
Computer Architecture Lab at Carnegie Mellon (CALCM) Technical Report 2003-1

Applying SMARTS to SPEC CPU20001

Thomas F. Wenisch Roland E. Wunderlich Babak Falsafi James C. Hoe
Computer Architecture Laboratory (CALCM)

Carnegie Mellon University, Pittsburgh, PA 15213-3890
{rolandw, twenisch, babak, jhoe}@ece.cmu.edu

http://www.ece.cmu.edu/~simflex
Abstract
Current software-based microarchitecture simulators

are many orders of magnitude slower than the hardware
they simulate. Hence, most microarchitecture design studies
draw their conclusions from drastically truncated
benchmark simulations that are often inaccurate and
misleading. This paper presents the Sampling
Microarchitecture Simulation (SMARTS) framework as an
approach to enable fast and accurate performance
measurements of full-length benchmarks. SMARTS
accelerates simulation by selectively measuring in detail
only an appropriate benchmark subset. SMARTS prescribes a
statistically sound procedure for configuring a systematic
sampling simulation run to achieve a desired quantifiable
confidence in estimates.

Analysis of 41 of the 45 possible SPEC2K benchmark/
input combinations show CPI and energy per instruction
(EPI) can be estimated to within ±3% with 99.7%
confidence by measuring fewer than 50 million instructions
per benchmark. In practice, inaccuracy in micro-
architectural state initialization introduces an additional
uncertainty which we empirically bound to ~2% for the
tested benchmarks. Our implementation of SMARTS achieves
an actual average error of only 0.64% on CPI and 0.59%
on EPI for the tested benchmarks, running with average
speedups of 35 and 60 over detailed simulation of 8-way
and 16-way out-of-order processors, respectively.1

1. Introduction
Computer architects have long relied on software

simulation to study the functionality and performance of
proposed hardware designs. Despite phenomenal improve-
ment in processor performance over the last decades, the
disproportionate growth in hardware complexity that needs
to be modeled has steadily eroded simulation speed. Today,

the fastest cycle-accurate modern microprocessor perfor-
mance simulators are more than five orders of magnitude
slower than the hardware they model—simulating at a
nominal rate of 0.5 MIPS on a 2 GHz Pentium 4. More
detailed simulators and register-transfer-level simulators
are easily six or more orders of magnitude slower than the
proposed hardware. One minute of execution in real time
can correspond to days, if not weeks, of simulation time.

1.1. Current approaches
To mitigate prohibitively slow simulation speeds,

researchers often use abbreviated instruction execution
streams of benchmarks as representative workloads in
design studies. More than half of the recent papers in top-
tier computer architecture conferences presented perfor-
mance claims extrapolated from abbreviated runs.2
Researchers predominantly skip the initial 250 million to
two billion instructions and then measure a single section of
100 million to one billion instructions. Unfortunately,
several studies [4,10,12,17] have concluded that results
based only on a single abbreviated execution stream are
inaccurate or misleading because they fail to capture global
variations in program behavior and performance.

Another common approach to curtail simulation time is
to use fewer or smaller input sets (i.e., the test or train sets
rather than all of the reference sets in SPEC2K). Recent
papers, however, have also shown benchmark behavior
varies significantly across test, train and reference inputs
for a number of SPEC2K benchmarks [8,17].

To obtain performance results based on complete
benchmarks and input sets, many proposals have advocated
statistical [4,7,11,12] or profile-driven [10,17] simulation
sampling. Simulation sampling measures only chosen
sections (called sampling units) from a benchmark’s full
execution stream. The sections in between sampling units
are “fast-forwarded” using functional simulation that only

1. This technical report contains the complete set of results, but the
largely the same text as the SMARTS paper in ISCA 2003. The
additional data is presented in the appendices at the end of the report.

