
EPFL CS-206 – Spring 2015	

   Lec2 - 1	



CS-206 	

Concurrency	


���
Lecture 2	


Multiprocessors	


	


	



Spring 2015	


Prof. Babak Falsafi	


parsa.epfl.ch/courses/cs206/	



Adapted from slides originally developed by Maurice Herlihy and Nir 
Shavit from the Art of Multiprocessor Programming, and Babak Falsafi	


EPFL Copyright 2015	



memory 



EPFL CS-206 – Spring 2015	

   Lec2 - 2	



Lecture
& Lab

M T W T F
16-Feb 17-Feb 18-Feb 19-Feb 20-Feb
23-Feb 24-Feb 25-Feb 26-Feb 27-Feb
2-Mar 3-Mar 4-Mar 5-Mar 6-Mar
9-Mar 10-Mar 11-Mar 12-Mar 13-Mar
16-Mar 17-Mar 18-Mar 19-Mar 20-Mar
23-Mar 24-Mar 25-Mar 26-Mar 27-Mar
30-Mar 31-Mar 1-Apr 2-Apr 3-Apr
6-Apr 7-Apr 8-Apr 9-Apr 10-Apr
13-Apr 14-Apr 15-Apr 16-Apr 17-Apr
20-Apr 21-Apr 22-Apr 23-Apr 24-Apr
27-Apr 28-Apr 29-Apr 30-Apr 1-May
4-May 5-May 6-May 7-May 8-May
11-May 12-May 13-May 14-May 15-May
18-May 19-May 20-May 21-May 22-May
25-May 26-May 27-May 28-May 29-May

Where are We?	



u Today	


w Multicore Architecture	



w Memory Hierarchies	



u Next Wednesday	


w Concurrency vs. Parallelism	



w Performance	



u Labs	


w HW1: Today	





EPFL CS-206 – Spring 2015	

   Lec2 - 3	



Multiprocessor Architecture	



u  Abstract models are (mostly) OK to understand algorithm 
correctness and progress	



u  To understand how concurrent algorithms actually perform	



u  You need to understand something about multiprocessor 
architectures	



u  Detailed nuts & bolts? next year	





EPFL CS-206 – Spring 2015	

   Lec2 - 4	



Pieces	



u  Processors	



u  Threads	



u  Interconnect	



u  Memory	



u  Caches	





EPFL CS-206 – Spring 2015	

   Lec2 - 5	



cache	



Bus	



Old-School Multiprocessor	



Bus	



memory	



cache	

cache	





EPFL CS-206 – Spring 2015	

   Lec2 - 6	



Old School	



u  Processors on different chips	



u  Processors share off chip memory resources	



u  Communication between processors typically slow	





EPFL CS-206 – Spring 2015	

   Lec2 - 7	



Multicore Architecture	



cache	



Bus	

Bus	



memory	



cache	

cache	

cache	





EPFL CS-206 – Spring 2015	

   Lec2 - 8	



Multicore	



u  All Processors on same chip	



u  Processors share on chip memory resources	



u  Communication between processors now very fast	





EPFL CS-206 – Spring 2015	

   Lec2 - 9	



SMP vs NUMA	



SMP	



memory	



NUMA	


u  SMP: symmetric multiprocessor	


u  NUMA: non-uniform memory access	


u  CC-NUMA: cache-coherent …	





EPFL CS-206 – Spring 2015	

   Lec2 - 10	



Future Multicores	



u  These days: no longer SMP	


w Machines are getting bigger	



w Bus becomes a bottleneck (later in CS-370)	



u  All machines are NUMA	


w Most NUMA machines: multiple chips, single board	



w E.g., Facebook server	



w Some NUMA machines: multiple boards, entire rack	



w E.g., Oracle SPARC servers	



u  For this course, we assume SMP	


w Simplify the model for programming	





EPFL CS-206 – Spring 2015	

   Lec2 - 11	



Understanding the Pieces	



u  Lets try to understand what the pieces that make the 
multiprocessor machine are 	



u  And how they fit together	





EPFL CS-206 – Spring 2015	

   Lec2 - 12	



Processors	



u  Cycle:	


