Temporal Memory Streaming

Babak Falsafi

Team: Mike Ferdman, Brian Gold, Nikos Hardavellas, Jangwoo Kim, Stephen Somogyi, Tom Wenisch Collaborator: Anastassia Ailamaki & Andreas Moshovos

STEMS

Computer Architecture Lab Carnegie Mellon

http://www.ece.cmu.edu/CALCM

The Memory Wall

Current Approach

Cache hierarchies:

- Trade off capacity for speed
- Exploit "reuse"

But, in modern servers

- Only 50% utilization of one proc. [Ailamaki, VLDB'99]
- Much bigger problem in MPs

What is wrong?

• Demand fetch/repl. data

Prior Work (SW-Transparent)

Prefetching [Joseph 97] [Roth 96] [Nesbit 04] [Gracia Pérez 04]
 Simple patterns or low accuracy

Large Exec. Windows / Runahead [Mutlu 03]

Coherence Optimizations [Stenström 93] [Lai 00] [Huh 04] Limited applicability (e.g., migratory)

Need solutions for arbitrary access patterns

Our Solution: Spatio-Temporal Memory Streaming

Observation:

- Data spatially/temporally correlated
- Arbitrary, yet repetitive, patterns

Approach → Memory Streaming

- Extract spat./temp. patterns
- Stream data to/from CPU
 - Manage resources for multiple blocks
 - Break dependence chains
- In HW, SW or both

Contribution #1: Temporal Shared-Memory Streaming

- Recent coherence miss sequences recur

 ≥50% misses closely follow previous sequence

 Large opportunity to exploit MLP
- Temporal streaming engine
 Ordered streams allow practical HW
 Performance improvement:
 - 7%-230% in scientific apps.
 - 6%-21% in commercial Web & OLTP apps.

Contribution #2:

Last-touch Correlated Data Streaming

- Last-touch prefetchers
 - □ Cache block deadtime >> livetime
 - Fetch on a predicted "last touch"
 - But, designs impractical (> 200MB on-chip)
- Last-touch correlated data streaming
 - Miss order ~ last-touch order
 - Stream table entries from off-chip
 - Eliminates 75% of all L1 misses with ~200KB

Outline

STEMS Overview

- Example Temporal Streaming
 - 1. Temporal Shared-Memory Streaming
 - 2. Last-Touch Correlated Data Streaming
- Summary

Temporal Shared-Memory Streaming [ISCA'05]

- Record sequences of memory accesses
- Transfer data sequences ahead of requests

Accelerates arbitrary access patterns
 Parallelizes critical path of pointer-chasing

Relationship Between Misses

Intuition: Miss sequences repeat
 Because code sequences repeat

- Observed for uniprocessors in [Chilimbi'02]
- Temporal Address Correlation
 Same miss addresses repeat in the same order

Correlated miss sequence = stream

Relationship Between Streams

Intuition: Streams exhibit temporal locality
 Because working set exhibits temporal locality
 For shared data, repetition often across nodes

Temporal Stream Locality
 Recent streams likely to recur

Addr. correlation + stream locality = temporal correlation

Memory Level Parallelism

• Streams create MLP for dependent misses

Must wait to follow pointers

Fetch in parallel

• Not possible with larger windows / runahead

Temporal streaming breaks dependence chains

CPU

\$

Temporal Streaming Engine

) Record

Coherence Miss Order Buffer (CMOB)

 ~1.5MB circular buffer per node
 In local memory
 Addresses only
 Coalesced accesses

Local Memory

Temporal Streaming Engine

(Locate

• Annotate directory

Already has coherence info for every block

 \square CMOB append \rightarrow send pointer to directory

 \square Coherence miss \rightarrow forward stream request

Temporal Streaming Engine

) Stream

Fetch data to match use rate
 Addresses in FIFO stream queue
 Fetch into streamed value buffer

Practical HW Mechanisms

- Streams recorded/followed in order
 FIFO stream queues
 ~32-entry streamed value buffer
 - Coalesced cache-block size CMOB appends
- Predicts many misses from one request
 - More lookahead
 - Allows off-chip stream storage
 - Leverages existing directory lookup

Methodology: Infrastructure

SimFlex [SIGMETRICS'04]

 \Box Statistically sampling \rightarrow uArch sim. in minutes

- □ Full-system MP simulation (boots Linux & Solaris)
 - Uni, CMP, DSM timing models
- □ Real server software (e.g., DB2 & Oracle)
- □ Component-based → FPGA board interface for hybrid simulation/prototyping

