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Current Approach

Cache hierarchies:
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Prior Work (SW-Transparent)

Prefetching [joseph 971 [Roth 96] [Nesbit 04] [Gracia Pérez 04]
a Simple patterns or low accuracy

Large Exec. Windows / Runahead [mutiu 03]
o Fetch dependent addresses serially

Coherence Optimizations [stenstrém 93] [Lai 00] [Huh 04]
a Limited applicability (e.g., migratory)

Need solutions for arbitrary access patterns
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Our Solution:
Spatio-Temporal Memory Streaming

Observation:
e Data spatially/temporally correlated
e Arbitrary, yet repetitive, patterns

Approach — Memory Streaming

e Extract spat./temp. patterns

e Stream data to/from CPU
o Manage resources for multiple blocks
o Break dependence chains

e In HW, SW or both
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Contribution #1.:
Temporal Shared-Memory Streaming

e Recent coherence miss sequences recur
a =50% misses closely follow previous sequence
a Large opportunity to exploit MLP

e Temporal streaming engine
a Ordered streams allow practical HW
a Performance improvement:
= 79%-230% in scientific apps.
* 6%-21% in commercial Web & OLTP apps.
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Contribution #2:
Last-touch Correlated Data Streaming

e | ast-touch prefetchers
a Cache block deadtime >> livetime
a Fetch on a predicted “last touch”
a But, designs impractical (> 200MB on-chip)

e | ast-touch correlated data streaming
a Miss order ~ last-touch order
a Stream table entries from off-chip
a Eliminates 75% of all L1 misses with ~200KB
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Outline

e Example Temporal Streaming
1. Temporal Shared-Memory Streaming
2. Last-Touch Correlated Data Streaming

e Summary
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Temporal Shared-Memory Streaming
[ISCA’05]

e Record sequences of memory accesses
e Transfer data sequences ahead of requests

Baseline System Streaming System
Miss A >
<«—Fill A —— Miss A —»
CPU|__ iss5 —» | Mem CPU| criagc, . —|Mem
< Fill B

e Accelerates arbitrary access patterns
a Parallelizes critical path of pointer-chasing
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Relationship Between Misses

e Intuition: Miss sequences repeat
0 Because code sequences repeat

\AJ
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Miss seq. |Q
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| -

e Observed for uniprocessors in [Chilimbi‘02]

e Temporal Address Correlation
o Same miss addresses repeat in the same order

Correlated miss sequence = stream
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Relationship Between Streams

e Intuition: Streams exhibit temporal locality
o Because working set exhibits temporal locality
a For shared data, repetition often across nodes
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AB|CIDIE|R

Node 1 |Q

Node 2 |T|AB|C|DIE|Y

e Temporal Stream Locality
o Recent streams likely to recur

Addr. correlation + stream locality = temporal correlation
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Memory Level Parallelism

e Streams create MLP for dependent misses

Baseline Temporal Streaming
CPU|. ———>[B|]-. CPU \\
-« —=C C
Must wait to follow pointers Fetch in parallel

e Not possible with larger windows / runahead

Temporal streaming breaks dependence chains
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Temporal Streaming

Node 1 Directory Node 2

) Miss A
Miss B
Miss C
Miss D

) Record
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Temporal Streaming

Node 1 Directory Node 2
) Miss A
Miss B
Miss C
Miss D
. Rea. A Miss A
Fill A
) Record
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Temporal Streaming

Node 1 Directory Node 2
) Miss A
Miss B
Miss C
Miss D
Locate A L Rea.” Miss A
— . Fill A
Stream B, C, p
) Record

( Locate
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Temporal Streaming

Node 1 Directory Node 2
) Miss A
Miss B
Miss C
Miss D
Locate A_* | Red-~ Miss A
- . Fill A
Stream B, C, D
) Record Fetch B, C, D )
( Locate e
) Stream i
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Temporal Streaming Engine

) Record CPU
e Coherence Miss Order Buffer (CMOB)
a ~1.5MB circular buffer per node $

a In local memory
o Addresses only Fill E
Coalesced accesses
) CMOB )
Q| |AB|C|D|E

RIT[Y

1

Local Memory
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Temporal Streaming Engine

( Locate

e Annotate directory
a Already has coherence info for every block
a CMOB append - send pointer to directory
o Coherence miss - forward stream request

A||l shared Node 4 @ CMOB[23]
B (| modified Node 11 @ CMOBJ[401]

Directory
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Temporal Streaming Engine

) Stream

e Fetch data to match use rate CPU
o Addresses in FIFO stream queue
o Fetch into streamed value buffer

Node i: stream {A,B,C...}

ﬁ A|| data L1$
tream Queue
RREERE B::>—’ Eotch A _/AStreamed

Value Buffer

~32 entries
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Practical HW Mechanisms

e Streams recorded/followed in order
a FIFO stream queues
o ~32-entry streamed value buffer
a Coalesced cache-block size CMOB appends

e Predicts many misses from one request
o More lookahead
a Allows off-chip stream storage
a Leverages existing directory lookup
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Methodology: Infrastructure

SimFlex [siGMETRICS'04]
o Statistically sampling — uArch sim. in minutes
a Full-system MP simulation (boots Linux & Solaris)
= Uni, CMP, DSM timing models
0 Real server software (e.g., DB2 & Oracle)

o Component-based — FPGA board interface for hybrid
simulation/prototyping

Publicly available at
http://www.ece.cmu.edu/~simflex
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Methodology:
Benchmarks & Parameters

