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Big Data & Dark Silicon

Taming Two IT Trends on a
Collision Course

= (]
Director, EcoCloud
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nformation Technology (IT):
Four Decades of Exponential Growth

Intel 4004, 1971

Moore’s Law - 2005
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96,000,000,000 ops/sec I

9 Microprocessor

I'T I1s at the core everything we do & has become an
indispensable pillar for a modern day society!
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A Brief History of [T

Communication Era

Consumer Era

* From computing-centric to data-centric
* Consumer Era: interfacing, connectivity and access
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Two IT Trends on a Collision Course

hh

. Big Data

—  Data grows at unprecedented rates

—  Sllicon performance & capacity at |.5x/year

2. Energy
—  Silicon density increase continues
—  But, Silicon efficiency has slowed down/will stop

— [T energy not sustainable
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[source: Economist]

* Data growth (by 2015) = [00x in ten years [IDC 2012]
— Population growth = 10% in ten years

* Monetizing data for commerce, health, science, services, ....

* Big Data 1s shaping IT & pretty much whatever we dol!
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Data Growing Faster than lTechnology
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WinterCorp Survey, www.wintercorp.com
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Datasets Scaling

=& - OS Dataset Scaling
(Muhrvold's Law)

-8 - Transistor Scaling
(Moore's Law)

== TPC Dataset (Historic)

2004 2007 2010

Year

2013

2016 2019



Data-Centric [T Growing Fast

Source: James Hamilton, 2012
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Each day Amazon Web Services adds enough
new ca_pamty to support allof Amazon.com’s
globalginfrastructhre through the company’s
first 5 years, when it was @ $2.76B annual

reven ue enterprise

Dally IT growth in 20| 2 [T first five yearé of business'
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Warning! Datacenters are not Supercomputers!

Run heterogeneous data services at massive scale

Driven for commercial use

-undamentally different design, operation, reliability, TCO

* Density 10-25KW/rack as compared to 25-90KW/rack

* Tier 3 (~2 hrs/downtime) vs.Tier | (upto | day/downtime)
¢ ... and lots more

Datacenters are the IT utility plants of the future

— p

Supercomputing Cloud Coputing
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Data Comes in Various Flavors

Commerce Simulation
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naping All Science &

Science entering 4™ paradigm

* Analytics using T on

— Instrument data
— Simulation data
— Sensor data

— Human data

Complements theory, empirical
science & simulation

echnology

Strategically vital for innovation & tech-based

economies!



1 BiIIioh Euros to Moel the Brain
(a consortium of 150 scientists from around world)
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Venice Time Machine (vtm.epfl.ch)
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Inflection Point #2:
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Energy used to be “Free
1 transistor = 1x energy 2 transistors =1x energy 4 transistors =1x energy

2 years later .

2 years later
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Before (19/0~2005):

— Used to make transistors smaller
— Smaller transistors less electricity to operate
— Chip energy consumption remained ~ same
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No More “Free” Energy

1 transistor = 1x energy 2 transistors > 1x energy 4 transistors >>1x energy

2 years later

2 years later
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Now (2005-):

— Continue to make transistors smaller

— But, they use similar electricity to operate
— Chip energy consumption is shooting up
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Where did "Free” Energy Go!

Robert H. Dennard, picture from Wikipedia

Voltage, Via __ o ¥ WIRING 3

Dennard et. al,,
1974

tox/ot

P e
Four decades of Dennard Scaling (1970~2005):

- P=CV2f

* More transistors

* Lower voltages

=» Constant power/chip
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L eakage Killed Dennard Scahng c
L eakage: High voltage
* Exponential in inverse of V, e L

* Exponential in temperature
* Linear in transistor count

To switch well

* must keepV o/ Vy, > 3

-?»V 4 can't go down
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-nd of Dennard Scaling

