	
 Lec2 - 6	

Old School	

u  Processors on different chips	

u  Processors share off chip memory resources	

u  Communication between processors typically slow	

EPFL CS-206 – Spring 2015	
 Lec2 - 7	

Multicore Architecture	

cache	

Bus	
Bus	

memory	

cache	
cache	
cache	

EPFL CS-206 – Spring 2015	
 Lec2 - 8	

Multicore	

u  All Processors on same chip	

u  Processors share on chip memory resources	

u  Communication between processors now very fast	

EPFL CS-206 – Spring 2015	
 Lec2 - 9	

SMP vs NUMA	

SMP	

memory	

NUMA	

u  SMP: symmetric multiprocessor	

u  NUMA: non-uniform memory access	

u  CC-NUMA: cache-coherent …	

EPFL CS-206 – Spring 2015	
 Lec2 - 10	

Future Multicores	

u  These days: no longer SMP	

w Machines are getting bigger	

w Bus becomes a bottleneck (later in CS-370)	

u  All machines are NUMA	

w Most NUMA machines: multiple chips, single board	

w E.g., Facebook server	

w Some NUMA machines: multiple boards, entire rack	

w E.g., Oracle SPARC servers	

u  For this course, we assume SMP	

w Simplify the model for programming	

EPFL CS-206 – Spring 2015	
 Lec2 - 11	

Understanding the Pieces	

u  Lets try to understand what the pieces that make the
multiprocessor machine are 	

u  And how they fit together	

EPFL CS-206 – Spring 2015	
 Lec2 - 12	

Processors	

u  Cycle:	

w Fetch and execute one instruction	

u  Cycle times change	

w 1980: 10 million cycles/sec	

w 2005: 3,000 million cycles/sec	

EPFL CS-206 – Spring 2015	
 Lec2 - 13	

Computer Architecture	

u  Measure time in cycles	

w Absolute cycle times change	

u  Memory access: ~100s of cycles	

w Changes slowly	

w Mostly gets worse	

EPFL CS-206 – Spring 2015	
 Lec2 - 14	

Threads	

u  Execution of a sequential program	

u  Software, not hardware	

u  A processor can run a thread	

u  Put it aside	

w Thread does I/O	

w Thread runs out of time	

u  Run another thread	

EPFL CS-206 – Spring 2015	
 Lec2 - 15	

Interconnect	

u Bus	

w Like a tiny Ethernet	

w Broadcast medium	

w Connects	

w Processors to memory	

w Processors to processors	

u Network	

w Tiny LAN	

w Mostly used on 	

 large machines	

SMP	

memory	

EPFL CS-206 – Spring 2015	
 Lec2 - 16	

Interconnect	

u  Interconnect is a finite resource	

u  Processors can be delayed if others are consuming too
much	

u  Avoid algorithms that use too much bandwidth	

EPFL CS-206 – Spring 2015	
 Lec2 - 17	

Processor and Memory are Far Apart	

processor	

memory	

interconnect	

EPFL CS-206 – Spring 2015	
 Lec2 - 18	

Reading from Memory	

address	

EPFL CS-206 – Spring 2015	
 Lec2 - 19	

Reading from Memory	

zzz…	

EPFL CS-206 – Spring 2015	
 Lec2 - 20	

Reading from Memory	

value	

EPFL CS-206 – Spring 2015	
 Lec2 - 21	

Writing to Memory	

address, value	

EPFL CS-206 – Spring 2015	
 Lec2 - 22	

Writing to Memory	

zzz…	

EPFL CS-206 – Spring 2015	
 Lec2 - 23	

Writing to Memory	

ack	

EPFL CS-206 – Spring 2015	
 Lec2 - 24	

Cache: Reading from Memory	

address	

cache	

EPFL CS-206 – Spring 2015	
 Lec2 - 25	

Cache: Reading from Memory	

cache	

EPFL CS-206 – Spring 2015	
 Lec2 - 26	

Cache: Reading from Memory	

cache	

EPFL CS-206 – Spring 2015	
 Lec2 - 27	

Cache Hit	

cache	

?	

EPFL CS-206 – Spring 2015	
 Lec2 - 28	

Cache Hit	

cache	

Yes!	

EPFL CS-206 – Spring 2015	
 Lec2 - 29	

Cache Miss	

address	

cache	

?	
No…	

EPFL CS-206 – Spring 2015	
 Lec2 - 30	

Cache Miss	

cache	

EPFL CS-206 – Spring 2015	
 Lec2 - 31	

Cache Miss	

cache	

EPFL CS-206 – Spring 2015	
 Lec2 - 32	

Sometimes you have to spin for shared data….	

u  E.g., variable “x” is shared. The initial of value “x” is 0. Thread 1
will write a non-zero value. Thread 2 is “spins” waiting for Thread
1 to write the value	

 	

 Thread 1 Thread 2	

 ….. while (x == 0) { /* wait */ }	

	
 x = 3; 	
 	
 ….. = x;	

	