Benchmark Applications  Model Parameters

* Scientific 0 16 4GHz SPARC CPUs
o em3d, moldyn, ocean _ _
e OLTP: TPC-C 3.0 100 WH 0 8-wide O00; 8-stage pipe

a IBM DB2 7.2 o 256-entry ROB/LSQ

o Oracle 10g
64K L1, 8MB L2
e SPECweb99 w/ 16K con. - '
a Apache 2.0 o TSO w/ speculation

o Zeus 4.3

22
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TSE Coverage Comparison
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TSE outperforms Stride and GHB for coherence misses
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Stream Lengths

—a&— Apache —Ji—DB2 —e—Oracle Zeus
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e Comm: Short streams; low base MLP (1.2-1.3)
e Sci: Long streams; high base MLP (1.6-6.6)
e Temporal Streaming addresses both cases
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TSE Performance Impact

Time Breakdown Speedup
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e TSE eliminates 25%-95% of coherent read stalls
6% to 230% performance improvement
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TSE Conclusions

e Temporal Streaming

a Intuition: Recent coherence miss sequences recur
o Impact: Eliminates 50-100% of coherence misses

e Temporal Streaming Engine
a Intuition: In-order streams enable practical HW
a Impact: Performance improvement
= 79%-230% in scientific apps.
* 6%-21% in commercial Web & OLTP apps.

© 2005 Babak Falsafi 26



Computer Architecture Laboratory at Carnegie Mellon

Outline

e Big Picture

e Example Streaming Techniques
1. Temporal Shared Memory Streaming
2. Last-Touch Correlated Data Streaming

e Summary
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Enhancing Lookahead
L1 @ Time T1

/(.

VIHTITITIIIIIIII.

Observation [Mendelson, Wood&Hilly:

e Few live sets

o Use until last “hit”
o Data reuse - high hit rate
o ~80% dead frames!

Exploit for lookahead:

* Predict last “touch” prior to “death”
 Evict, predict and fetch next line
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How Much Lookahead?
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Predicting last-touches will eliminate all latency!
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Dead-Block Prediction [1sca'00 & '01]

e Per-block trace of memory accesses to a block
+ Predicts repetitive last-touch events

Accesses to a block frame
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PC,

PC;:
PC,:
PC,:
PC.:

. load/store AO (hit)
load/store A1 (miss) First touch
load/store A1 (hit)
load/store A1 (hit) Last touch

load/store A3 (miss)

Trace =A1® (PC,,PC,, PC,)
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Dead-Block Prefetcher (DBCP)

e History & correlation tables
o History ~ L1 tag array
a Correlation ~ memory footprint

e Encoding — truncated addition
e Two bit saturating counter

@ry Table@ (\ Correlation Table >

Latest
6 A1,PC,,PC,;,PC, A3 11
T \_/
AT PC, \V
Evict A1

C tA
urrent ACCess Fetch A3 ;;
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DBCP Coverage with
Unlimited Table Storage
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e High average L1 miss coverage
e Low misprediction (2-bit counters)
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Impractlcal On-Chip Storage Size
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On-Chip Correlation Table Size

Needs over 150MB to achieve full potential!
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Our Observation:
Signatures are Temporally Correlated

Signatures need not reside on chip

1. Last-touch sequences recur
e Much as cache miss sequences recur [Chilimbi’'02]
e Often due to large structure traversals

3. Last-touch order ~ cache miss order
e Off by at most L1 cache capacity

Key implications:
e (Can record last touches in miss order
e Store & stream signatures from off-chip
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Last Touch Correlated Data Streaming
(LT-CORDS)

e Streaming signatures on chip
a Keep all sigs. in sequences in off-chip DRAM
a Retain sequence “heads” on chip
o "Head” signals a stream fetch

e Small (~200KB) on-chip stream cache
a Tolerate order mismatch
o Lookahead for stream startup

DBCP coverage with moderate on-chip storage!
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DBCP Mechanisms

v
EEEEEEEEEEEEEEEEE DRAM
IIIIIIIITIIIIIIIII
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All signatures in random-access on-chip table
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DRAM

... and only in order

Chidypd’sashsatrfeedieed ‘ad tactame’

Signatures stored off-chip
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LT-CORDS Mechanisms

Core L1 < nEee
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On-chip storage independent of footprint
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Methodology

e SimpleScalar CPU model with Alpha ISA
o SPEC CPU2000 & Olden benchmarks

e 8-wide out-of-order processor
a 2 cycle L1, 16 cycle L2, 180 cycle DRAM
a FU latencies similar to Alpha EV8
o 64KB 2-way L1D, 1MB 8-way L2

e LT-CORDS with 214KB on-chip storage
e Apps. with significant memory stalls
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LT-CORDS vs. DBCP Coverage
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LT-CORDS reaches infinite DBCP coverage
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LT-CORDS Speedup
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LT-CORDS hides large fraction of memory latency
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LT-CORDS Conclusions

e Intuition: Signatures temporally correlated
o Cache miss & last-touch sequences recur
o Miss order ~ last-touch order

e Impact: eliminates 75% of all misses

o Retains DBCP coverage, lookahead, accuracy
a On-chip storage indep. of footprint
o 2X less memory stalls over best prior work
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For more information

Visit our website:
http://www.ece.cmu.edu/CALCM
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