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The Memory Wall 

Logic/DRAM speed gap continues to increase!!
VAX/1980 PPro/1996 2010+ 
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Current Approach  
Cache hierarchies: 
•  Trade off capacity for speed 
•  Exploit “reuse” 

But, in modern servers 
•  Only 50% utilization of one proc. 

[Ailamaki, VLDB’99] 

•  Much bigger problem in MPs 

What is wrong? 
•  Demand fetch/repl. data  100G 
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Prior Work (SW-Transparent) 

Prefetching [Joseph 97] [Roth 96] [Nesbit 04] [Gracia Pérez 04]  

  Simple patterns or low accuracy 

Large Exec. Windows / Runahead [Mutlu 03] 
  Fetch dependent addresses serially 

Coherence Optimizations [Stenström 93] [Lai 00] [Huh 04] 

  Limited applicability (e.g., migratory) 

Need solutions for arbitrary access patterns 
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Observation: 
•  Data spatially/temporally correlated  
•  Arbitrary, yet repetitive, patterns 

Approach → Memory Streaming 
•  Extract spat./temp. patterns 
•  Stream data to/from CPU 

  Manage resources for multiple blocks 
  Break dependence chains 

•  In HW, SW or both 
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Contribution #1:  
Temporal Shared-Memory Streaming 

•  Recent coherence miss sequences recur 
  ≥50% misses closely follow previous sequence  
  Large opportunity to exploit MLP 

•  Temporal streaming engine 
  Ordered streams allow practical HW 
  Performance improvement: 

 7%-230% in scientific apps. 
 6%-21% in commercial Web & OLTP apps.  
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Contribution #2:  
Last-touch Correlated Data Streaming 

•  Last-touch prefetchers 
  Cache block deadtime >> livetime 
  Fetch on a predicted “last touch” 
  But, designs impractical (> 200MB on-chip) 

•  Last-touch correlated data streaming 
  Miss order ~ last-touch order 
  Stream table entries from off-chip 
  Eliminates 75% of all L1 misses with ~200KB 
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Outline 
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• Record sequences of memory accesses 
• Transfer data sequences ahead of requests 

Temporal Shared-Memory Streaming 
[ISCA’05] 

Baseline System!

CPU Mem 

Miss A 
Fill A 

Streaming System!

Miss B 
Fill B 

CPU Mem 
Miss A 

Fill A,B,C,… 

• Accelerates arbitrary access patterns 
  Parallelizes critical path of pointer-chasing 
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Relationship Between Misses 

•  Intuition: Miss sequences repeat 
  Because code sequences repeat 

•  Observed for uniprocessors in [Chilimbi’02] 

•  Temporal Address Correlation 
  Same miss addresses repeat in the same order 

Correlated miss sequence = stream 

Q W A B C D E R T A B C D E Y Miss seq. 
…
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Relationship Between Streams 

•  Intuition: Streams exhibit temporal locality 
  Because working set exhibits temporal locality 
  For shared data, repetition often across nodes 

•  Temporal Stream Locality 
  Recent streams likely to recur 

Q W A B C D E R 

T A B C D E Y 

Node 1 

Node 2 

Addr. correlation + stream locality = temporal correlation 



© 2005 Babak Falsafi 12 

Memory Level Parallelism 

•  Streams create MLP for dependent misses 

•  Not possible with larger windows / runahead 

Temporal streaming breaks dependence chains 
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Baseline!

CPU 

Must wait to follow pointers 

Temporal Streaming!

CPU 

Fetch in parallel 
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Temporal Streaming 

)❩   Record 

)❩  
Node 1!

Miss A 
Miss B 
Miss C 
Miss D 

Directory! Node 2!
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Temporal Streaming 

)❩   Record 

)❩  
Node 1!

Miss A 
Miss B 
Miss C 
Miss D 

Directory! Node 2!

Miss A Req. A 

Fill A 
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Temporal Streaming 

)❩   Record 
❪   Locate 

)❩  
Node 1!