2. This past year, 64 papers presented at ISCA, MICRO, and HPCA
include simulation results; 38 used a single sampling unit, 20 used
reduced input sets or microbenchmarks, and 6 used other approaches.

maintains programmer-visible architectural state. We
faced two key challenges to simulation sampling: (1)
choosing an appropriate subset with the minimum number
of instructions to meet a given error bound, and (2) recon-
structing an accurate microarchitectural state (e.g., branch
predictor and cache hierarchy contents) for unbiased
sample measurement following an extended period of
functional fast-forwarding.

Current proposals for simulation sampling suffer from
several key shortcomings. On the efficiency front, most
proposals sample several orders of magnitude more
instructions than are statistically necessary for their stated
error [7,10,11,12,17]. This inefficiency is often rooted in
their excessively large sampling units, either to amortize
the overhead of reconstructing microarchitectural state or
to capture coarse-grain performance variations by brute
force. On the accuracy front, most proposals either do not
offer tight error bounds on their performance estimations
[10,11,12,17], or require unrealistic assumptions about the
microarchitecture (e.g., perfect branch prediction or cache
hierarchies) [4].

1.2. The SMARTS approach
We propose the Sampling Microarchitecture Simula-

tion (SMARTS) framework which applies statistical
sampling theory to address the aforementioned issues in
simulation sampling. Unlike prior approaches to simula-
tion sampling, SMARTS prescribes an exact and
constructive procedure for selecting a minimal subset from
a benchmark’s instruction execution stream to achieve a
desired confidence interval. SMARTS uses a measure of
variability (coefficient of variation) to determine the
optimal sample that captures a program’s inherent varia-
tion. An optimal sample generally consists of a large
number of small sampling units. Unbiased measurement
of sampling units as small as 1000 instructions is possible
by applying careful functional warming—maintaining
large microarchitectural state, such as branch predictors
and the cache hierarchy—during fast-forwarding between
sampling units.

We evaluate SMARTS in the context of a wide-issue
out-of-order superscalar simulator called SMARTSim
which is based on SimpleScalar 3.0 [2]. We employed
SMARTSim to estimate the CPI and energy per instruction
(EPI) for 41 out of 45 SPEC2K benchmark/input combina-
tions on two microarchitecture configurations. We make
the following primary contributions:
• Optimal sampling: SMARTSim achieves an actual aver-

age error of only 0.64% on CPI and 0.59% on EPI by
simulating fewer than 50 million instructions in detail
for each of the 41 SPEC2K benchmarks. This represents
an exceedingly small fraction of the complete bench-

mark streams, which range between 2 and 547 billion
instructions.

• Simulation speedup: On a 2 GHz Pentium 4,
SMARTSim can achieve average speedups of 35 and 60
relative to sim-outorder for 8-way and 16-way super-
scalar processor models, respectively. At current proces-
sor speeds, these speedups enable simulation speeds of
over 9 MIPS.

• Future impact: SMARTS sampling simulation rate is,
for all practical purposes, decoupled from the speed of
the detailed simulator. This result has fundamental bear-
ings on future simulator designs. First, designers should
focus less on elaborate performance shortcuts in
detailed simulators, and more on increasing the detailed
simulator’s overall design flexibility and accuracy. Sec-
ond, designers should focus on developing techniques
which speed up fast-forwarding and functional warming
(e.g., direct execution [16]), as these ultimately deter-
mine sampling simulation rate.

Paper outline. The rest of this paper is organized as
follows. Section 2 presents background on statistical simu-
lation. Section 3 presents the SMARTS framework.
Section 4 presents an implementation of SMARTS in the
context of a microarchitecture simulation infrastructure.
Section 5 evaluates the effectiveness of the SMARTS
framework at accelerating microarchitecture simulation.
Finally, we conclude in Section 6.

2. Statistical sampling
The field of inferential statistics offers well-defined

procedures to quantify and to ensure the quality of sample-
derived estimates. This section provides basic background
on statistical sampling. We describe procedures for
selecting a sample for mean estimation and the mathe-
matics for calculating the confidence in an estimate.