Thread 2 keeps reading “x”, hitting in the cache	

EPFL CS-206 – Spring 2015	
 Lec2 - 33	

Local Spinning	

u With caches, spinning becomes practical	

u  First time	

w Load variable into cache	

u As long as it doesn’t change	

w Hit in cache (no interconnect used)	

u When it changes	

w One-time cost	

w See cache coherence (later)	

EPFL CS-206 – Spring 2015	
 Lec2 - 34	

L1 and L2 Caches	

L1	

L2	

EPFL CS-206 – Spring 2015	
 Lec2 - 35	

L1 and L2 Caches	

L1	

L2	

Small & fast	

1 or 2 cycles	

EPFL CS-206 – Spring 2015	
 Lec2 - 36	

L1 and L2 Caches	

L1	

L2	

Larger and slower	

10s of cycles	

~128 byte block	

EPFL CS-206 – Spring 2015	
 Lec2 - 37	

When a Cache Becomes Full…	

u  Need to make room for new entry	

u  By evicting an existing entry	

u  Need a replacement policy	

w Usually some kind of least recently used heuristic	

EPFL CS-206 – Spring 2015	
 Lec2 - 38	

Fully Associative Cache	

u  Any line can be anywhere in the cache	

w Advantage: can replace any line	

w Disadvantage: hard to find lines	

EPFL CS-206 – Spring 2015	
 Lec2 - 39	

Direct Mapped Cache	

u  Every address has exactly 1 slot	

w Advantage: easy to find a line	

w Disadvantage: must replace fixed line	

EPFL CS-206 – Spring 2015	
 Lec2 - 40	

K-way Set Associative Cache	

u  Each slot holds k lines	

w Advantage: pretty easy to find a line	

w Advantage: some choice in replacing line	

EPFL CS-206 – Spring 2015	
 Lec2 - 41	

Multicore Set Associativity	

u  L2, lower levels can be more associative (e.g., > 16 ways)	

w Why? Because cores share sets 	

w Threads cut effective size if accessing different data	

EPFL CS-206 – Spring 2015	
 Lec2 - 42	

Example: Average Memory latency	

w/o cache, all accesses go to memory:	

Average Memory Access Time = memory latency	

	

with one level cache:	

Average Memory Access Time = 	

 cache hit time x (1 – cache miss rate) + 	

 memory latency x cache miss rate	

u  With a cache has a miss rate of 10%, hit time of 2 cycles and a
memory latency off 100 cycles, what is AMAT?	

	

EPFL CS-206 – Spring 2015	
 Lec2 - 43	

Example: Average Memory latency	

Assume the following params:	

 L1 hit time = 2 cycles, L1 miss rate = 5%	

 L2 hit time = 10 cycles, L2 miss rate = 2%	

 Memory latency = 200 cycles	

	

u  What is AMAT?	

EPFL CS-206 – Spring 2015	
 Lec2 - 44	

Sources of Cache Misses	

u From CS-208	

w 3 C’s: Compulsory, conflict, capacity misses	

u 4th type of miss:	

w Coherence: reads/writes from multiple processors	

EPFL CS-206 – Spring 2015	
 Lec2 - 45	

Cache Coherence	

u  A and B both cache address x	

u  A writes to x	

w Updates cache	

u  How does B find out?	

u  Many coherence protocols in products (will see in CS-370)	

EPFL CS-206 – Spring 2015	
 Lec2 - 46	

Bus	

Processor Issues Load Request	

Bus	

cache	

memory	

cache	
cache	

data	

load x	

EPFL CS-206 – Spring 2015	
 Lec2 - 47	

cache	

Bus	

Memory Responds	

Bus	

memory	

cache	
cache	

data	

Got it! 	

data	

EPFL CS-206 – Spring 2015	
 Lec2 - 48	

Bus	

Processor Issues Load Request	

Bus	

memory	

cache	
cache	
data	

data	

Load x	

EPFL CS-206 – Spring 2015	
 Lec2 - 49	

Bus	

Other Processor Responds	

memory	

cache	
cache	

data	

Got it	

data	
data	

Bus	

EPFL CS-206 – Spring 2015	
 Lec2 - 50	

Modify Cached Data	

Bus	

data	

memory	

cache	
data	

data	

data	

EPFL CS-206 – Spring 2015	
 Lec2 - 51	

memory	
 data	

data	
 data	
data	

Bus	

Write-Through Cache	

Bus	

cache	
data	

Write x!	