Publicly available at http://www.ece.cmu.edu/~simflex

Methodology: Benchmarks & Parameters

Benchmark Applications

- Scientific
 - em3d, moldyn, ocean
- OLTP: TPC-C 3.0 100 WH
 - □ IBM DB2 7.2
 - Oracle 10g
- SPECweb99 w/ 16K con.
 - □ Apache 2.0
 - Zeus 4.3

Model Parameters

- □ 16 4GHz SPARC CPUs
- □ 8-wide OoO; 8-stage pipe
- □ 256-entry ROB/LSQ
- □ 64K L1, 8MB L2
- □ TSO w/ speculation

TSE Coverage Comparison

TSE outperforms Stride and GHB for coherence misses

Stream Lengths

- Comm: Short streams; low base MLP (1.2-1.3)
- Sci: Long streams; high base MLP (1.6-6.6)
- Temporal Streaming addresses both cases

TSE Performance Impact

 TSE eliminates 25%-95% of coherent read stalls 6% to 230% performance improvement

TSE Conclusions

• Temporal Streaming

Intuition: Recent coherence miss sequences recur
 Impact: Eliminates 50-100% of coherence misses

• Temporal Streaming Engine

Intuition: In-order streams enable practical HW
 Impact: Performance improvement

- 7%-230% in scientific apps.
- 6%-21% in commercial Web & OLTP apps.

Outline

- Big Picture
- Example Streaming Techniques
 - 1. Temporal Shared Memory Streaming
 - 2. Last-Touch Correlated Data Streaming
- Summary

Enhancing Lookahead

Observation [Mendelson, Wood&Hill]:

Few live sets
□ Use until last "hit"
□ Data reuse → high hit rate
□ ~80% dead frames!

Exploit for lookahead:

- Predict last "touch" prior to "death"
- Evict, predict and fetch next line

How Much Lookahead?

Predicting last-touches will eliminate all latency!

Dead-Block Prediction [ISCA'00 & '01]

- Per-block trace of memory accesses to a block
- + Predicts repetitive last-touch events

Dead-Block Prefetcher (DBCP)

- History & correlation tables
 - □ History ~ L1 tag array
 - Correlation ~ memory footprint
- Encoding truncated addition
- Two bit saturating counter

DBCP Coverage with Unlimited Table Storage

- High average L1 miss coverage
- Low misprediction (2-bit counters)

Impractical On-Chip Storage Size

Needs over 150MB to achieve full potential!

Our Observation: Signatures are Temporally Correlated

Signatures need not reside on chip

- 1. Last-touch sequences recur
 - Much as cache miss sequences recur [Chilimbi'02]
 - Often due to large structure traversals
- 3. Last-touch order ~ cache miss order
 - Off by at most L1 cache capacity

Key implications:

- Can record last touches in miss order
- Store & stream signatures from off-chip

Last-Touch Correlated Data Streaming (LT-CORDS)

- Streaming signatures on chip

 Keep all sigs. in sequences in off-chip DRAM
 Retain sequence "heads" on chip
 "Head" signals a stream fetch
- Small (~200KB) on-chip stream cache
 - Tolerate order mismatch
 Lookahead for stream startup

DBCP coverage with moderate on-chip storage!

DBCP Mechanisms

All signatures in random-access on-chip table

What LT-CORDS Does

Chhłya da''saubseterfeedleel 'astactanne'

Signatures stored off-chip

LT-CORDS Mechanisms

On-chip storage independent of footprint

Methodology

- SimpleScalar CPU model with Alpha ISA
 SPEC CPU2000 & Olden benchmarks
- 8-wide out-of-order processor
 2 cycle L1, 16 cycle L2, 180 cycle DRAM
 FU latencies similar to Alpha EV8
 64KB 2-way L1D, 1MB 8-way L2
- LT-CORDS with 214KB on-chip storage
- Apps. with significant memory stalls

LT-CORDS vs. DBCP Coverage

LT-CORDS reaches infinite DBCP coverage

LT-CORDS Speedup

LT-CORDS hides large fraction of memory latency

LT-CORDS Conclusions

- Intuition: Signatures temporally correlated

 Cache miss & last-touch sequences recur
 Miss order ~ last-touch order
- Impact: eliminates 75% of all misses
 - Retains DBCP coverage, lookahead, accuracy
 - On-chip storage indep. of footprint
 - 2x less memory stalls over best prior work

For more information

Visit our website: http://www.ece.cmu.edu/CALCM