1.2
g 1
>
> 0.8
Q. Projections
Q.
= 0.6
v =%-2001
L S
g 0.4 42013
(@ @ Today
Q. 0.2 : : : |
0 ESlope = 5.053 [source: ITRS]
| | | | |

2001 2006 2011 2016 2021 2026

The fundamental energy silver bullet is gone!
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The Rise of Parallelism to Save the Day

With voltages leveling:

* Parallelism has emerged
as the only silver bullet

Conventional Server
CPU (e.g., Xeon)

Multicore
Scaling

* Use simpler cores
— Prius instead of Audi

e Restructure software

e Fach core =»

fewer
joules/op

Modern Multicore
CPU (e.g., Tilera)

NO001001 1101010101 1010100110100101011 11 0)000101010
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The Rise of Dark Silicon:
End of Multicore Scaling

1024 -
But parallelism alone can not 512 - Dark

. 256 -
offset leveling voltages 108 -

64 -

Silicon

Even In servers with

abundant parallelism Max EMB Cores

EMB

Number of Cores
W
N

—e— GPP

Core complexity leveled off
tool 2004 2007 2010 2013 2016 2019

Year of Technology Introduction

Soon, cannot power all chip Hardavellas et. al., “Toward Dark
Silicon in Servers”, IEEE Micro, 2011
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—hgher Demand + Lower Efficiency:
Datacenter Energy Not Sustainable!

C
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0 280 7 A Modern Datacenter
< 240 - ata;ehter . e
) Electricity Demands ‘
2200 | nthe Us

j(j@ 160 - (source: Energy Star)

= 120 -

O

Z 80 -

é 40 - 50 million homes

s 9 | 7x football stadium, $3 billion

2001 2005 2009 2013 2017

* Modern datacenters =» 20 MW!
* In modern world, 6% of all electricity, srowing at >20%!
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Big Data Big Energy
_IT’s Future
E J

Bridging

Technologies




ecocloud

== Microsoft

| | vmware
Center to bring efficiency to data M Huawe
* |5 faculty, 50 researchers E‘T'N
* Around $6M/year budget T —

Mission: (

* Energy-efficient data-centric IT (intel.

<

* From algorithms to machine infrastructure

— E.g, Big Data analytics, integrated computing/cooling,. ..
* Maximizing Performance/TCO for Big Data

swisscom

NI
CISCO.

.(Pﬂ. CREDIT SUISSE\

{COLE POLYTECHNIQUE ecocloud.ch ORACLE
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Faculty

Aberer Ailamaki

PG [ -

Guerraoui

Koch

Argyraki

Larus

Our Team

Atienza Bugnion  Candea

Lenstra Odersky

Executive Director Staff

Diallo

Cevher Falsafi

Thome Zwaenepoel

+50 Researchers
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ays Server

Conventional IT:

Pr

oduct based

Per-vendor layer

Well-defined interfaces

—Cosystem

Near-neighbor optimization at best

Big vendors (e.g.,Amazon, Google)

* (Can do cross-layer optimizations

But,

Only limited to services of interest

Maybe limited in extent (e.g, software)

Proprietary technologies

Host all data

CIsCO.

5
® )

Application Ssas
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ﬁ’ Micresoft

Runtime System ((
(scripting, DSLs) —3

M:crosoft ﬁ
W Middlewa rg

mandley” (data, web services)

A\
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Operating System
(resource management)

w Server AMD1

(processor, mem, storage, network)

Java
ORACLE
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Infrastructure EAT‘N

(cooling, power)
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OurVision:
Holistic Optimization of | Infrastructure

istic optimization

-rom Algorithms to
nfrastructure

Novel energy-centric [T
Daradigms

Strategic interfaces to
monitor, manage &
reduce energy as a first
class resource

©

o"

c.m\ﬁbe

wyiL108)y

Infrastructure
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OurVision:
The ISA Triangle of Efficiency

Holistic
Optimization
for Energy

Approximation
(Trade off Accuracy for Energy)
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Integrated [ hermal & Load Balancing

Project PMSM

* Synergistic IT load/thermal

control

* Real-time monitoring of

5K servers

* Fine-grain power/thermal

SENSOrS

50% energy savings!

