
CS-206 HW2
Performance and efficiency

1 Amdahl’s Law

1. Tianhe-2 is currently the most powerful supercomputer with 3’120’000 cores. Consider a program
where 0.01% of the runtime is not parallelizable. Assuming the program performance is the same
on all of those cores and there are no additional overheads,

(a) What is the parallel speedup on 30, 300, 3’000, 30’000, 300’000 and 3’000’000 cores?

(b) If we provision the application with an infinite amount of cores, what would be the speedup?

(c) What is the number of cores that provides 95% of the speedup calculated in (b)?

2. Amdahl’s law indicates there is little point in using large-scale systems with millions of cores to
accelerate programs that have even a small fraction of non-parallelizable work (which is often
inevitable, e.g., reading input data). Why do people build such systems?

2 Parallel Image Processing

The sobel algorithm is widely used in image processing applications to detect edges in images. It calcu-
lates the derivatives of an image in the vertical and horizontal directions. Each derivative is calculated
by convolution its respective kernel with the image. The kernels for the vertical (Ky), and horizontal
(Kx) directions are presented below.

Ky =

−1 −2 −1
0 0 0

+1 +2 +1

 Kx =

−1 0 +1
−2 0 +2
−1 0 +1


The convolution G of a kernel with an image is computed by a loop that calculates the value of G(x,y)

for each pixel in the input image, as shown below.

G(x, y) =
2∑

i=0

2∑
j=0

P (x + i− 1, y + j − 1) ∗K(i, j)

In the equation, P(x,y) is the pixel value with coordinates (x,y) and K(i,j) is the kernel value with
coordinates (i,j).

The result of the convolutions are two matrices of derivatives with the same size as the image. The
derivatives can be used to plot the edges of the input image. As an approximation, we can say that a
pixel P(x,y) belongs to an edge if |Gx(x, y)| + |Gy(x, y)| > t where Gx and Gy are the horizontal and
vertical derivatives and t is a given threshold.

To plot the edge image, we set all edge pixels to 255 (white) and all other pixels to 0(black).
The algorithm pseudocode is presented below:

Version 1.0 of 3rd March 2015, EPFL ©2015 1 of 3

CS-206 HW2

Figure 1: Example of sobel application: on the left we have the original image and the edge image is
presented on the right

for y:=0 to imageHeight-1 begin
for x:=0 to imageWidth-1 begin

convResultX :=0
convResultY :=0
for i:=0 to 2 begin

for j:=0 to 2 begin
// Clamp the image coordinates
clampedX = (x+i-1 < 0)? 0 :

((x+i-1 > imageWidth-1)? imageWidth-1 : x+i-1)
clampedY = (y+j-1 < 0)? 0 :

((y+j-1 > imageHeight-1)? imageHeight-1 : y+j-1)

// Do the actual calculation
convResultX += inputImage(clampedX,clampedY)*kernelX(i,j)
convResultY += inputImage(clampedX,clampedY)*kernelY(i,j)

end for
end for

if(abs(convResultX) + abs(convResultY) > threshold) then
outputImage(x,y) = 255

else
outputImage(x,y) = 0

end if
end for

end for

Figure 1 presents an example of the application of the described algorithm.

Given a processor with N cores, how would you parallelize this algorithm in order to achieve best
performance. Ignore any cache effects.

Write the pseudo code for one thread, explicitly indicating its inputs and outputs. Briefly describe
how your parallelized version of the algorithm is supposed to run (i.e., when and how threads are going
to be started, if there is any additional work to be done to set up parallelization).

2 of 3 Version 1.0 of 3rd March 2015, EPFL ©2015

CS-206 HW2

3 Submission

Deadline: 10.03.2015

Please make a PDF file of your answer and upload it in the moodle using related box. Do not
forget to write your Name and Sciper number.

Please write clearly and concisely.

Version 1.0 of 3rd March 2015, EPFL ©2015 3 of 3

	Amdahl's Law
	Parallel Image Processing
	Submission