w Fetch and execute one instruction	



u  Cycle times change	


w 1980: 10 million cycles/sec	



w 2005: 3,000 million cycles/sec	





EPFL CS-206 – Spring 2015	

   Lec2 - 13	



Computer Architecture	



u  Measure time in cycles	


w Absolute cycle times change	



u  Memory access: ~100s of cycles	


w Changes slowly	



w Mostly gets worse	





EPFL CS-206 – Spring 2015	

   Lec2 - 14	



Threads	



u  Execution of a sequential program	



u  Software, not hardware	



u  A processor can run a thread	



u  Put it aside	


w Thread does I/O	



w Thread runs out of time	



u  Run another thread	





EPFL CS-206 – Spring 2015	

   Lec2 - 15	



Interconnect	



u Bus	


w Like a tiny Ethernet	



w Broadcast medium	



w Connects	


w Processors to memory	



w Processors to processors	



u Network	


w Tiny LAN	



w Mostly used on 	



   large machines	



SMP	



memory	





EPFL CS-206 – Spring 2015	

   Lec2 - 16	



Interconnect	



u  Interconnect is a finite resource	



u  Processors can be delayed if others are consuming too 
much	



u  Avoid algorithms that use too much bandwidth	





EPFL CS-206 – Spring 2015	

   Lec2 - 17	



Processor and Memory are Far Apart	



processor	



memory	



interconnect	





EPFL CS-206 – Spring 2015	

   Lec2 - 18	



Reading from Memory	



address	





EPFL CS-206 – Spring 2015	

   Lec2 - 19	



Reading from Memory	



zzz…	





EPFL CS-206 – Spring 2015	

   Lec2 - 20	



Reading from Memory	



value	





EPFL CS-206 – Spring 2015	

   Lec2 - 21	



Writing to Memory	



address, value	





EPFL CS-206 – Spring 2015	

   Lec2 - 22	



Writing to Memory	



zzz…	





EPFL CS-206 – Spring 2015	

   Lec2 - 23	



Writing to Memory	



ack	





EPFL CS-206 – Spring 2015	

   Lec2 - 24	



Cache: Reading from Memory	



address	



cache	





EPFL CS-206 – Spring 2015	

   Lec2 - 25	



Cache: Reading from Memory	



cache	





EPFL CS-206 – Spring 2015	

   Lec2 - 26	



Cache: Reading from Memory	



cache	





EPFL CS-206 – Spring 2015	

   Lec2 - 27	



Cache Hit	



cache	



?	





EPFL CS-206 – Spring 2015	

   Lec2 - 28	



Cache Hit	



cache	


Yes!	





EPFL CS-206 – Spring 2015	

   Lec2 - 29	



Cache Miss	



address	



cache	



?	

No…	





EPFL CS-206 – Spring 2015	

   Lec2 - 30	



Cache Miss	



cache	





EPFL CS-206 – Spring 2015	

   Lec2 - 31	



Cache Miss	



cache	





EPFL CS-206 – Spring 2015	

   Lec2 - 32	



Sometimes you have to spin for shared data….	



u  E.g., variable “x” is shared. The initial of value “x” is 0. Thread 1 
will write a non-zero value. Thread 2 is “spins” waiting for Thread 
1 to write the value	



         	



                Thread 1                          Thread 2	



                …..                                  while (x == 0) { /* wait */ }	



	

     x = 3;            	

 	

 ….. = x;	



	



Thread 2 keeps reading “x”, hitting in the cache	





EPFL CS-206 – Spring 2015	

   Lec2 - 33	



Local Spinning	



u With caches, spinning becomes practical	



u  First time	


w Load variable into cache	



u As long as it doesn’t change	


w Hit in cache (no interconnect used)	



u When it changes	


w One-time cost	



w See cache coherence (later)	