Miss A 
Miss B 
Miss C 
Miss D 

Directory! Node 2!

❪  Miss A Req. A 

Fill A 
Locate A 

Stream B, C, D 
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Temporal Streaming 

)❩  
Node 1!

Miss A 
Miss B 
Miss C 
Miss D 

Directory! Node 2!

❪  Miss A Req. A 

Fill A 
Locate A 

Stream B, C, D 

)❩   Record 
❪   Locate 
❫   Stream 

❫  Fetch B, C, D 

Hit B 

Hit C 
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Temporal Streaming Engine 

)❩   Record 
•  Coherence Miss Order Buffer (CMOB) 

  ~1.5MB circular buffer per node 
  In local memory 
  Addresses only 
  Coalesced accesses 

CPU 
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Local Memory 

CMOB 
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Temporal Streaming Engine 

❪   Locate 

•  Annotate directory 
  Already has coherence info for every block 
  CMOB append  send pointer to directory 
  Coherence miss  forward stream request 

Directory 

A 
B 

shared Node 4 @ CMOB[23] 
modified Node 11 @ CMOB[401] 
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Temporal Streaming Engine 

❫   Stream 
•  Fetch data to match use rate 

  Addresses in FIFO stream queue 
  Fetch into streamed value buffer 

F E D C B 
Stream Queue 

CPU 

L1 $ 
Streamed 

Value Buffer 

Node i: stream {A,B,C…} 

A data 

Fetch A 

~32 entries 
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Practical HW Mechanisms 

•  Streams recorded/followed in order 
  FIFO stream queues 
  ~32-entry streamed value buffer 
  Coalesced cache-block size CMOB appends 

•  Predicts many misses from one request 
  More lookahead 
  Allows off-chip stream storage 
  Leverages existing directory lookup 
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Methodology: Infrastructure 

SimFlex [SIGMETRICS’04] 

  Statistically sampling → uArch sim. in minutes 
  Full-system MP simulation (boots Linux & Solaris) 

 Uni, CMP, DSM timing models 
  Real server software (e.g., DB2 & Oracle) 
  Component-based → FPGA board interface for hybrid 

simulation/prototyping 

Publicly available at 
http://www.ece.cmu.edu/~simflex 
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Methodology:  
Benchmarks & Parameters 

Model Parameters 

  16 4GHz SPARC CPUs 

  8-wide OoO; 8-stage pipe 

  256-entry ROB/LSQ  

  64K L1, 8MB L2 

  TSO w/ speculation 

Benchmark Applications 
• Scientific 

  em3d, moldyn, ocean 
• OLTP: TPC-C 3.0 100 WH 

  IBM DB2 7.2 
  Oracle 10g  

• SPECweb99 w/ 16K con. 
  Apache 2.0 
  Zeus 4.3 
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TSE Coverage Comparison 

TSE outperforms Stride and GHB for coherence misses 
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Stream Lengths 

•  Comm: Short streams; low base MLP (1.2-1.3) 
•  Sci: Long streams; high base MLP (1.6-6.6) 
•  Temporal Streaming addresses both cases 
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TSE Performance Impact 

   em3d   moldyn  ocean   Apache   DB2     Oracle   Zeus 

Time Breakdown Speedup 

95% CI 

•  TSE eliminates 25%-95% of coherent read stalls 
6% to 230% performance improvement 
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TSE Conclusions 

• Temporal Streaming 
  Intuition: Recent coherence miss sequences recur 
  Impact: Eliminates 50-100% of coherence misses 

• Temporal Streaming Engine 
  Intuition: In-order streams enable practical HW 
  Impact: Performance improvement 

 7%-230% in scientific apps. 
 6%-21% in commercial Web & OLTP apps. 
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Outline 

•  Big Picture 

•  Example Streaming Techniques 
1.  Temporal Shared Memory Streaming 

2.  Last-Touch Correlated Data Streaming 

•  Summary 
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Enhancing Lookahead 

Observation [Mendelson, Wood&Hill]: 

•  Few live sets 
  Use until last “hit” 
  Data reuse  high hit rate 
  ~80% dead frames! 

