
Transactional Execution:Transactional Execution:
WaitWait--Free HW Memory Ordering Free HW Memory Ordering

Babak Falsafi
Team Members: Chi Chen, Shelley Chen, Mike Ferdman, Nikos Hardavellas,

Jangwoo Kim, Stephen Somogyi, Tom Wenisch, Se-Hyun Yang
Alumni: Cem Fide, Chris Gniady, An-Chow Lai

Impetus GroupImpetus Group
Computer Architecture Lab (CALCM)

Carnegie Mellon University
http://www.ece.cmu.edu/~impetus

Copyright © 2003 by Babak Falsafi 2

The Big Debate: HW Memory Order

When shall hardware enforce order?
Always order:

Always
» Software wants a “multiprogrammed CPU” behavior

Easy to program & understand
Assumed to exhibit inferior performance

Relax order:
Order enforced through software annotation
Let the hardware overlap write latency

Copyright © 2003 by Babak Falsafi 3

The Big Misconception:
A Large Performance Gap

But, strong ordering thought to hurt performance
Not true!

Memory only has to appear to be ordered
Hardware can relax order while checkpointing state
Roll back if relaxed order observed by others
Result SC + Speculation ≥ RC!

This is the Bart Simpson’s approach to relaxing order:
“I didn’t do it. Noone saw me doing it!”

Copyright © 2003 by Babak Falsafi 4

The Case for Transactional Execution

Give me your favorite hardware model
I will give you a wait-free implementation
E.g., never wait for store acks in SC, or fences in RC

Even better:
Expose the transactional model to software
Let software trigger checkpoint, rollback
Remove locks all together
Allow for aggressive compiler optimizations
And a number of other applications

Copyright © 2003 by Babak Falsafi 5

Outline

OverviewOverview
Speculative Memory Ordering
Other Applications
Related Work
Conclusions

Copyright © 2003 by Babak Falsafi 6

Sequential Consistency (SC) [LAMPORT]

Memory should appear
in program order & atomic
e.g., critical section

lock
modify data
unlock

+ intuitive programming
– slow implementations!

Strong Memory Ordering

P P P....

Shared Memory

Copyright © 2003 by Babak Falsafi 7

Relaxed Memory Ordering

Overlap memory accesses
software enforces order (e.g., first lock, then data)
special “ordering” instructions

E.g., Release Consistency (RC)
[Gharachorloo, et al.]
allows any (re-)ordering

+ faster implementations
– careful SW annotation
– always enforces order at fence

P P P....

Shared Memory

Overlap Accesses

Copyright © 2003 by Babak Falsafi 8

Can We Build a Wait-Free SC?

Observation [Gniady et al., ISCA’99]:
SC must only appear in program order
need order only when others race to access

SC hardware can emulate RC iff
overlap accesses speculatively
checkpoint state in program order (transaction)
roll back in case of a race

+ no help from software SC programming
+ infrequent rollback better than RC performance

Copyright © 2003 by Babak Falsafi 9

Memory
QueuePipeline

Reorder
Buffer

Done WR X

RD Z

WR A
RD Y

RD A
ALU

WR A Idle

WR X Miss
RD A Idle

Execution in SC Memory System

WR X, RD Y, RD Z access remote memory
Either all addresses unrelated need not be ordered
Or common case no contention on related addresses
WR X blocks pipeline
Can not overlap RD Y & RD Z with WR X

RD Y Idle

Copyright © 2003 by Babak Falsafi 10

WR X

WR A

RD A
ALU

Done

Out of order

Execution in RC Memory System

Software guarantees X, Y, Z, A are unrelated
+ Accesses to A complete while WR X is pending
+ Overlaps remote accesses to X, Y, Z

Pipeline
Reorder
Buffer ...

...

RD Y
RD Z

RD Z Miss

WR X Miss
RD Y Miss

...

