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Where are We?	



u Today	


w Multicore Architecture	



w Memory Hierarchies	



u Next Wednesday	


w Concurrency vs. Parallelism	



w Performance	



u Labs	


w HW1: Today	
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Multiprocessor Architecture	



u  Abstract models are (mostly) OK to understand algorithm 
correctness and progress	



u  To understand how concurrent algorithms actually perform	



u  You need to understand something about multiprocessor 
architectures	



u  Detailed nuts & bolts? next year	
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Pieces	



u  Processors	



u  Threads	



u  Interconnect	



u  Memory	



u  Caches	
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cache	



Bus	



Old-School Multiprocessor	



Bus	



memory	



cache	

cache	
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Old School	



u  Processors on different chips	



u  Processors share off chip memory resources	



u  Communication between processors typically slow	
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Multicore Architecture	



cache	



Bus	

Bus	



memory	



cache	

cache	

cache	
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Multicore	



u  All Processors on same chip	



u  Processors share on chip memory resources	



u  Communication between processors now very fast	
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SMP vs NUMA	



SMP	



memory	



NUMA	


u  SMP: symmetric multiprocessor	


u  NUMA: non-uniform memory access	


u  CC-NUMA: cache-coherent …	
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Future Multicores	



u  These days: no longer SMP	


w Machines are getting bigger	



w Bus becomes a bottleneck (later in CS-370)	



u  All machines are NUMA	


w Most NUMA machines: multiple chips, single board	



w E.g., Facebook server	



w Some NUMA machines: multiple boards, entire rack	



w E.g., Oracle SPARC servers	



u  For this course, we assume SMP	


w Simplify the model for programming	
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Understanding the Pieces	



u  Lets try to understand what the pieces that make the 
multiprocessor machine are 	



u  And how they fit together	
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Processors	



u  Cycle:	


w Fetch and execute one instruction	



u  Cycle times change	


w 1980: 10 million cycles/sec	



w 2005: 3,000 million cycles/sec	
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Computer Architecture	



u  Measure time in cycles	


w Absolute cycle times change	



u  Memory access: ~100s of cycles	


w Changes slowly	



w Mostly gets worse	
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Threads	



u  Execution of a sequential program	



u  Software, not hardware	



u  A processor can run a thread	



u  Put it aside	


w Thread does I/O	



w Thread runs out of time	



u  Run another thread	
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Interconnect	



u Bus	


w Like a tiny Ethernet	



w Broadcast medium	



w Connects	


w Processors to memory	



w Processors to processors	



u Network	


w Tiny LAN	



w Mostly used on 	



   large machines	



SMP	



memory	
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Interconnect	



u  Interconnect is a finite resource	



u  Processors can be delayed if others are consuming too 
much	



u  Avoid algorithms that use too much bandwidth	
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Processor and Memory are Far Apart	



processor	



memory	



interconnect	
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Reading from Memory	



address	
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Reading from Memory	



zzz…	
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Reading from Memory	



value	
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Writing to Memory	



address, value	
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Writing to Memory	



zzz…	
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Writing to Memory	



ack	
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Cache: Reading from Memory	



address	



cache	
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Cache: Reading from Memory	



cache	
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Cache: Reading from Memory	



cache	
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Cache Hit	



cache	



?	
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Cache Hit	



cache	


Yes!	
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Cache Miss	



address	



cache	



?	

No…	
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Cache Miss	



cache	
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Cache Miss	



cache	
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Sometimes you have to spin for shared data….	



u  E.g., variable “x” is shared. The initial of value “x” is 0. Thread 1 
will write a non-zero value. Thread 2 is “spins” waiting for Thread 
1 to write the value	



         	



                Thread 1                          Thread 2	



                …..                                  while (x == 0) { /* wait */ }	



	

     x = 3;            	

 	

 ….. = x;	



	



Thread 2 keeps reading “x”, hitting in the cache	
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Local Spinning	



u With caches, spinning becomes practical	



u  First time	


w Load variable into cache	



u As long as it doesn’t change	


w Hit in cache (no interconnect used)	



u When it changes	


w One-time cost	



w See cache coherence (later)	





EPFL CS-206 – Spring 2015	

   Lec2 - 34	



L1 and L2 Caches	



L1	



L2	
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L1 and L2 Caches	



L1	



L2	



Small & fast	


1 or 2 cycles	
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L1 and L2 Caches	



L1	



L2	



Larger and slower	


10s of cycles	


~128 byte block	
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When a Cache Becomes Full…	



u  Need to make room for new entry	



u  By evicting an existing entry	



u  Need a replacement policy	


w Usually some kind of least recently used heuristic	
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Fully Associative Cache	



u  Any line can be anywhere in the cache	


w Advantage: can replace any line	



w Disadvantage: hard to find lines	
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Direct Mapped Cache	



u  Every address has exactly 1 slot	


w Advantage: easy to find a line	



w Disadvantage: must replace fixed line	
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K-way Set Associative Cache	



u  Each slot holds k lines	


w Advantage: pretty easy to find a line	



w Advantage: some choice in replacing line	
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Multicore Set Associativity	



u  L2, lower levels can be more associative (e.g., > 16 ways)	


w Why? Because cores share sets 	



w Threads cut effective size if accessing different data	





EPFL CS-206 – Spring 2015	

   Lec2 - 42	



Example: Average Memory latency	



w/o cache, all accesses go to memory:	



Average Memory Access Time = memory latency	



	



with one level cache:	



Average Memory Access Time = 	



        cache hit time x (1 – cache miss rate) + 	



        memory latency x cache miss rate	



u  With a cache has a miss rate of 10%, hit time of 2 cycles and a 
memory latency off 100 cycles, what is AMAT?	