Statistical sampling attempts to estimate a given
cumulative property of a population by measuring only a
sample, a subset of the population [13]. By examining an
appropriately selected sample, one can infer the nature of
the property over the whole population in terms of total,
mean, and proportion. The theory of sampling is
concerned with choosing a minimal but representative
sample to achieve a quantifiable accuracy and precision in
the estimate. The theory does not presume a normally-
distributed population. Our goal is to apply this theory to:
(1) identify a minimal but representative sample from the
population for microarchitecture simulation, and (2) estab-
lish a confidence level for the error on sample estimates.

Table 1 summarizes the standard statistical sampling
variables and terminology relevant to this paper. Simple
random sampling selects a sample of n elements (a.k.a.
sampling units) at random from a population of N
2

elements. Measurements are taken on the selected
sampling units, and for a sufficiently large sample size
(i.e.,) the sampled results can be meaningfully
extrapolated to provide an estimate for the whole popula-
tion. In particular, the true population mean of a
property is estimated by the sample mean . The coeffi-
cient of variation is the standard deviation of
normalized by , . The likelihood that is a
good estimate of improves with sample size and
decreases with . SMARTS leverages the relationship
between n, and desired confidence to minimize the
required sample size for a benchmark.

Formally, the confidence in a mean estimate is jointly
quantified by two interdependent terms: confidence level

 and confidence interval . The interpretation
of confidence level and interval is that, over a large
number of random sampling trials, a fraction of
the trials should produce that is within of .1
The confidence interval achieved by a sample is

 where z is the
percentile of the standard normal distribution. (We assume

 to simplify the expressions in this paper.) For a
sample with a given and size n, one can choose a
desired confidence level and solve for the achieved confi-
dence interval, or vice versa.

To design a sampling simulation to meet a certain
confidence, one begins by determining an appropriate n
based on the required confidence and , using the same
equations above. (Note that the population size does not
impact the determination of n.) The true coefficient of
variation of a population is rarely available in practice
unless the entire population is examined. Instead, of a
sufficiently large initial sample is commonly used in place
of in computing the confidence of that sample. If the
initial sample does not achieve the desired confidence, the
required size of a subsequent sample can be computed

using , where . In practice, the
required sample size can typically be found after one test
sample.

An approximation of random sampling of practical
interest in microarchitecture simulation is systematic
sampling. This approach selects sampling units from an
ordered population at a fixed sampling interval k such that

. Systematic sampling is most effective if the
population exhibits low homogeneity. In other words, the
measured property should not vary cyclically over the
population sequence at the same periodicity as k or its
higher harmonics. Homogeneity in a population is quanti-
fied by the intraclass correlation coefficient ; when the
magnitude of is negligible, the confidence calculations
for systematic sampling are the same as described for
random sampling. We verified experimentally that in our
sampling results the population exhibits negligible homo-
geneity on the order of . This observation agrees
with our intuition that realistic benchmarks do not have
sufficiently regular cyclic behavior at the periodicity rele-
vant to simulation sampling (tens of millions of
instructions).

Measurement error is another source of inaccuracy for
both random and systematic sampling. Random errors lead
to an increase in and are accounted for by a corre-
spondingly lowered confidence in the estimate. On the
other hand, systematic errors—for example, due to incor-
rect cache hierarchy state prior to the start of a sampling
unit [11]—introduce a bias in the estimate. The bias
is the average difference between and over all
possible sampling trials of a given configuration. For
systematic sampling, there are exactly k possible system-
atic sample phases, and hence, . If bias
is known, it can be accounted for by subtracting it from the
estimate, without affecting confidence. If the bias can only
be bounded, then it introduces a proportional amount of
uncertainty in the estimate beyond the confidence interval.

3. The SMARTS framework
This section presents a framework for Sampling

Microarchitecture Simulation (SMARTS). SMARTS applies
statistical sampling to accelerate simulation-based perfor-
mance measurements. Our presentation of SMARTS is
primarily developed around estimating average CPI, but
we provide results in Section 5.2 for estimating both CPI
and energy. The SMARTS framework is generally appli-
cable to other performance metrics, such as pipeline
resource utilization or average memory latency.

