
© 2005 Babak Falsafi

Babak Falsafi

Team: Mike Ferdman, Brian Gold, Nikos Hardavellas,
 Jangwoo Kim, Stephen Somogyi, Tom Wenisch
Collaborator: Anastassia Ailamaki & Andreas Moshovos

© 2005 Babak Falsafi 2

The Memory Wall

Logic/DRAM speed gap continues to increase!!
VAX/1980 PPro/1996 2010+

© 2005 Babak Falsafi 3

Current Approach
Cache hierarchies:
•  Trade off capacity for speed
•  Exploit “reuse”

But, in modern servers
•  Only 50% utilization of one proc.

[Ailamaki, VLDB’99]

•  Much bigger problem in MPs

What is wrong?
•  Demand fetch/repl. data 100G

L3 64M

L2 2M

 1
00

0
cl

k

L1 64K

 1
 c

lk

 1
0

cl
k

 1
00

 c
lk

© 2005 Babak Falsafi 4

Prior Work (SW-Transparent)

Prefetching [Joseph 97] [Roth 96] [Nesbit 04] [Gracia Pérez 04]

  Simple patterns or low accuracy

Large Exec. Windows / Runahead [Mutlu 03]
  Fetch dependent addresses serially

Coherence Optimizations [Stenström 93] [Lai 00] [Huh 04]

  Limited applicability (e.g., migratory)

Need solutions for arbitrary access patterns

© 2005 Babak Falsafi 5

Observation:
•  Data spatially/temporally correlated
•  Arbitrary, yet repetitive, patterns

Approach → Memory Streaming
•  Extract spat./temp. patterns
•  Stream data to/from CPU

  Manage resources for multiple blocks
  Break dependence chains

•  In HW, SW or both

L1

A
C

D

B

..

Z
X

W

st
re

am

re
pl

ac
e

fe
tc

h

© 2005 Babak Falsafi 6

Contribution #1:
Temporal Shared-Memory Streaming

•  Recent coherence miss sequences recur
  ≥50% misses closely follow previous sequence
  Large opportunity to exploit MLP

•  Temporal streaming engine
  Ordered streams allow practical HW
  Performance improvement:

 7%-230% in scientific apps.
 6%-21% in commercial Web & OLTP apps.

© 2005 Babak Falsafi 7

Contribution #2:
Last-touch Correlated Data Streaming

•  Last-touch prefetchers
  Cache block deadtime >> livetime
  Fetch on a predicted “last touch”
  But, designs impractical (> 200MB on-chip)

•  Last-touch correlated data streaming
  Miss order ~ last-touch order
  Stream table entries from off-chip
  Eliminates 75% of all L1 misses with ~200KB

© 2005 Babak Falsafi 8

Outline

© 2005 Babak Falsafi 9

• Record sequences of memory accesses
• Transfer data sequences ahead of requests

Temporal Shared-Memory Streaming
[ISCA’05]

Baseline System!

CPU Mem

Miss A
Fill A

Streaming System!

Miss B
Fill B

CPU Mem
Miss A

Fill A,B,C,…

• Accelerates arbitrary access patterns
  Parallelizes critical path of pointer-chasing

© 2005 Babak Falsafi 10

Relationship Between Misses

•  Intuition: Miss sequences repeat
  Because code sequences repeat

•  Observed for uniprocessors in [Chilimbi’02]

•  Temporal Address Correlation
  Same miss addresses repeat in the same order

Correlated miss sequence = stream

Q W A B C D E R T A B C D E Y Miss seq.
…

© 2005 Babak Falsafi 11

Relationship Between Streams

•  Intuition: Streams exhibit temporal locality
  Because working set exhibits temporal locality
  For shared data, repetition often across nodes

•  Temporal Stream Locality
  Recent streams likely to recur

Q W A B C D E R

T A B C D E Y

Node 1

Node 2

Addr. correlation + stream locality = temporal correlation

© 2005 Babak Falsafi 12

Memory Level Parallelism

•  Streams create MLP for dependent misses

•  Not possible with larger windows / runahead

Temporal streaming breaks dependence chains

A
B

C

Baseline!

CPU

Must wait to follow pointers

Temporal Streaming!

CPU

Fetch in parallel

A
B

C

© 2005 Babak Falsafi 13

Temporal Streaming

)❩ Record

)❩
Node 1!

Miss A
Miss B
Miss C
Miss D

Directory! Node 2!

© 2005 Babak Falsafi 14

Temporal Streaming

)❩ Record

)❩
Node 1!

