Babak Falsafi

Team Members: Chi Chen, Shelley Chen, Mike Ferdman, Nikos Hardavellas,

Jangwoo Kim, Stephen Somogyi, Tom Wenisch, Se-Hyun Yang
Alumni: Cem Fide, Chris Gniady, An-Chow Lai

VIR \\ Impetus Group
(L L ONNEN Computer Architecture Lab (CALCM)
*\-«/T\L\-—IV\ Carnegie Mellon University

http://www.ece.cmu.edu/~impetus



The Big Debate: HW Memory Order

When shall hardware enforce order?

o Always
» Software wants a “multiprogrammed CPU” behavior

0 Easy to program & understand
0 Assumed to exhibit inferior performance

o Order enforced through software annotation
o Let the hardware overlap write latency

Copyright © 2003 by Babak Falsafi



The Big Misconception:
A Large Performance Gap

But, strong ordering thought to hurt performance

Memory only has to to be ordered
o Hardware can relax order while checkpointing state
o Roll back if relaxed order observed by others
7 Result 2> SC + Speculation > RC!

This is the Bart Simpson’s approach to relaxing order:

Copyright © 2003 by Babak Falsafi



The Case for Transactional Execution

Give me your favorite hardware model
o | will give you a iImplementation
o E.g., never wait for store acks in SC, or fences in RC

Even better:
0 Expose the transactional model to software
o Let software trigger checkpoint, rollback
0 Remove locks all together
a Allow for aggressive compiler optimizations
7 And a number of other applications

Copyright © 2003 by Babak Falsafi



Outline

A Overview

)

3 Other Applications
0 Related Work

d Conclusions

Copyright © 2003 by Babak Falsafi



Strong Memory Ordering

Sequential Consistency (SC) [LAMPORT]
Memory should appear ‘ ‘ ‘
O © ©

0 in program order & atomic

o e.g., critical section
@ lock
@ modify data
® unlock

+ intuitive programming
— slow implementations!

Copyright © 2003 by Babak Falsafi



Relaxed Memory Ordering

Overlap memory accesses

o software enforces order (e.g., first lock, then data)

0 special “ordering” instructions

E.g., Release Consistency (RC)
O [Gharachorloo, et al.]

o allows any (re-)ordering

+ faster implementations

— careful SW annotation

— always enforces order at fence

Copyright © 2003 by Babak Falsafi

O
A/

verlap Accesses
\AAZ




Can We Build a Wait-Free SC?

Observation [Gniady et al., ISCA’99]:
o SC must only In program order
0 need order only when others race to access

SC can emulate RC iff

overlap accesses

checkpoint state in program order (transaction)
roll back in case of a race

no help from software - SC programming
infrequent rollback - better than RC performance

+ 4+ 0O 0O O

Copyright © 2003 by Babak Falsafi



Execution in SC Memory System

Done

Pipeline

Reorder
Buffer

d :

RD A |dle
WRA Idle
RDY |dle

access remote memory

O Either all addresses unrelated - need not be ordered

O Or common case = no contention on related addresses
® WR X blocks pipeline

@ Can not overlap RD Y & RD Z with WR X

Copyright © 2003 by Babak Falsafi

Memory
Queue



Execution in RC Memory System

f order
DA Out of orde
ALU ;
Done WR A
Memory

Pipeline Queue

Reorder
Buffer

Q Software guarantees X, Y, Z, A are unrelated
+ Accesses to A complete while IS pending
+ Overlaps remote accesses to X, Y, Z

Copyright © 2003 by Babak Falsafi 10



Execution in RC with Fence

Done

Memory

Pipeline RD A SO Queue

Reorder WR A Idle
Buffer

O If addresses related, the fence operation blocks the pipeline
3 Must wait for prior accesses to complete
3 Long memory latency is exposed

Copyright © 2003 by Babak Falsafi 11



SC++: Transactional Execution of SC

0 Start with a pending store
0 Commit with a store acknowledgement

0 Roll back when access by another CPU to a speculatively-
accessed out-of-program-order block

Copyright © 2003 by Babak Falsafi

12



Required HW for SC++

H/W support for relaxing all order

Checkpointing storage to tolerate memory latency
O Old CPU state
ad Old memory state