3.1. Technique overview
Measuring the CPI of a benchmark’s full instruction

stream on a detailed microarchitecture simulator is a time-
consuming proposition. SMARTS estimates the CPI in

1. A less rigorous, but acceptable interpretation, is that for a given

sample there is a probability that is within of .

Table 1. Sampling variables.

Population variables Sample variables

N size n size
mean mean
standard deviation coeff. of variation
coeff. of variation confidence level

confidence interval
k systematic-

sampling interval
bias of sample mean

X x
σx V̂x

Vx 1 α–()
ε± X⋅

B x()

n 30>

X
χ x

χ
X Vx σx X⁄= x

X
Vx

Vx

1 α–() ε± X⋅

1 α–()
x ε± X⋅ X

1 α–() x ε X⋅± X

z Vx⋅() n⁄[] X⋅()± 100 1 α 2⁄()–[]

N n 1» »
Vx

Vx

V̂x

Vx

V̂x n z V̂x⋅() ε⁄()2≥

n N k⁄=

χ

δx
δx

1 10 6–×–

V̂x

B x()
X x

B x() Σx k⁄ X–=
3

significantly less time by simulating and measuring only a
tiny fraction of the stream on the detailed microarchitec-
ture simulator. SMARTS assumes an execution-driven
simulator that supports detailed simulation and functional
simulation (a.k.a. fast-forwarding). In the detailed mode
all relevant microarchitecture details are accounted for.
Only programmer-visible architectural state (e.g., architec-
tural registers and memory) is updated in the functional
mode. SMARTS uses the two simulation modes to sample
CPI systematically at a fixed interval—detailed simulation
of the sampled instructions and functional simulation of
the remaining instructions.

SMARTS uses systematic sampling rather than random
sampling because systematic sampling is more straight-
forward to implement in execution-driven simulators. In
SMARTS, a sampling unit is defined as U consecutive
instructions in a benchmark’s dynamic instruction stream
such that the population size N is the length of the stream
divided by U. The exact number of instructions per
sampling unit may vary slightly to align sampling units on
clock cycle boundaries. For systematic sampling at an
interval k, beginning at offset j, SMARTS repeatedly alter-
nates between a functional simulation period of
instructions and a detailed simulation/measurement period
of U instructions. A primary reason we base the popula-
tion on instructions rather than clock cycles is that one
cannot meaningfully count the number of detailed cycles
elapsed during functional simulation.

Evaluating benchmarks in SMARTS provides an esti-
mated average CPI based on the sampled
instructions. Equally important, the results include the
measured coefficient of variation , that allows us to
calculate the confidence of the CPI estimate, and if neces-
sary, determine a new sample size to meet a specific
degree of confidence. Section 5 describes how to set
SMARTS sampling parameters and prescribes an exact
procedure to generate an accurate performance estimate by
measuring only a minimal subset of a benchmark’s
instruction stream.

A key challenge in SMARTS is how to compute the
correct microarchitectural state prior to detailed measure-
ment of each sampling unit. Between sampling units,
functional simulation computes all architectural state
updates of the program, but leaves microarchitectural state
(e.g., cache hierarchy, branch predictors and target buffers,
or pipeline state) unchanged. Stale microarchitectural state
introduces a large bias in the measurement of individual
sampling units and, consequently, the final estimate. We
have observed stale-state induced bias as high as 50% for
sampling units of 10,000 instructions.

The stale-state effect can be ameliorated by intro-
ducing a warming period where W instructions are
simulated in detail to refresh the microarchitectural state
just prior to the measurement of a sampling unit [11]. We
refer to this solution as detailed warming. Figure 1 graphi-
cally illustrate how SMARTS alternates between functional
simulation of instructions, detailed simu-
lation of W warming instructions (without measurement),
and detailed simulation and measurement of U instruc-
tions. Increasing W can gradually reduce the bias below an
acceptable threshold.