Miss A
Miss B
Miss C
Miss D

Directory! Node 2!

Miss A Req. A

Fill A

© 2005 Babak Falsafi 15

Temporal Streaming

)❩ Record
❪ Locate

)❩
Node 1!

Miss A
Miss B
Miss C
Miss D

Directory! Node 2!

❪ Miss A Req. A

Fill A
Locate A

Stream B, C, D

© 2005 Babak Falsafi 16

Temporal Streaming

)❩
Node 1!

Miss A
Miss B
Miss C
Miss D

Directory! Node 2!

❪ Miss A Req. A

Fill A
Locate A

Stream B, C, D

)❩ Record
❪ Locate
❫ Stream

❫ Fetch B, C, D

Hit B

Hit C

© 2005 Babak Falsafi 17

Temporal Streaming Engine

)❩ Record
•  Coherence Miss Order Buffer (CMOB)

  ~1.5MB circular buffer per node
  In local memory
  Addresses only
  Coalesced accesses

CPU

$

Local Memory

CMOB
Q W A B C D E R T Y

Fill E

© 2005 Babak Falsafi 18

Temporal Streaming Engine

❪ Locate

•  Annotate directory
  Already has coherence info for every block
  CMOB append  send pointer to directory
  Coherence miss  forward stream request

Directory

A
B

shared Node 4 @ CMOB[23]
modified Node 11 @ CMOB[401]

© 2005 Babak Falsafi 19

Temporal Streaming Engine

❫ Stream
•  Fetch data to match use rate

  Addresses in FIFO stream queue
  Fetch into streamed value buffer

F E D C B
Stream Queue

CPU

L1 $
Streamed

Value Buffer

Node i: stream {A,B,C…}

A data

Fetch A

~32 entries

© 2005 Babak Falsafi 20

Practical HW Mechanisms

•  Streams recorded/followed in order
  FIFO stream queues
  ~32-entry streamed value buffer
  Coalesced cache-block size CMOB appends

•  Predicts many misses from one request
  More lookahead
  Allows off-chip stream storage
  Leverages existing directory lookup

© 2005 Babak Falsafi 21

Methodology: Infrastructure

SimFlex [SIGMETRICS’04]

  Statistically sampling → uArch sim. in minutes
  Full-system MP simulation (boots Linux & Solaris)

 Uni, CMP, DSM timing models
  Real server software (e.g., DB2 & Oracle)
  Component-based → FPGA board interface for hybrid

simulation/prototyping

Publicly available at
http://www.ece.cmu.edu/~simflex

© 2005 Babak Falsafi 22

Methodology:
Benchmarks & Parameters

Model Parameters

  16 4GHz SPARC CPUs

  8-wide OoO; 8-stage pipe

  256-entry ROB/LSQ

  64K L1, 8MB L2

  TSO w/ speculation

Benchmark Applications
• Scientific

  em3d, moldyn, ocean
• OLTP: TPC-C 3.0 100 WH

  IBM DB2 7.2
  Oracle 10g

• SPECweb99 w/ 16K con.
  Apache 2.0
  Zeus 4.3

© 2005 Babak Falsafi 23

TSE Coverage Comparison

TSE outperforms Stride and GHB for coherence misses

© 2005 Babak Falsafi 24

Stream Lengths

•  Comm: Short streams; low base MLP (1.2-1.3)
•  Sci: Long streams; high base MLP (1.6-6.6)
•  Temporal Streaming addresses both cases

© 2005 Babak Falsafi 25

TSE Performance Impact

 em3d moldyn ocean Apache DB2 Oracle Zeus

Time Breakdown Speedup

95% CI

•  TSE eliminates 25%-95% of coherent read stalls
6% to 230% performance improvement

© 2005 Babak Falsafi 26

TSE Conclusions

• Temporal Streaming
  Intuition: Recent coherence miss sequences recur
  Impact: Eliminates 50-100% of coherence misses

• Temporal Streaming Engine
  Intuition: In-order streams enable practical HW
  Impact: Performance improvement

 7%-230% in scientific apps.
 6%-21% in commercial Web & OLTP apps.

© 2005 Babak Falsafi 27

Outline

•  Big Picture

•  Example Streaming Techniques
1.  Temporal Shared Memory Streaming

2.  Last-Touch Correlated Data Streaming

•  Summary

© 2005 Babak Falsafi 28

Enhancing Lookahead

Observation [Mendelson, Wood&Hill]:

•  Few live sets
  Use until last “hit”
  Data reuse  high hit rate
  ~80% dead frames!

