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The Big Debate: HW Memory Order

When shall hardware enforce order?

o Always
» Software wants a “multiprogrammed CPU” behavior

0 Easy to program & understand
0 Assumed to exhibit inferior performance

o Order enforced through software annotation
o Let the hardware overlap write latency
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The Big Misconception:
A Large Performance Gap

But, strong ordering thought to hurt performance

Memory only has to to be ordered
o Hardware can relax order while checkpointing state
o Roll back if relaxed order observed by others
7 Result 2> SC + Speculation > RC!

This is the Bart Simpson’s approach to relaxing order:
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The Case for Transactional Execution

Give me your favorite hardware model
o | will give you a iImplementation
o E.g., never wait for store acks in SC, or fences in RC

Even better:
0 Expose the transactional model to software
o Let software trigger checkpoint, rollback
0 Remove locks all together
a Allow for aggressive compiler optimizations
7 And a number of other applications
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Outline
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)

3 Other Applications
0 Related Work
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Strong Memory Ordering

Sequential Consistency (SC) [LAMPORT]
Memory should appear ‘ ‘ ‘
O © ©

0 in program order & atomic

o e.g., critical section
@ lock
@ modify data
® unlock

+ intuitive programming
— slow implementations!
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Relaxed Memory Ordering

Overlap memory accesses

o software enforces order (e.g., first lock, then data)

0 special “ordering” instructions

E.g., Release Consistency (RC)
O [Gharachorloo, et al.]

o allows any (re-)ordering

+ faster implementations

— careful SW annotation

— always enforces order at fence
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Can We Build a Wait-Free SC?

Observation [Gniady et al., ISCA’99]:
o SC must only In program order
0 need order only when others race to access

SC can emulate RC iff

overlap accesses

checkpoint state in program order (transaction)
roll back in case of a race

no help from software - SC programming
infrequent rollback - better than RC performance

+ 4+ 0O 0O O
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Execution in SC Memory System

Done

Pipeline

Reorder
Buffer

d :

RD A |dle
WRA Idle
RDY |dle

access remote memory

O Either all addresses unrelated - need not be ordered

O Or common case = no contention on related addresses
® WR X blocks pipeline

@ Can not overlap RD Y & RD Z with WR X

Copyright © 2003 by Babak Falsafi

Memory
Queue



Execution in RC Memory System

f order
DA Out of orde
ALU ;
Done WR A
Memory

Pipeline Queue

Reorder
Buffer

Q Software guarantees X, Y, Z, A are unrelated
+ Accesses to A complete while IS pending
+ Overlaps remote accesses to X, Y, Z
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Execution in RC with Fence

Done

Memory

Pipeline RD A SO Queue

Reorder WR A Idle
Buffer

O If addresses related, the fence operation blocks the pipeline
3 Must wait for prior accesses to complete
3 Long memory latency is exposed
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SC++: Transactional Execution of SC

0 Start with a pending store
0 Commit with a store acknowledgement

0 Roll back when access by another CPU to a speculatively-
accessed out-of-program-order block
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Required HW for SC++

H/W support for relaxing all order

Checkpointing storage to tolerate memory latency
O Old CPU state
ad Old memory state

Fast lookup to detect possible order violation
O upon cache invalidations and replacements

Infrequent rollbacks

a Typical of well-behaved parallel applications
O Rollbacks are due to false sharing or data races
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A Design for SC++

Detect races from directory accesses

_ RD A
Speculative _ Block containing A LBlolfk
- ALU <: . i
History Block containing Y & Z Tab|ep

Queue = | WR A

Memory

Pipeline Queue
Reorder

Buffer

0 Queue maintains computation history
3 Table allows quickly detecting races
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Performance Comparison [ISCA’99]
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Q Data from RSIM DSM simulator
a 16, 1 GHz MIPS R10000 processors
Q Up to 70% gap between SC & RC
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Sensitivity to Queue Size [PACT 02]
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O Queue size varies across apps (& systems)
Q History is highly bursty
a Can spill history to L2
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The HW Memory Ordering Debate

Must MP HW support relaxed memory models for high
performance?

Our answer:
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Can We Build a Wait-Free
Relaxed System?

This helps get dusty-deck SW to run fast
a0 Solaris is TSO-compatible
0 Can implement a wait-free TSO

Relaxed systems always enforce order at fence ops

o Start with a pending fence op
7 Commit with the acks to accesses prior to fence
a Roll back in case of race to accesses prior to fence
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What Else Can We Do With Transactions?

1. Value prediction in hardware
0 Relaxes order inadvertently [Sorin et al.]

2. Lock/synchronization elision
o Also proposed as “Transactional Memory”
o Avoid the lock accesses altogether

3. Data race detection
4. Transient-error detection/recovery

There will soon be some form of checkpoint/recovery built in!
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Transactional Execution:
The Compiler Perspective

7 can lead to incorrect code

a compiler triggers checkpoint/commit
0 hardware does the rollback detection/recovery
o rollback allows for alternate code to execute

0 error detection overhead
0 recovery overhead

Ongoing work with Markus Mock at UPitt
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Related Work

Transactional execution to relax order:

0 Speculatively-relaxed Loads
» [Gharachorlou et al.] > MIPS R10K

0 Speculative Retirement [Adve et al.]
0 Forecast on bridging the perf. Gap [Hill]

Other work on Transactional Execution:
o Transactional Memory [Moss & Herliny]
0 Speculative synchronization [Rajwar & Goodman, Torrellas et al.]

a0 Data race detection [Torrellas et al., Hill et al.]
0 Fault-tolerant DSM [Sorin et al.]
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Conclusions

d

Bridges the performance gap among HW models
a3 HW overhead depends on the model assumed

3 Can provide wait-free implementations of systems
Has other key applications
d Can be exposed to SW for aggressive compiler opts

d

Copyright © 2003 by Babak Falsafi

22



Please visit our web site

R\ Impetus Group
LN A A Computer Architecture Lab (CALCM)
‘\-—/T\L\—IV\ Carnegie Mellon University
g, http://www.ece.cmu.edu/~impetus



