

Big Data & Dark Silicon Taming Two IT Trends on a Collision Course

Babak Falsafi
Director, EcoCloud
ecocloud.ch

Information Technology (IT): Four Decades of Exponential Growth

IT is at the core everything we do & has become an indispensable pillar for a modern day society!

A Brief History of IT

Communication Era

Consumer Era

1970s- 1980s 1990s Today+
Mainframes
PC Era

- From computing-centric to data-centric
- Consumer Era: interfacing, connectivity and access

Two IT Trends on a Collision Course

I. Big Data

- Data grows at unprecedented rates
- Silicon performance & capacity at 1.5x/year

2. Energy

- Silicon density increase continues
- But, Silicon efficiency has slowed down/will stop
- IT energy not sustainable

Inflection Point #1: IT is all about Data

[source: Economist]

- Data growth (by 2015) = 100x in ten years [IDC 2012]
 - Population growth = 10% in ten years
- Monetizing data for commerce, health, science, services,
- Big Data is shaping IT & pretty much whatever we do!

Data Growing Faster than Technology

Application/OS Datasets Scaling

Data-Centric IT Growing Fast

Source: James Hamilton, 2012

Daily IT growth in 2012 = IT first five years of business!

Warning! Datacenters are not Supercomputers!

- Run heterogeneous data services at massive scale
- Driven for commercial use
- Fundamentally different design, operation, reliability, TCO
 - Density 10-25KW/rack as compared to 25-90KW/rack
 - Tier 3 (~2 hrs/downtime) vs.Tier I (upto I day/downtime)
 -and lots more

Datacenters are the IT utility plants of the future

Supercomputing

Cloud Computing

Data Comes in Various Flavors

Satellite

Health

Entertainment

Life

Commerce

Search

Simulation

Data Shaping All Science & Technology

Science entering 4th paradigm

- Analytics using IT on
 - Instrument data
 - Simulation data
 - Sensor data
 - Human data
 - **—** ...

Complements theory, empirical science & simulation

Strategically vital for innovation & tech-based economies!

Venice Time Machine (vtm.epfl.ch)

Inflection Point #2: Energy used to be "Free"

Before (1970~2005):

- Used to make transistors smaller
- Smaller transistors less electricity to operate
- Chip energy consumption remained ~ same

No More "Free" Energy

- Now (2005-):
 - Continue to make transistors smaller
 - But, they use similar electricity to operate
 - Chip energy consumption is shooting up

Where did "Free" Energy Go?

Robert H. Dennard, picture from Wikipedia

Four decades of Dennard Scaling (1970~2005):

- $P = C V^2 f$
- More transistors
- Lower voltages
- → Constant power/chip

Leakage Killed Dennard Scaling

Leakage:

- Exponential in inverse of V_{th}
- Exponential in temperature
- Linear in transistor count

To switch well

- must keep $V_{dd}/V_{th} > 3$
- →V_{dd} can't go down

End of Dennard Scaling

The fundamental energy silver bullet is gone!

The Rise of Parallelism to Save the Day

With voltages leveling:

- Parallelism has emerged as the only silver bullet
- Use simpler cores
 - Prius instead of Audi
- Restructure software
- Each core →

fewer

joules/op

Conventional Serve Xeon] CPU (e.g., Multicore Scaling

Modern Multicore CPU (e.g., Tilera)

The Rise of Dark Silicon: End of Multicore Scaling

Number of

But parallelism alone can not offset leveling voltages

Even in servers with abundant parallelism

Core complexity leveled off too!

Soon, cannot power all chip

Year of Technology Introduction

Hardavellas et. al., "Toward Dark Silicon in Servers", IEEE Micro, 2011

Higher Demand + Lower Efficiency: Datacenter Energy Not Sustainable!

- Modern datacenters → 20 MW!
- In modern world, 6% of all electricity, growing at >20%!