EPFL CS-206 – Spring 2015	

   Lec2 - 34	



L1 and L2 Caches	



L1	



L2	





EPFL CS-206 – Spring 2015	

   Lec2 - 35	



L1 and L2 Caches	



L1	



L2	



Small & fast	


1 or 2 cycles	





EPFL CS-206 – Spring 2015	

   Lec2 - 36	



L1 and L2 Caches	



L1	



L2	



Larger and slower	


10s of cycles	


~128 byte block	





EPFL CS-206 – Spring 2015	

   Lec2 - 37	



When a Cache Becomes Full…	



u  Need to make room for new entry	



u  By evicting an existing entry	



u  Need a replacement policy	


w Usually some kind of least recently used heuristic	





EPFL CS-206 – Spring 2015	

   Lec2 - 38	



Fully Associative Cache	



u  Any line can be anywhere in the cache	


w Advantage: can replace any line	



w Disadvantage: hard to find lines	





EPFL CS-206 – Spring 2015	

   Lec2 - 39	



Direct Mapped Cache	



u  Every address has exactly 1 slot	


w Advantage: easy to find a line	



w Disadvantage: must replace fixed line	





EPFL CS-206 – Spring 2015	

   Lec2 - 40	



K-way Set Associative Cache	



u  Each slot holds k lines	


w Advantage: pretty easy to find a line	



w Advantage: some choice in replacing line	





EPFL CS-206 – Spring 2015	

   Lec2 - 41	



Multicore Set Associativity	



u  L2, lower levels can be more associative (e.g., > 16 ways)	


w Why? Because cores share sets 	



w Threads cut effective size if accessing different data	





EPFL CS-206 – Spring 2015	

   Lec2 - 42	



Example: Average Memory latency	



w/o cache, all accesses go to memory:	



Average Memory Access Time = memory latency	



	



with one level cache:	



Average Memory Access Time = 	



        cache hit time x (1 – cache miss rate) + 	



        memory latency x cache miss rate	



u  With a cache has a miss rate of 10%, hit time of 2 cycles and a 
memory latency off 100 cycles, what is AMAT?	


	





EPFL CS-206 – Spring 2015	

   Lec2 - 43	



Example: Average Memory latency	



Assume the following params:	



   L1 hit time = 2 cycles, L1 miss rate = 5%	



   L2 hit time = 10 cycles, L2 miss rate = 2%	



   Memory latency = 200 cycles	



	



u  What is AMAT?	





EPFL CS-206 – Spring 2015	

   Lec2 - 44	



Sources of Cache Misses	



u From CS-208	


w 3 C’s: Compulsory, conflict, capacity misses	



u 4th type of miss:	



w Coherence: reads/writes from multiple processors	





EPFL CS-206 – Spring 2015	

   Lec2 - 45	



Cache Coherence	



u  A and B both cache address x	



u  A writes to x	


w Updates cache	



u  How does B find out?	



u  Many coherence protocols in products (will see in CS-370)	





EPFL CS-206 – Spring 2015	

   Lec2 - 46	



Bus	



Processor Issues Load Request	



Bus	



cache	



memory	



cache	

cache	



data	



load x	





EPFL CS-206 – Spring 2015	

   Lec2 - 47	



cache	



Bus	



Memory Responds	



Bus	



memory	



cache	

cache	



data	


Got it! 	



data	





EPFL CS-206 – Spring 2015	

   Lec2 - 48	



Bus	



Processor Issues Load Request	



Bus	



memory	



cache	

cache	

data	



data	



Load x	





EPFL CS-206 – Spring 2015	

   Lec2 - 49	



Bus	



Other Processor Responds	



memory	



cache	

cache	



data	



Got it	



data	

data	



Bus	





EPFL CS-206 – Spring 2015	

   Lec2 - 50	



Modify Cached Data	



Bus	



data	



memory	



cache	

data	



data	



data	





EPFL CS-206 – Spring 2015	

   Lec2 - 51	



memory	

 data	



data	

 data	

data	



Bus	



Write-Through Cache	



Bus	



cache	

data	



Write x!	





EPFL CS-206 – Spring 2015	

   Lec2 - 52	



Write-Through Caches	



u  Immediately broadcast changes	


w Memory is up-to-date 	



u  Good	


w Memory, caches always agree	


w More read hits, maybe	



u  Bad	


w Bus traffic on all writes	


w Most writes to unshared data	


w For example, loop indexes …	





EPFL CS-206 – Spring 2015	

   Lec2 - 53	



Write-Through Caches	



u  Immediately broadcast changes 	


u  Good	



w Memory, caches always agree	


w More read hits, maybe	



u  Bad	


w Bus traffic on all writes	


w Most writes to unshared data	


w For example, loop indexes …	



“show stoppers”	