CREDIT SuUISS

W
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. News Archive

DataCentres News
(D DATAC=NTRES com p——

JUNE 26-27 2013, Hyatt Regency Rosebank JOHANNESBURG BROADGRDUP »

2ND

uDATACENTRE AFRICA 2013

Quick search
Credit Suisse Zurich data centre saves up to 50%

nted by EPFL scientists and applied for Credit
s at EPFL, will save up to 50% of the energy

nnected to the server racks’ main powercables
to a software feedback system that adjusts

/fE much morethan only one

on theracks of some 5,200 serversin Credit
approach foraboutsixyears.
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\ntegrated Cooling: CMOSAIC
3D server chip

Two-phase liquid cooling
— Enables higher thermals

— Dramatically better heat removal

Prototyped by IBM

Twall1

Rconv
Tfluid

miW sozs

Twa”2 ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



Integrated Power Subsystem: {ﬁ@reen
GreenDataNet L) Dafa Net

Data center n

\v ‘ .
f‘ ’\ 43 l‘x
- f'..* )

Towards Energy-Neutral Datacenters

* Power generation = [ cridoperator | timesmiene
Data center 1 / recertonolDum Centers
T power storage /
+ server resource [+
provisioning __ (" Smart Energy
. 2 v Power Management.Tool Power Loads
* Federated sites & = (i
e IT loads
) Grld |Oad Power delivery components
4 ' Cooling
maﬂ agem el’]t Renewetle Powsr Compute network and storage

nodes
K Other miscellaneous J
A
/4 E.-T°N A

Powering Business Worldwide C REDIT S UISSE

NissAN)

Gl

ECOLE POLYTECHNIQUE
FEDERALE DFE LAUSANNE
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Scale-Out Datacenters
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Vast data sharded across servers

Memory-resident workloads

— Necessary for performance
— Major TCO burden

Processors access data in memory

— Abundant request-level parallelism

— Performance scales with core count

Data

Design servers around memory!



How efficient are servers for in-memory apps!
CloudSuite 2.0 (parsa.epfl.ch/cloudsuite)

Data Analytics Data Caching Data Serving
Machinelearning Memcached Cassandra NoSQL

K =5

Cassandra

Graph Analytics Media Streaming SW Testing as a Service
TunkRank Apple Quicktime Server Symbolicconstraint solver

Web Serving
Nginx, PHP server

Web Search
Apache Nutch

In Use by AMD, Huawei, HP, Intel, Google....
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Big Data VWorkloads Stuck in Memory!

_ _ o
4 m Application IPC ® Memory Cycles 100%
o
o 3 - - 13%
c
9O
q‘-“l B 50%
9
<% - 25%
- 0%

Execute ~ | Instruction per cycle

Total Execution Cvycles

33
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Core |Inefficiencies

* Underutilized complexity

* Scale-out requirements low

— couple parallel memory ops.

— one execution unit

39 cycles  12MB

200+ cycles

32GB/s

34
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Instruction misses

LIC ——
Instruction-Fetch Misses
50 - = |
c 1\% ml1-l w2
S
‘E 25 -
g
O |
0(5@

Suffer severe i-cache miss penalties
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Instruction-Fetch Inefficiencies
Exec. Inst.
* Large instruction working set Units  Window
— Larger than LI & L2 capacity e
— Instructions read from LLC ? D
ore

* Core stalled during I-fetch

39 cycles 12MB

32GB/s
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Normalized Performance

1.0

0.9

0.8

0.7

0.6

0.5

0.4

LLC Sensitivity

«©-Scale-out “2-SPECint (mcf)

€L

5 6 7 8 9 10
Cache size (MB)