Unfortunately, detailed warming has two major short-
comings: (1) detailed warming can be expensive because it
increases the amount of detailed simulation, and (2) in
general the appropriate value of W is difficult to derive
analytically because some microarchitectural state has
extremely long history. We will return to this discussion in
Section 4.3, where we measure the effect of W on bias in a
reference implementation of SMARTS.

Between detailed simulation periods, select microar-
chitectural state could instead be maintained by functional
simulation with only a small overhead. We refer to this
warming approach as functional warming. The cache hier-
archies and branch predictors are prime candidates for
functional warming. By continuously warming microar-
chitectural state with very long history, we can analytically
bound W for the remaining state to a manageably small
value. In the majority of cases, the reduction in detailed
simulation more than offsets the performance overhead of
functional warming. A caveat to the functional warming
approach is that it may not always be able to accurately
reproduce the correct microarchitectural state if correct
warming requires exact knowledge of detailed execution.
Moreover, timing-dependant behavior (e.g., operating

U k 1–()

Table 2. SMARTS variables.
U sampling unit size (instructions)
W detailed warming (instructions)
N benchmark length (instructions) / U

n U⋅

V̂CPI

0 N

U instructions are measured as a
 using detailed simulationsampling unit

... sampling unitsn

Benchmark dynamic instruction stream
j j k+ j k + 2

 instructions of detailed
simulation warm state before
each sampling unit

WU k W(– 1) – instructions are
functionally simulated and large
structures may be warmed

Figure 1. Systematic sampling in SMARTS.

U k 1–() W–[]
4

system scheduling activity) require timer approximation.
If functional warming simulates instructions in order, it
also may not accurately reflect the artifacts of out-of-order
and speculative event ordering. A recent study [3] has
suggested that out-of-order and speculative ordering has
minimal impact on CPI and other performance metrics. In
Section 4.5 we corroborate these results and present our
own analysis of the residual biases after functional
warming. We believe functional warming is the most cost-
effective approach to achieve accurate CPI estimation with
simulation sampling.

3.2. Benchmarks
In this paper, we demonstrate the effectiveness of

SMARTS by attempting to estimate the CPI and EPI of the
SPEC CPU2000 (SPEC2K) integer and floating-point
benchmarks as measured on the SimpleScalar 3.0 sim-
outorder simulator [2] with the Wattch 1.02 power esti-
mation extensions [1]. For improved realism, we modified
the memory subsystem to include a store buffer and miss
status holding registers (MSHR), and model interconnect
bottlenecks in the memory hierarchy. Our study includes
the cross product of two microarchitecture configurations
and all 26 SPEC2K benchmarks as tabulated in Figure 7.
We evaluate all reference inputs except vpr-place and
three perlbmk inputs, as these inputs fail to simulate
correctly in sim-outorder. Overall, 41 benchmark/input
set combinations are included in this study. To provide a
reference data set for this study, we collect cycle-by-cycle
traces of instruction commits in sim-outorder for the
entire length of each benchmark. Simulating these

SPEC2K benchmarks resulted in more than 7 trillion
simulated instructions per machine configuration.

The baseline microarchitecture configuration in this
study is an 8-way superscalar model that represents a
processor in the current technology generation. A 16-way
superscalar configuration also is included to reflect an
aggressive future design point. This configuration has a
wider datapath, larger out-of-order window, and larger
caches, to test the effects of an enlarged state set. The
details of the 8-way and 16-way configurations are
summarized in Table 3.

3.3. Speedup opportunity
The required sample size to estimate CPI at a given

confidence is directly proportional to the square of the
population’s coefficient of variation, . A bench-
mark with a small implies a greater opportunity for
accelerated simulation because fewer instructions from the
benchmark need be simulated and measured in detail. To
assess the potential speedup of SMARTS, we study of
all benchmarks in our test suite. A benchmark’s instruction
stream can be divided into a population using different
values of U. Figure 2 plots of all benchmarks on the
8-way configuration as a function of U in the range of 10
to 1 billion instructions. decreases with increasing U
because short-term CPI variations within a window of U
instructions are hidden by averaging over the sampling
unit. The curves for all benchmarks share the same
general shape, with a steep negative slope for U less than
1000, leveling off thereafter.