Exploit for lookahead: 
•  Predict last “touch” prior to “death” 
•  Evict, predict and fetch next line 

L1 @ Time T1 

L1 @ Time T2 
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How Much Lookahead? 

Predicting last-touches will eliminate all latency! 
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Dead-Block Prediction [ISCA’00 & ’01]  

•  Per-block trace of memory accesses to a block 
+  Predicts repetitive last-touch events 

PC3:  load/store A1"

PC1:  load/store A1"

PC3:  load/store A1"

PC5:  load/store A3"
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(miss)"

(hit)"

(hit)"

(miss)"

PC0:  load/store A0" (hit)"

Trace = A1 ⊗ (PC1,PC3, PC3) 

Last touch"

First touch"
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Dead-Block Prefetcher (DBCP) 

Evict A1"
Fetch A3"

11"

Correlation Table"

A3"A1,PC1,PC3,PC3
PC1,PC3


History Table (HT)"

PC3"

⊗!

Current Access"

Latest"

A1"

•  History & correlation tables 
  History ~ L1 tag array 
  Correlation ~ memory footprint 

•  Encoding ⎯ truncated addition 
•  Two bit saturating counter 
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DBCP Coverage with  
Unlimited Table Storage 

•  High average L1 miss coverage 
•  Low misprediction (2-bit counters)  
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Impractical On-Chip Storage Size 

Needs over 150MB to achieve full potential! 
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Our Observation:  
Signatures are Temporally Correlated 

Signatures need not reside on chip 
1.  Last-touch sequences recur 

•  Much as cache miss sequences recur [Chilimbi’02] 

•  Often due to large structure traversals 

3.  Last-touch order ~ cache miss order 
•  Off by at most L1 cache capacity  

Key implications: 
•  Can record last touches in miss order 
•  Store & stream signatures from off-chip 
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Last-Touch Correlated Data Streaming 
(LT-CORDS) 

•  Streaming signatures on chip 
  Keep all sigs. in sequences in off-chip DRAM 
  Retain sequence “heads” on chip 
  “Head” signals a stream fetch 

•  Small (~200KB) on-chip stream cache 
  Tolerate order mismatch  
  Lookahead for stream startup  

DBCP coverage with moderate on-chip storage! 
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DBCP Mechanisms 

Core L1 
L2 

DRAM 

HT 

All signatures in random-access on-chip table 

Sigs. (160MB) 
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Only a subset needed at a time “Head” as cue for the “stream” 
Signatures stored off-chip 

What LT-CORDS Does 

Core L1 
L2 

DRAM 

HT 

… and only in order 
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LT-CORDS Mechanisms 

Core L1 
L2 

DRAM 

HT 

SC 

On-chip storage independent of footprint 

Heads (10K) Sigs. (200K) 
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Methodology 
•  SimpleScalar CPU model with Alpha ISA 

  SPEC CPU2000 & Olden benchmarks 

•  8-wide out-of-order processor 
  2 cycle L1, 16 cycle L2, 180 cycle DRAM 
  FU latencies similar to Alpha EV8 
  64KB 2-way L1D, 1MB 8-way L2 

•  LT-CORDS with 214KB on-chip storage 
•  Apps. with significant memory stalls 
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LT-CORDS vs. DBCP Coverage 

LT-CORDS reaches infinite DBCP coverage 
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LT-CORDS Speedup 

LT-CORDS hides large fraction of memory latency 
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LT-CORDS Conclusions 

•  Intuition: Signatures temporally correlated 
  Cache miss & last-touch sequences recur 
  Miss order ~ last-touch order 

•  Impact: eliminates 75% of all misses 
  Retains DBCP coverage, lookahead, accuracy 
  On-chip storage indep. of footprint 
  2x less memory stalls over best prior work 
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For more information 
Visit our website: 
http://www.ece.cmu.edu/CALCM 