Minimal performance from large LLC

11

37
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Off—ch|p Memory Bandwidth

100% -
- [\

85%

.
=

50% -

Off-chip memory
bandwidth utilization
N
<
o~

0% -

Off-chip BW severely underutilized
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[ LC and Bandwidth Inefficiencies
Exec. Inst.
* Scale-out needs modest LLC Units _ Window
— Beyond 3-4MB useless % %
— Area & latency w/o payoff c
ore
* Low per-core BV needs
— <|5% utilization 4 cycles 64KB | ': }:!_ ____'-_1_'_? ______________
— Too many channels
L2
Mem

— Too high frequency 10 cycles 256KB mm___m;s____




ClOUdSUlte Oon MOderﬂ SGFV@FS [ASPLOS'| 2, best paper]

Workload/Server Mismatch B/W
: unused!

» ; &‘ A gL <' :; : ” "‘ A = s | : {”; s 4
A%t “Co”Fe“‘ 5Core™ ‘Core | Cores

. .:..,. by 4 L,al HP : -8 : o o 2 ‘
h:j't" - j - .lA.‘!_-'- &y ‘:: _ L | = :* E “-A ’ - Y : too fat!

s ve

'ncmPl
lm
/

T rmpﬂw T (7

Hhﬁﬂl‘“‘ IJilii - E{EE{L:E! E,L.’ 2 A n =nnnmm{
33 E;F % ﬁﬁwaredia{ﬂche- L 100 few
. ul. :
et

1 MISE1/0 a
L_”/?l

m#tﬂm FT T KT BREE ° nnnn[e

L
[ (T -
g T 28 EECRECETR. cores!

8 MB (60%) waste of space (no reuse)!

40



VWhat do Existing Processors Offer?

‘C‘C'

Calxeda (~5W)

Core Core Core

Core Core Core

Intel Xeon (~100 W) Tilera (~“30W)
X Few fat cores X Few lean cores  v' Many lean cores
X Large LLC v' Compact LLC X large LLC

X Large distance

Mismatch with workload demands! .



Specialized Processors for In-Memory Services:
Scale-Out Processors [isca’12, IEEE Micro’12]

One or more stand-alone (physical) servers

— Runs a full software stack

No inter-pod connectivity or coherence

— Scalability and optimality across generations

Pods can share chip I/O (e.g,, memory, network, etc.)

Inherently Software Scalable! "
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Specialized Network-on-Chip for Pods

cClC|C

.
=

Exactly the opposite of current NoCs

— Cache coherent
— But, designed for core-to-cache communication

— Not core-to-core!

LLC network:
— Flattened Butterfly (FB) topology

Request & Reply networks:

— Tree topology

— Limited connectivity for efficiency

FB's performance at /10" cost
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Fo otp rint Cache: pscais
Fffective Die-Stacked Caching for Pods

Die-Stacked Caching;
— Rich connectivity = High on-chip BW
— High capacity = Low off-chip BW

Die-Stacked Cache

SCale-Out Processor

Footprint Cache: Off-chip memory
— Allocate tags for pages

— Predict & fetch page'’s footprint

44



FuroCloud Server: (eurocloudserver.com)
3D Scale-Out Chip for In-Memory Computing

Mobile efficiency in servers
* Swarms of ARM cores

* 3D memory
* |Ox performance/TCO

e Runs Linux LAMP stack _ARIG Cotex s

EuroCloud Server Chip

Planned prototype:
 ARM/ST/cea + Chalmers/FORTH In EuroServer FP/
* Data Processing Unit by Huawel
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Flashback 2004

1010910001001 1101010401 20391007 19190401831 10

-”0.‘ D0

(i

Shekhar Borkar's (Intel Fellow)

Intel’s TCP/IP Processor

Keynote @ Micro

An idea too
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1995 2000 2005 2010 2015

early for its time?
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Specialization:
An Idea whose time has come