Fast lookup to detect possible order violation
O upon cache invalidations and replacements

Infrequent rollbacks

a Typical of well-behaved parallel applications
O Rollbacks are due to false sharing or data races

Copyright © 2003 by Babak Falsafi 13



A Design for SC++

Detect races from directory accesses

_ RD A
Speculative _ Block containing A LBlolfk
- ALU <: . i
History Block containing Y & Z Tab|ep

Queue = | WR A

Memory

Pipeline Queue
Reorder

Buffer

0 Queue maintains computation history
3 Table allows quickly detecting races

Copyright © 2003 by Babak Falsafi 14



Performance Comparison [ISCA’99]

1.8 -
8 17 RC m SC++
« 1.6
$ 15
O 44
o 1
5 1.3 -
1.2 -
1.1
w 1.0 I I I I I I I I
: O £
Yoy &2 O & é\+ S ' x9 o
QQ < (((‘b & 4 O > )
&
O

Q Data from RSIM DSM simulator
a 16, 1 GHz MIPS R10000 processors
Q Up to 70% gap between SC & RC

Copyright © 2003 by Babak Falsafi

15



Sensitivity to Queue Size [PACT 02]

100% . * * &

— — W— —
X% > — =
p———
" o 90% — T = B —e— appbt
QO O _ 4 barnes
11] % 80% T —A—feﬁm3d
q6 E —— radix
= 70% - —+— tomcatv
g O unstruct.
=2t 0 water
B o 60% - —e— water-sp
c O —e— Average
™ 50%

16 32 64 128 256 512 1024 2048 4096 8192
Number of Entries

O Queue size varies across apps (& systems)
Q History is highly bursty
a Can spill history to L2

Copyright © 2003 by Babak Falsafi



The HW Memory Ordering Debate

Must MP HW support relaxed memory models for high
performance?

Our answer:

Copyright © 2003 by Babak Falsafi

17



Can We Build a Wait-Free
Relaxed System?

This helps get dusty-deck SW to run fast
a0 Solaris is TSO-compatible
0 Can implement a wait-free TSO

Relaxed systems always enforce order at fence ops

o Start with a pending fence op
7 Commit with the acks to accesses prior to fence
a Roll back in case of race to accesses prior to fence

Copyright © 2003 by Babak Falsafi 18



What Else Can We Do With Transactions?

1. Value prediction in hardware
0 Relaxes order inadvertently [Sorin et al.]

2. Lock/synchronization elision
o Also proposed as “Transactional Memory”
o Avoid the lock accesses altogether

3. Data race detection
4. Transient-error detection/recovery

There will soon be some form of checkpoint/recovery built in!

Copyright © 2003 by Babak Falsafi 19



Transactional Execution:
The Compiler Perspective

7 can lead to incorrect code

a compiler triggers checkpoint/commit
0 hardware does the rollback detection/recovery
o rollback allows for alternate code to execute

0 error detection overhead
0 recovery overhead

Ongoing work with Markus Mock at UPitt

Copyright © 2003 by Babak Falsafi

20



Related Work

Transactional execution to relax order:

0 Speculatively-relaxed Loads
» [Gharachorlou et al.] > MIPS R10K

0 Speculative Retirement [Adve et al.]
0 Forecast on bridging the perf. Gap [Hill]

Other work on Transactional Execution:
o Transactional Memory [Moss & Herliny]
0 Speculative synchronization [Rajwar & Goodman, Torrellas et al.]

a0 Data race detection [Torrellas et al., Hill et al.]
0 Fault-tolerant DSM [Sorin et al.]

Copyright © 2003 by Babak Falsafi

21



Conclusions

d

Bridges the performance gap among HW models
a3 HW overhead depends on the model assumed

3 Can provide wait-free implementations of systems
Has other key applications
d Can be exposed to SW for aggressive compiler opts

d

Copyright © 2003 by Babak Falsafi

22



Please visit our web site

R\ Impetus Group
LN A A Computer Architecture Lab (CALCM)
‘\-—/T\L\—IV\ Carnegie Mellon University
g, http://www.ece.cmu.edu/~impetus