Big Data

IT's Future

Bridging Technologies

Big Energy

1010010001001140101010101201010011010010101111101000101010

Center to bring efficiency to data

- 15 faculty, 50 researchers
- Around \$6M/year budget

Mission:

- Energy-efficient data-centric IT
- From algorithms to machine infrastructure
 - E.g., Big Data analytics, integrated computing/cooling,...
- Maximizing Performance/TCO for Big Data

ecocloud.ch

Our Team

Faculty

Aberer

Ailamaki Argyraki

Atienza

Bugnion

Candea

Cevher

Guerraoui

Koch

Larus

Lenstra

Odersky

Thome

Zwaenepoel

Executive Director Staff

Diallo

Locca

+50 Researchers

Today's Server Ecosystem

Conventional IT:

- Product based
- Per-vendor layer
- Well-defined interfaces
- Near-neighbor optimization at best

Big vendors (e.g., Amazon, Google)

- Can do cross-layer optimizations
- But,
 - Only limited to services of interest
 - Maybe limited in extent (e.g., software)
 - Proprietary technologies
 - Host all data

Our Vision:

Holistic Optimization of IT Infrastructure

Holistic optimization

- From Algorithms to Infrastructure
- Novel energy-centric IT paradigms
- Strategic interfaces to monitor, manage & reduce energy as a first class resource

Algorithm

Our Vision: The ISA Triangle of Efficiency

Approximation

(Trade off Accuracy for Energy)

Integrated Thermal & Load Balancing

Project PMSM

- Synergistic IT load/thermal control
- Real-time monitoring of 5K servers
- Fine-grain power/thermal sensors

50% energy savings!

Integrated Cooling: CMOSAIC

3D server chip

Two-phase liquid cooling

- Enables higher thermals
- Dramatically better heat removal

Prototyped by IBM

Integrated Power Subsystem: GreenDataNet

Towards Energy-Neutral Datacenters

- Power generation
 - + power storage
 - + server resource
 - provisioning
- Federated sites
- Grid load management

Data center n

Scale-Out Datacenters

Vast data sharded across servers

Memory-resident workloads

- Necessary for performance
- MajorTCO burden

Processors access data in memory

- Abundant request-level parallelism

Performance scales with core count

Design servers around memory!

How efficient are servers for in-memory apps? CloudSuite 2.0 (parsa.epfl.ch/cloudsuite)

Data Caching

Data Serving

Cassandra NoSQL

Graph Analytics

TunkRank

Media Streaming

Apple Quicktime Server

SW Testing as a Service

Symbolic constraint solver

Web Search

Apache Nutch

In Use by AMD, Huawei, HP, Intel, Google....

Big Data Workloads Stuck in Memory!

Inst.

Window

Core Inefficiencies

- Underutilized complexity
- Scale-out requirements low
 - couple parallel memory ops.
 - one execution unit

Exec.

Units

Instruction-Fetch Misses

Suffer severe i-cache miss penalties

Instruction-Fetch Inefficiencies

- Large instruction working set
 - Larger than L1 & L2 capacity
 - Instructions read from LLC
- Core stalled during i-fetch

LLC Sensitivity

Minimal performance from large LLC

Off-chip Memory Bandwidth

Off-chip BW severely underutilized

Inst.

LLC and Bandwidth Inefficiencies

- Scale-out needs modest LLC
 - Beyond 3-4MB useless
 - Area & latency w/o payoff
- Low per-core BW needs
 - <15% utilization</p>
 - Too many channels
 - Too high frequency

Exec.

CloudSuite on Modern Servers [ASPLOS'12, best paper]

8 MB (60%) waste of space (no reuse)!

What do Existing Processors Offer?

Intel Xeon (~100 W)

Calxeda (~5W)

Tilera (~30W)

- **✗** Few fat cores
- **★** Large LLC

- ✗ Few lean cores
- ✓ Compact LLC
- ✓ Many lean cores
- **X** Large LLC
- **✗** Large distance

Mismatch with workload demands!

Specialized Processors for In-Memory Services:

Scale-Out Processors [ISCA'12, IEEE Micro'12]

One or more stand-alone (physical) servers

Runs a full software stack

No inter-pod connectivity or coherence

- Scalability and optimality across generations

Pods can share chip I/O (e.g., memory, network, etc.)

Inherently Software Scalable!

NOC-Out: [Micro'12]

Specialized Network-on-Chip for Pods

Exactly the **opposite** of current NoCs

- Cache coherent
- But, designed for core-to-cache communication
- Not core-to-core!