EPFL CS-206 – Spring 2015	
 Lec2 - 52	

Write-Through Caches	

u  Immediately broadcast changes	

w Memory is up-to-date 	

u  Good	

w Memory, caches always agree	

w More read hits, maybe	

u  Bad	

w Bus traffic on all writes	

w Most writes to unshared data	

w For example, loop indexes …	

EPFL CS-206 – Spring 2015	
 Lec2 - 53	

Write-Through Caches	

u  Immediately broadcast changes 	

u  Good	

w Memory, caches always agree	

w More read hits, maybe	

u  Bad	

w Bus traffic on all writes	

w Most writes to unshared data	

w For example, loop indexes …	

“show stoppers”	

EPFL CS-206 – Spring 2015	
 Lec2 - 54	

Write-Back Caches	

u  Accumulate changes in cache	

u  Write back when block evicted	

w Need the cache for something else	

w Another processor wants it	

EPFL CS-206 – Spring 2015	
 Lec2 - 55	

Bus	

Invalidate	

Bus	

memory	

cache	
data	
data	

data	

cache	

Invalidate x	

EPFL CS-206 – Spring 2015	
 Lec2 - 56	

Write Buffers	

address	

u  Absorbing	

u  Batching	

EPFL CS-206 – Spring 2015	
 Lec2 - 57	

Coherence Misses	

u  “True Sharing”	

w When two processors read/write same variable “x”	

w Communicate a new value of “x” from one thread to another	

w  Inherent to the computation	

u  “False Sharing”	

w Reading and writing two distinct variables “x1” and “x2”	

w Happen to reside in the same cache block	

w E.g., x1 and x2 are single words, but a 64-byte block can hold
8 words, and contains both “x1” and “x2”	

u  False sharing is unnecessary and can reduce performance	

EPFL CS-206 – Spring 2015	
 Lec2 - 58	

Bus	

Processor Issues Load Request	

Bus	

cache	

memory	

cache	
cache	

x1	

load x2	

x2	

EPFL CS-206 – Spring 2015	
 Lec2 - 59	

cache	

Bus	

Memory Responds	

Bus	

memory	

cache	
cache	

Got it! 	

x1	
x1	
 x2	
x2	

EPFL CS-206 – Spring 2015	
 Lec2 - 60	

Bus	

Processor Issues Load Request	

Bus	

memory	

cache	
cache	

Load x1	

x1	
 x2	

x1	
 x2	

EPFL CS-206 – Spring 2015	
 Lec2 - 61	

x1	
 x2	

Bus	

Other Processor Responds	

memory	

cache	
cache	

Got it	

X1	

Bus	

x1	
 x2	

X2	

EPFL CS-206 – Spring 2015	
 Lec2 - 62	

x1	

Modify Cached Data	

Bus	

memory	

cache	
x1	

x1	
 x2	

x2	
x1	
 x2	

EPFL CS-206 – Spring 2015	
 Lec2 - 63	

Bus	

Invalidate	

Bus	

memory	

cache	

Invalidate x1	

x1	
 x2	
x1	
 x2	
cache	

x1	
 x2	

EPFL CS-206 – Spring 2015	
 Lec2 - 64	

Bus	

False Sharing	

cache	

memory	

cache	
cache	

x1	

load x2	

x2	

x1	
 x2	

Miss!	

cache	

EPFL CS-206 – Spring 2015	
 Lec2 - 65	

False Sharing causes extra misses!	

u  One miss to get rid of the copy in the first processor	

w Because of a write to “x2”	

w Even though the first processor only needs “x1”	

u  One miss for the processor to read “x1” back again	

u  A total of two misses just because of a write to “x2”	

u  A write to “x1” again would cause two misses	

	

EPFL CS-206 – Spring 2015	
 Lec2 - 66	

False Sharing gets worse with Bigger Blocks!	

u  The larger the block, the more likely threads will be reading/
writing the same block at the same time	

u  When writing software, should try to divide up data
structures to avoid False Sharing	

w Threads should not sharing near-neighbor variables in

memory	

w We will talk about this when we start writing parallel software	

EPFL CS-206 – Spring 2015	
 Lec2 - 67	

Miss rate vs. Block Size: Uniprocessor (CS-208)	

0!

5!

10!

15!

20!

25!

30!

35!

40!

16! 32! 64! 128! 256!

M
iss

 R
at

e
(%

)!

Line Size (Bytes)!

1K!

4K!

16K!

More temporal

More spatial

EPFL CS-206 – Spring 2015	
 Lec2 - 68	

Miss Rate vs. Block Size: 4 Processors	

0!

5!

10!

15!

20!

25!

30!

35!

40!

16! 32! 64! 128! 256!

M
iss

 R
at

e
(%

)!

Line Size (Bytes)!

1K!

4K!

16K!

Misses shoot up with
False Sharing

EPFL CS-206 – Spring 2015	
 Lec2 - 69	

Miss Rate vs. Block Size: 16 Processors	

0!

5!

10!

15!

20!

25!

30!

35!

40!

16! 32! 64! 128! 256!

M
iss

 R
at

e
(%

)!

Line Size (Bytes)!

1K!

4K!

16K!

Too many
False Sharing misses

EPFL CS-206 – Spring 2015	
 Lec2 - 70	

Summary	

u  Most multiprocessors use shared memory	

u  We will assume an SMP, simple multiprocessor model	

u  Must know how to platform works to construct software	

u  Must understand the bottlenecks	

u  Next week, we will see how to think parallel	