	





EPFL CS-206 – Spring 2015	

   Lec2 - 43	



Example: Average Memory latency	



Assume the following params:	



   L1 hit time = 2 cycles, L1 miss rate = 5%	



   L2 hit time = 10 cycles, L2 miss rate = 2%	



   Memory latency = 200 cycles	



	



u  What is AMAT?	





EPFL CS-206 – Spring 2015	

   Lec2 - 44	



Sources of Cache Misses	



u From CS-208	


w 3 C’s: Compulsory, conflict, capacity misses	



u 4th type of miss:	



w Coherence: reads/writes from multiple processors	
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Cache Coherence	



u  A and B both cache address x	



u  A writes to x	


w Updates cache	



u  How does B find out?	



u  Many coherence protocols in products (will see in CS-370)	
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Bus	



Processor Issues Load Request	



Bus	



cache	



memory	



cache	

cache	



data	



load x	
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cache	



Bus	



Memory Responds	



Bus	



memory	



cache	

cache	



data	


Got it! 	



data	
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Bus	



Processor Issues Load Request	



Bus	



memory	



cache	

cache	

data	



data	



Load x	
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Bus	



Other Processor Responds	



memory	



cache	

cache	



data	



Got it	



data	

data	



Bus	
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Modify Cached Data	



Bus	



data	



memory	



cache	

data	



data	



data	
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memory	

 data	



data	

 data	

data	



Bus	



Write-Through Cache	



Bus	



cache	

data	



Write x!	
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Write-Through Caches	



u  Immediately broadcast changes	


w Memory is up-to-date 	



u  Good	


w Memory, caches always agree	


w More read hits, maybe	



u  Bad	


w Bus traffic on all writes	


w Most writes to unshared data	


w For example, loop indexes …	
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Write-Through Caches	



u  Immediately broadcast changes 	


u  Good	



w Memory, caches always agree	


w More read hits, maybe	



u  Bad	


w Bus traffic on all writes	


w Most writes to unshared data	


w For example, loop indexes …	



“show stoppers”	
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Write-Back Caches	



u  Accumulate changes in cache	



u  Write back when block evicted	


w Need the cache for something else	



w Another processor wants it	
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Bus	



Invalidate	



Bus	



memory	



cache	

data	

data	



data	



cache	



Invalidate x	
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Write Buffers	



address	



u  Absorbing	



u  Batching	
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Coherence Misses	



u  “True Sharing”	


w When two processors read/write same variable “x”	



w Communicate a new value of “x” from one thread to another	



w  Inherent to the computation	



u  “False Sharing”	


w Reading and writing two distinct variables “x1” and “x2”	



w Happen to reside in the same cache block	



w E.g., x1 and x2 are single words, but a 64-byte block can hold 
8 words, and contains both “x1” and “x2”	



u  False sharing is unnecessary and can reduce performance	
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Bus	



Processor Issues Load Request	



Bus	



cache	



memory	



cache	

cache	



x1	



load x2	



x2	
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cache	



Bus	



Memory Responds	



Bus	



memory	



cache	

cache	



Got it! 	


x1	

x1	

 x2	

x2	
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Bus	



Processor Issues Load Request	



Bus	



memory	



cache	

cache	



Load x1	



x1	

 x2	



x1	

 x2	
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x1	

 x2	



Bus	



Other Processor Responds	



memory	



cache	

cache	



Got it	



X1	



Bus	



x1	

 x2	



X2	
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x1	



Modify Cached Data	



Bus	



memory	



cache	

x1	



x1	

 x2	



x2	

x1	

 x2	
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Bus	



Invalidate	



Bus	



memory	



cache	



Invalidate x1	



x1	

 x2	

x1	

 x2	

cache	



x1	

 x2	
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Bus	



False Sharing	



cache	



memory	



cache	

cache	



x1	



load x2	



x2	



x1	

 x2	



Miss!	



cache	
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False Sharing causes extra misses!	



u  One miss to get rid of the copy in the first processor	


w Because of a write to “x2”	



w Even though the first processor only needs “x1”	



u  One miss for the processor to read “x1” back again	



u  A total of two misses just because of a write to “x2”	



u  A write to “x1” again would cause two misses	
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False Sharing gets worse with Bigger Blocks!	



u  The larger the block, the more likely threads will be reading/
writing the same block at the same time	



u  When writing software, should try to divide up data 
structures to avoid False Sharing	


w Threads should not sharing near-neighbor variables in 

memory	



w We will talk about this when we start writing parallel software	
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Miss rate vs. Block Size: Uniprocessor (CS-208)	
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Miss Rate vs. Block Size: 4 Processors	
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Miss Rate vs. Block Size: 16 Processors	
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Summary	



u  Most multiprocessors use shared memory	



u  We will assume an SMP, simple multiprocessor model	



u  Must know how to platform works to construct software	



u  Must understand the bottlenecks	



u  Next week, we will see how to think parallel	