LLC network:

- Flattened Butterfly (FB) topology

Request & Reply networks:

- Tree topology
- Limited connectivity for efficiency

OH			
0	C	0	0
0	0	C	0
			0
A	•	A	
		T.	8
C	C	Q,	S
CC	CC	C	

FB's performance at 1/10th cost

Footprint Cache: [ISCA'13] Effective Die-Stacked Caching for Pods

Die-Stacked Caching:

Rich connectivity

High on-chip BW

− High capacity → Low off-chip BW

С	С	С	С	С	С
С	\$	С	С	\$	С
С	\$	С	С	\$	С
С	Ċ	С	С	С	C
С	С	С	С	С	C
C	\$	С	С	\$	C
С	\$	С	С	\$	С
С	С	С	С	С	С

Footprint Cache:

- Allocate tags for pages
- Predict & fetch page's footprint

EuroCloud Server: (eurocloudserver.com) 3D Scale-Out Chip for In-Memory Computing

Mobile efficiency in servers

- Swarms of ARM cores
- 3D memory
- I0x performance/TCO
- Runs Linux LAMP stack

Planned prototype:

- ARM/ST/cea + Chalmers/FORTH in EuroServer FP7
- Data Processing Unit by Huawei

Flashback 2004:

Shekhar Borkar's (Intel Fellow) Keynote @ Micro

Intel's TCP/IP Processor

An idea too early for its time?

Specialization:

An idea whose time has come

- One FPGA per blade
- All FPGAS connected in half rack
- 6×8 2-D torus topology
- High-end Stratix V FPGAs
- Running Bing Kernels for feature extraction and machine learning

Specialized Database Stack: DBToaster

Compiling offline analytics into online/incremental engines

Aggressive code specialization

Data Stream

Low-latency in-memory stream processing

Up to 6 OOM faster than commercial systems

dbtoaster.org

Specialized Network Stack: The IX kernel [Belay'14, OSDI best paper]

- Data plane principles: zero-copy, run-to-completion, coherence free
- Protected operating system with clean-slate API
- Specialized for in-memory event-driven applications

3.6x throughput with <50% latency @ 99th percentile

Today's Network Fabrics Bottleneck!

In-Memory Latency critical services

- Graphs, KV, DB

Vast datasets \rightarrow distribute

Often within rack

Today's networks:

★ Latency 20x-1000x of DRAM

Remote access latency >> local access latency

Big Data on ccNUMA: Expensive

- ✓ Ultra-low latency
- X Cost and complexity of scaling up
- **X** Fault-containment

Ultra low-latency but ultra expensive

Big Data on Commodity Fabrics: Slow

- ✓ Cost-effective rack-scale fabrics of SoCs
- ★ High remote latency (~ > 10 us)

AMD's SeaMicro

HP's Moonshot

Need low-latency rack-scale fabric!

Scale-Out NUMA (soNUMA): Microsoft Rack-scale In-memory Computing [ASPLOS'14]

- Global virtual address space w/o global coherence
- RDMA-inspired programming model
 - Integrated Network Interface (NI)
 - Software Accessible Remote Memory Controller (RMC)
- Lean NUMA fabric
 - Reliable user-level messaging over a minimal protocol

A few words on Approximation

Data services are probabilistic

→ Yet digital platforms are precise!

Much opportunity at the algorithmic/software level

- Learning algorithms (Cevher et. al.)
- Approximate querying (Koch et. al.)
- Programming (Rinard et. al.)

Architecture?

- Bad: von Neumann not best suited for approximation
 - Control path dominates energy
 - Dual datapath shown (Ceze et. al.) not useful
- Good: support for neural processing
 - Analog (Temam et. al.) or Digital (Esmailizadeh et. al.)

Summary

Two IT trends on a collision course:

- Data growing at ~I0x/year
- Nearing end of Dennard & Multicore Scaling
- Need technologies to bring efficiency to data

Moving away from products to services

- Future opportunities are in cross-layer design

Long term:

Integrate + Specialize + Approximate (ISA for Big Data)

Thank You!

For more information please visit us at

ecocloud.ch