The shapes of the curves argue against sampling
approaches that use large sample unit sizes because for U
greater than 1000, (and hence n) does not decrease
rapidly enough to compensate for the increased sample
unit size. For instance, although very few sampling units
are required in the extreme case of , the total
number of sampled instructions is much greater than
when U is less than 1000. Figure 2 further makes the case
that single-sampling-unit approaches, the most commonly

Table 3. Machine configurations.

Parameter 8-way (baseline) 16-way

RUU/LSQ 128/64 256/128
Memory
system

32KB 2-way L1I/D
2 ports, 8 MSHR
1M 4-way L2
16-entry store buffer

64KB 2-way L1I/D
4 ports, 16 MSHR
2M 8-way L2
32-entry store buffer

ITLB/
DTLB

4-way 128 entries/
4-way 256 entries
200 cycle miss

4-way 128 entries/
4-way 256 entries
200 cycle miss

L1/L2/mem
latency

1/12/100 cycles 2/16/100 cycles

Functional
units

4 I-ALU
2 I-MUL/DIV
2 FP-ALU
1 FP-MUL/DIV

16 I-ALU
8 I-MUL/DIV
8 FP-ALU
4 FP-MUL/DIV

Branch
predictor

Combined 2K tables
7 cycle mispred.
1 prediction/cycle

Combined 8K tables
10 cycle mispred.
2 predictions/cycle

ammp

vpr

0

1

2

3

4

5

6

U Sampling Unit Size (Instructions)

C
oe

ff
. o

f V
ar

ia
tio

n

Figure 2. Coefficient of variation of CPI.

101 102 103 104 105 106 107 108 109

V C
PI

U Sampling Unit Size (Instructions)

8-way

n VCPI
2∝

VCPI

VCPI

VCPI

VCPI

VCPI

VCPI

VCPI

U 1 109×=
n U⋅
5

employed approaches, cannot ensure accurate estimates
since the coefficients of variation of many benchmarks are
non-negligible even for sampling units of over one billion
instructions.

For U = 10, Figure 3 reports the values of for
all benchmarks, assuming several commonly used confi-
dence targets. Even for a stringent confidence requirement
of ±1% error with 99.7% confidence, the worst-case
benchmark on the 8-way configuration in our study
requires no more than 0.1% of its instruction stream to be
measured. The number of instructions required to achieve
a particular level of confidence does not vary significantly
across benchmarks because, for the most part, the bench-
marks have similar values of . The exceedingly low
detailed simulation requirement suggests that the simula-
tion rate of SMARTS is insensitive to the speed of the
detailed microarchitecture simulation. Rather, the rate
depends on the speed of the functional simulation
performed for the great majority of the instruction stream
between sampling units. This optimistic assessment of
speedup opportunity does not factor in the detailed simula-
tion cost for microarchitectural state warming. We next
present an analytical performance model for SMARTS to
take into account the cost of detailed and functional
warming.

3.4. Simulation speedup model
We develop a SMARTS performance model to consider

the trade-off presented by functional warming. Let
 represent the simulation rate of functional simu-

lation, and represent the simulation rate of detailed
simulation relative to . (Therefore, is the slow-
down of detailed simulation with respect to functional
simulation.) The simulation rate of SMARTS using only
detailed and no functional warming is given by

. This
expression is a weighted average of and over the
fraction of the instruction stream simulated functionally
versus in detail. Figure 4 plots the SMARTS simulation
rates for W between 0 and 10 million instructions for
gcc-1, with (corresponding to today’s fastest

detailed simulators) and (projected simula-
tion rate of future processor cores). The right-hand-side
vertical axis estimates the corresponding runtimes on a
2 GHz Pentium 4.

The plot shows that SMARTS simulation speed
decreases from to as W is increased; furthermore,
the anticipated future results in an earlier and sharper
decrease. Therefore, unless W can be bounded to a reason-
ably small value, full benchmark measurement by
simulation sampling would remain prohibitively slow.