EPFL CS-206 – Spring 2015	

   Lec2 - 54	



Write-Back Caches	



u  Accumulate changes in cache	



u  Write back when block evicted	


w Need the cache for something else	



w Another processor wants it	





EPFL CS-206 – Spring 2015	

   Lec2 - 55	



Bus	



Invalidate	



Bus	



memory	



cache	

data	

data	



data	



cache	



Invalidate x	





EPFL CS-206 – Spring 2015	

   Lec2 - 56	



Write Buffers	



address	



u  Absorbing	



u  Batching	





EPFL CS-206 – Spring 2015	

   Lec2 - 57	



Coherence Misses	



u  “True Sharing”	


w When two processors read/write same variable “x”	



w Communicate a new value of “x” from one thread to another	



w  Inherent to the computation	



u  “False Sharing”	


w Reading and writing two distinct variables “x1” and “x2”	



w Happen to reside in the same cache block	



w E.g., x1 and x2 are single words, but a 64-byte block can hold 
8 words, and contains both “x1” and “x2”	



u  False sharing is unnecessary and can reduce performance	





EPFL CS-206 – Spring 2015	

   Lec2 - 58	



Bus	



Processor Issues Load Request	



Bus	



cache	



memory	



cache	

cache	



x1	



load x2	



x2	





EPFL CS-206 – Spring 2015	

   Lec2 - 59	



cache	



Bus	



Memory Responds	



Bus	



memory	



cache	

cache	



Got it! 	


x1	

x1	

 x2	

x2	





EPFL CS-206 – Spring 2015	

   Lec2 - 60	



Bus	



Processor Issues Load Request	



Bus	



memory	



cache	

cache	



Load x1	



x1	

 x2	



x1	

 x2	





EPFL CS-206 – Spring 2015	

   Lec2 - 61	



x1	

 x2	



Bus	



Other Processor Responds	



memory	



cache	

cache	



Got it	



X1	



Bus	



x1	

 x2	



X2	





EPFL CS-206 – Spring 2015	

   Lec2 - 62	



x1	



Modify Cached Data	



Bus	



memory	



cache	

x1	



x1	

 x2	



x2	

x1	

 x2	





EPFL CS-206 – Spring 2015	

   Lec2 - 63	



Bus	



Invalidate	



Bus	



memory	



cache	



Invalidate x1	



x1	

 x2	

x1	

 x2	

cache	



x1	

 x2	





EPFL CS-206 – Spring 2015	

   Lec2 - 64	



Bus	



False Sharing	



cache	



memory	



cache	

cache	



x1	



load x2	



x2	



x1	

 x2	



Miss!	



cache	





EPFL CS-206 – Spring 2015	

   Lec2 - 65	



False Sharing causes extra misses!	



u  One miss to get rid of the copy in the first processor	


w Because of a write to “x2”	



w Even though the first processor only needs “x1”	



u  One miss for the processor to read “x1” back again	



u  A total of two misses just because of a write to “x2”	



u  A write to “x1” again would cause two misses	


	





EPFL CS-206 – Spring 2015	

   Lec2 - 66	



False Sharing gets worse with Bigger Blocks!	



u  The larger the block, the more likely threads will be reading/
writing the same block at the same time	



u  When writing software, should try to divide up data 
structures to avoid False Sharing	


w Threads should not sharing near-neighbor variables in 

memory	



w We will talk about this when we start writing parallel software	





EPFL CS-206 – Spring 2015	

   Lec2 - 67	



Miss rate vs. Block Size: Uniprocessor (CS-208)	



0!

5!

10!

15!

20!

25!

30!

35!

40!

16! 32! 64! 128! 256!

M
iss

 R
at

e 
(%

)!

Line Size (Bytes)!

1K!

4K!

16K!

More temporal 

More spatial 



EPFL CS-206 – Spring 2015	

   Lec2 - 68	



Miss Rate vs. Block Size: 4 Processors	



0!

5!

10!

15!

20!

25!

30!

35!

40!

16! 32! 64! 128! 256!

M
iss

 R
at

e 
(%

)!

Line Size (Bytes)!

1K!

4K!

16K!

Misses shoot up with 
False Sharing 



EPFL CS-206 – Spring 2015	

   Lec2 - 69	



Miss Rate vs. Block Size: 16 Processors	



0!

5!

10!

15!

20!

25!

30!

35!

40!

16! 32! 64! 128! 256!

M
iss

 R
at

e 
(%

)!

Line Size (Bytes)!

1K!

4K!

16K!

Too many  
False Sharing misses 



EPFL CS-206 – Spring 2015	

   Lec2 - 70	



Summary	



u  Most multiprocessors use shared memory	



u  We will assume an SMP, simple multiprocessor model	



u  Must know how to platform works to construct software	



u  Must understand the bottlenecks	



u  Next week, we will see how to think parallel	