Exploit for lookahead:
•  Predict last “touch” prior to “death”
•  Evict, predict and fetch next line

L1 @ Time T1

L1 @ Time T2

Li
ve

 s
et

s
De

ad
 s

et
s

© 2005 Babak Falsafi 29

How Much Lookahead?

Predicting last-touches will eliminate all latency!

D
R

A
M

 la
te

nc
y

L2
 la

te
nc

y

Frame Deadtimes (cycles)

© 2005 Babak Falsafi 30

Dead-Block Prediction [ISCA’00 & ’01]

•  Per-block trace of memory accesses to a block
+  Predicts repetitive last-touch events

PC3: load/store A1"

PC1: load/store A1"

PC3: load/store A1"

PC5: load/store A3"

Ac
ce

ss
es

 to
 a

bl
oc

k f
ra

m
e

(miss)"

(hit)"

(hit)"

(miss)"

PC0: load/store A0" (hit)"

Trace = A1 ⊗ (PC1,PC3, PC3)

Last touch"

First touch"

© 2005 Babak Falsafi 31

Dead-Block Prefetcher (DBCP)

Evict A1"
Fetch A3"

11"

Correlation Table"

A3"A1,PC1,PC3,PC3
PC1,PC3

History Table (HT)"

PC3"

⊗!

Current Access"

Latest"

A1"

•  History & correlation tables
  History ~ L1 tag array
  Correlation ~ memory footprint

•  Encoding ⎯ truncated addition
•  Two bit saturating counter

© 2005 Babak Falsafi 32

DBCP Coverage with
Unlimited Table Storage

•  High average L1 miss coverage
•  Low misprediction (2-bit counters)

© 2005 Babak Falsafi 33

Impractical On-Chip Storage Size

Needs over 150MB to achieve full potential!

© 2005 Babak Falsafi 34

Our Observation:
Signatures are Temporally Correlated

Signatures need not reside on chip
1.  Last-touch sequences recur

•  Much as cache miss sequences recur [Chilimbi’02]

•  Often due to large structure traversals

3.  Last-touch order ~ cache miss order
•  Off by at most L1 cache capacity

Key implications:
•  Can record last touches in miss order
•  Store & stream signatures from off-chip

© 2005 Babak Falsafi 35

Last-Touch Correlated Data Streaming
(LT-CORDS)

•  Streaming signatures on chip
  Keep all sigs. in sequences in off-chip DRAM
  Retain sequence “heads” on chip
  “Head” signals a stream fetch

•  Small (~200KB) on-chip stream cache
  Tolerate order mismatch
  Lookahead for stream startup

DBCP coverage with moderate on-chip storage!

© 2005 Babak Falsafi 36

DBCP Mechanisms

Core L1
L2

DRAM

HT

All signatures in random-access on-chip table

Sigs. (160MB)

© 2005 Babak Falsafi 37

Only a subset needed at a time “Head” as cue for the “stream”
Signatures stored off-chip

What LT-CORDS Does

Core L1
L2

DRAM

HT

… and only in order

© 2005 Babak Falsafi 38

LT-CORDS Mechanisms

Core L1
L2

DRAM

HT

SC

On-chip storage independent of footprint

Heads (10K) Sigs. (200K)

© 2005 Babak Falsafi 39

Methodology
•  SimpleScalar CPU model with Alpha ISA

  SPEC CPU2000 & Olden benchmarks

•  8-wide out-of-order processor
  2 cycle L1, 16 cycle L2, 180 cycle DRAM
  FU latencies similar to Alpha EV8
  64KB 2-way L1D, 1MB 8-way L2

•  LT-CORDS with 214KB on-chip storage
•  Apps. with significant memory stalls

© 2005 Babak Falsafi 40

LT-CORDS vs. DBCP Coverage

LT-CORDS reaches infinite DBCP coverage

© 2005 Babak Falsafi 41

LT-CORDS Speedup

LT-CORDS hides large fraction of memory latency

© 2005 Babak Falsafi 42

LT-CORDS Conclusions

•  Intuition: Signatures temporally correlated
  Cache miss & last-touch sequences recur
  Miss order ~ last-touch order

•  Impact: eliminates 75% of all misses
  Retains DBCP coverage, lookahead, accuracy
  On-chip storage indep. of footprint
  2x less memory stalls over best prior work

© 2005 Babak Falsafi 43

For more information
Visit our website:
http://www.ece.cmu.edu/CALCM