The simulation rate of SMARTS with functional
warming can be derived from the expression for detailed
warming by substituting (the functional warming
simulation rate) for . Functional warming allows us to
bound W to less than a few thousand instructions—suffi-
ciently few such that detailed warming does not affect the
simulation rate. This implies that the simulation rate of
SMARTS with functional warming stays close to the simu-
lation rate of and is relatively insensitive to the
performance of the detailed simulator. In other words, the
SMARTS framework enables researchers to apply other-
wise prohibitively slow detailed simulators to study
complete benchmarks, provided efficient functional
warming is possible. In the next section, we will present
our implementation of SMARTS where .

n U⋅

VCPI

8-way 16-way

0.
00

44
%

percent of benchmark length for
 3% error with ± 99.7% confidence

0.
00

20
%

0.
00

04
%

0.
00

16
%

0.
00

13
%

0.
00

05
%

0.
00

06
%

0.
00

04
%

0.
00

15
%

0.
00

05
%

0.
00

28
%

0.
00

43
%

0.
00

32
%

0.
00

29
%

0.
00

35
%

0.
00

10
%

0.
00

10
%

0.
02

49
%

0.
00

47
%

0.
02

20
%

0.
00

34
%

0.
00

23
%

±1%

±3%

99.7% confidence
95% confidence

CPI Error

Figure 3. Minimum instructions required. This graph shows the minimum number of instructions
which must be measured to achieve commonly used confidence intervals.

SF 1.0≡
SD

SF 1 SD⁄

SF N n U W+()–[] N⁄() SD n U W+()() N⁄[]+
SF SD

SD 1 60⁄=

SD 1 600⁄=

F

SD = 1/60
SD = 1/600
SFW = 0.55, SD = 1/60

47 min

1 hour

2 hrs

12 hrs
1.9 days

Figure 4. Modeled SMARTS simulation rate.
The two SD plots show the simulation rate without

functional warming. The SFW plot shows the simulation
rate when using functional warming to bound W.

SF SD
SD

SFW
SF

SFW

SFW 0.55≈
6

4. SMARTS in practice
To study and demonstrate the effectiveness of the

SMARTS framework, we developed SMARTSim, a concrete
implementation of a sampling microarchitecture simulator.
In this section, we describe the implementation of
SMARTSim and revisit the issues of microarchitectural
state generation in greater detail. In particular, we explain
the effect of detailed warming on the choice of sampling
unit size and analyze the effectiveness of detailed warming
and functional warming in generating accurate microarchi-
tectural state for sample measurements.

4.1. SMARTSim
SMARTSim is built on our enhanced sim-outorder

as described in Section 3.2. Sim-outorder supports a
functional simulation mode, similar to the operation of
sim-fast in SimpleScalar, that runs approximately 60
times faster than detailed simulation. However, sim-
outorder only supports functional simulation prior to
starting detailed simulation. SMARTSim allows repeated
transitions back-and-forth between functional and detailed
simulation modes.

SMARTSim accepts sim-outorder command line
arguments and configuration files. In addition, SMARTSim
accepts the systematic sampling parameters U, k, W, and j
(described in Section 3.1). SMARTSim also supports two
fast-forwarding options: functional simulation only and
functional simulation with warming (a.k.a. functional
warming). For functional warming, SMARTSim performs
in-order functional instruction execution and maintains the
state of L1/L2 I/D caches, TLBs, and branch predictors in
a fashion similar to sim-cache and sim-bpred of
SimpleScalar. In SMARTSim, functional warming opera-
tions introduce an overhead of approximately 75% over
functional simulation alone.