Memory
Queue

Copyright © 2003 by Babak Falsafi 11

Execution in RC with Fence

If addresses related, the fence operation blocks the pipeline
Must wait for prior accesses to complete
Long memory latency is exposed

Memory
QueuePipeline

Reorder
Buffer

Done WR X

RD Y

ALU
WR A

FENCE
RD A

WR A Idle

WR X Miss
RD A Idle

…

Copyright © 2003 by Babak Falsafi 12

SC++: Transactional Execution of SC

Transaction semantics:
Start with a pending store
Commit with a store acknowledgement
Roll back when access by another CPU to a speculatively-
accessed out-of-program-order block

Copyright © 2003 by Babak Falsafi 13

Required HW for SC++

H/W support for relaxing all order
Checkpointing storage to tolerate memory latency

Old CPU state
Old memory state

Fast lookup to detect possible order violation
upon cache invalidations and replacements

Infrequent rollbacks
Typical of well-behaved parallel applications
Rollbacks are due to false sharing or data races

Copyright © 2003 by Babak Falsafi 14

Done

WR X

WR A

RD A

ALU

A Design for SC++

Queue maintains computation history
Table allows quickly detecting races

Speculative
History
Queue

Pipeline
Reorder
Buffer ...

...

RD Y
RD Z

RD Z Miss

WR X Miss
RD Y Miss

...

Memory
Queue

Block containing A

Block containing Y & Z

Block
Lookup
Table

Detect races from directory accesses

Copyright © 2003 by Babak Falsafi 15

Performance Comparison [ISCA’99]

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

ap
pb

t
ba

rn
es

em
3d fft

ra
dix

tom
ca

tv
un

str
uc

tur
ed

wate
r

wate
r-s

p

Sp
ee

du
p

ov
er

 S
C

d

RC SC++

Data from RSIM DSM simulator
16, 1 GHz MIPS R10000 processors
Up to 70% gap between SC & RC

Copyright © 2003 by Babak Falsafi 16

Sensitivity to Queue Size [PACT’02]

Queue size varies across apps (& systems)
History is highly bursty
Can spill history to L2

50%

60%

70%

80%

90%

100%

16 32 64 128 256 512 1024 2048 4096 8192

Number of Entries

Fr
ac

tio
n

of
 B

es
t a

Pe

rf
or

m
an

ce
 appbt

barnes
em3d
fft
radix
tomcatv
unstruct.
water
water-sp
Average

Copyright © 2003 by Babak Falsafi 17

The HW Memory Ordering Debate

Must MP HW support relaxed memory models for high
performance?

Our answer:

No! Transactional execution can bridge the performance
gap among HW memory models!

Copyright © 2003 by Babak Falsafi 18

Can We Build a Wait-Free
Relaxed System?

This helps get dusty-deck SW to run fast
Solaris is TSO-compatible
Can implement a wait-free TSO

Relaxed systems always enforce order at fence ops

Transaction semantics:
Start with a pending fence op
Commit with the acks to accesses prior to fence
Roll back in case of race to accesses prior to fence

Copyright © 2003 by Babak Falsafi 19

What Else Can We Do With Transactions?

1. Value prediction in hardware
Relaxes order inadvertently [Sorin et al.]

2. Lock/synchronization elision
Also proposed as “Transactional Memory”
Avoid the lock accesses altogether

3. Data race detection
4. Transient-error detection/recovery

There will soon be some form of checkpoint/recovery built in!

Copyright © 2003 by Babak Falsafi 20

Transactional Execution:
The Compiler Perspective

Aggressive compiler optimizations
can lead to incorrect code

Expose the transactions to SW
compiler triggers checkpoint/commit
hardware does the rollback detection/recovery
rollback allows for alternate code to execute

Can substantially reduce
error detection overhead
recovery overhead

Ongoing work with Markus Mock at UPitt

Copyright © 2003 by Babak Falsafi 21

Related Work

Transactional execution to relax order:
Speculatively-relaxed Loads

» [Gharachorlou et al.] MIPS R10K
Speculative Retirement [Adve et al.]
Forecast on bridging the perf. Gap [Hill]

Other work on Transactional Execution:
Transactional Memory [Moss & Herlihy]
Speculative synchronization [Rajwar & Goodman, Torrellas et al.]

Data race detection [Torrellas et al., Hill et al.]
Fault-tolerant DSM [Sorin et al.]

Copyright © 2003 by Babak Falsafi 22

Conclusions

Wait-free implementation of memory order
Bridges the performance gap among HW models
HW overhead depends on the model assumed

Transactional execution:
Can provide wait-free implementations of systems
Has other key applications
Can be exposed to SW for aggressive compiler opts

For More InformationFor More Information

Please visit our web site

Impetus GroupImpetus Group
Computer Architecture Lab (CALCM)
Carnegie Mellon University
http://www.ece.cmu.edu/~impetus