Microsoft Unveils Catapult to

Accelerate Bing!
[EcoCloud Annual Event, June 5t 2014]

Fiv)

. Ehe
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EFFIZLE SV I 2T TREETTUTERRLY ¢ | B
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* One FPGA per blade

» AllFPGAS connected in half rack

* 6x8 2-D torus topology

* High-end Stratix V FPGAs

* Running Bing Kernels for feature
extraction and machine learning Y

.
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Specialized Database Stack: DB loaster

1)
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'TOASTER

- : . Algorlthmlc Tradlng
Compiling offline analytics into =i

online/incremental engines MW@Q,A*"@J\ 't"@'*‘ =i
Data Center Monnoring

Aggressive code specialization

Data Stream

Low-latency in-memory stream
processing

Up to 6 OOM faster than
commercial systems

10000000

dbtoaster.org

Q3 QS Q10 Q11 Q14 Q15 Q21



Specialized Network Stack:
The IX kernel [Belay' 14, OSDI best paper]

* Data plane principles: zero-copy, run-to-completion, coherence free
* Protected operating system with clean-slate AP

* Specialized for in=memory event-driven applications

.User—level
B Kernel-level

[ Hypervisor-level

3.6x throughput with <50% latency @ 99" percentile
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Todays Network Fabrics Bottleneck!

In-Memory Latency critical services

— Graphs, KV, DB

Vast datasets = distribute , 111

— Often within rack

1x
Joday's networks: I 4

X Latency 20x-1000x of DRAM ‘ 20x — 1000x ‘

Remote access latency >> local access latency
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Big Data on ccNUMA:

v'Ultra-low latency

01001 1101010101 10101001 10100101011 110000101010

W

-Xpensive

X Cost and complexity of scaling up

X Fault-containment

512GB

Ultra low-latency but ultra expensive




.
= =3

—

100010011101010101 10107001 10100101011 110)000101010

“miie

v Cost-effective rack-scale fa

X High remote latency (~ >

AMD's SeaMicro

Big Data on Commodity Fabrics: Slow

orics of SoCs

0 us)

HP’s Moonshot

Need low-latency rack-scale fabric!



Scale-Out NUMA (soNUMA): mm Microsoft
Rack-scale In-memory Computing (aspLos 14

A S
S Coherence
core core R core N . Coherence p— domain 2
S domain1 R
[ LLC J .%.]
)
)
— 1

NUMA
; fabric
Memory Remote ! N e /._[.m'h"\*&‘\/\\//\j/\t
I
Controller } [ MC | |} P - ‘ ¥ "~ 300ns round-trip latency Lﬁm”l"'_"l

Y

Y

Y

to remote memory

* Global virtual address space w/o global coherence
* RDMA-Inspired programming model

— Integrated Network Interface (NI)

— Software Accessible Remote Memory Controller (RMC)

* Lean NUMA fabric
— Reliable user-level messaging over a minimal protocol -(Pﬂ-

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



1110710010001001 1101010101 10101001 1010010

LIC I
A few words on Approximation

Data services are probabilistic
=>» Yet digital platforms are precise!

Much opportunity at the algorithmic/software level
— Learning algorithms (Cevher et. al.)

— Approximate querying (Koch et. al.)
— Programming (Rinard et. al.)

Architecture!?
— Bad: von Neumann not best suited for approximation

e Control path dominates energy
* Dual datapath shown (Ceze et. al.) not useful

— Good: support for neural processing
* Analog (Temam et. al.) or Digrtal (Esmailizadeh et. al.)

54
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summary

Two |T trends on a collision course;
— Data growing at ~ | Ox/year
— Nearing end of Dennard & Multicore Scaling

— Need technologies to bring efficiency to data

Moving away from products to services

— Future opportunities are In cross-layer design

Long term:
Integrate + Specialize + Approximate (ISA for Big Data)

55
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Thank You!

For more information please visit us at
ecocloud.ch

ecocloud B '\

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