4.2. Optimal sampling unit size
SMARTSim allows the user to specify the sampling

unit size U. In the analysis in Section 3.3, we have shown
that smaller unit sizes reduce the number of instructions
simulated in detail if the cost of detailed warming is
ignored. However, because detailed warming adds an
overhead of W instructions of detailed simulation per
sampling unit, the optimal value for U increases with
increased W to amortize the overhead of detailed warming.
To illustrate the effect of W on the choice of U, Figure 5
(left) plots the fraction of instructions simulated in detail
(i.e., n(W + U)/N) for various values of U and W. The data
points are based on SMARTSim execution of gcc-1 on the
8-way configuration, with n chosen for 99.7% confidence
interval of ±3% in the CPI estimate. In the idealized case
where W = 0, the minimum U leads to the fewest detail-
simulated instructions. For non-ideal W, however, the
optimal value of U lies in the range of 100 to 10,000
instructions. Figure 5 (right) locates the optimal values of
U for three other benchmarks, gcc-3, bzip2-1, and mesa.
Each benchmark is plotted for two values of W (1000 and
100,000) that are approximately the magnitudes needed
for sampling with and without functional warming, as
discussed in the following two sections. The optimal
choice of U is not fixed across benchmarks. However, in
all cases, including other SPEC2K benchmarks not shown,
fixing U to 1000 leads to a sufficiently small fraction of
detail-simulated instructions such that choosing the
optimal U gains at most tens of minutes in SMARTSim run
time. Therefore, we suggest using U = 1000 in all cases.

4.3. Effectiveness of detailed warming
Microarchitectural state can always be warmed to an

arbitrary degree of accuracy given sufficient detailed
warming. Unfortunately, the required amount of detailed
warming to obtain a given degree of accuracy cannot be
determined analytically. The required amount is a function

W = 1000W = 100,000

Figure 5. Optimal U. The left chart shows that the optimal U increases with W.
The right chart shows that U = 1000 is a reasonable choice across benchmarks and W.
7

of both the benchmark behavior and the microarchitectural
mechanisms involved. As a rule of thumb, we expect the
amount of detailed warming to scale with the size of the
microarchitectural state; however, there are counter-
examples.

To better understand the requirements of detailed
warming (unaided by functional warming), we experimen-
tally determine the minimum acceptable value of W for the
benchmarks with the 8-way configuration such that the
bias due to residual microarchitectural state error is just
below ±1.5%. (We choose U = 1000 and n sufficient for a
99.7% confidence interval of ±3%.) In systematic
sampling, the true bias is the average error over all k
possible systematic samples. Exact determination of bias
is prohibitively expensive, since k is typically on the order
of 10,000 in this study. Therefore, we approximate the
procedure by averaging the errors of 5 evenly distributed
systematic sampling runs (i.e., j = {0, k/5, 2k/5, 3k/5, 4k/
5}). Table 4 categorizes the studied benchmarks according
to their required values of W.

Without functional warming, the required W varies
widely across benchmarks and inputs. Many benchmarks
are insensitive to the accuracy of microarchitectural state,
requiring less than 50,000 instructions of detailed
warming per measurement period. For some benchmarks,
however, even W = 500,000 results in unacceptable bias,
as high as 25% for mgrid.

With the exception of the benchmarks requiring more
than 500,000 instructions of detailed warming, detailed
warming does not significantly impact the simulation rate

of SMARTSim. Even 500,000 instructions warmed per
sampling unit is a small fraction of the full benchmark.
Nevertheless, Table 4 does highlight a key shortcoming of
the detailed-warming-only approach: the unpredictability
of W. Our empirical determination of W is impractical
because it requires a priori knowledge of the true unbiased
CPI derived from prohibitively time-consuming detailed
simulation of complete benchmarks.

4.4. Bounding detailed warming
Functional warming helps redress the unpredictability

of W in detailed warming. Functional warming of prob-
lematic microarchitectural state allows us to bound W
safely for the remaining state by analyzing the details of
the microarchitecture model. For example, to estimate
CPI, W needs to be chosen such that an instruction’s
latency cannot be influenced by unwarmed microarchitec-
tural state. This requires W to exceed the maximum
instruction stream distance that latency-influencing state
can propagate.

An instruction can only affect the latency of another
instruction if there is some history of the former still
present at the time the latter is fetched. Outside of long-
term architectural (register, memory, etc.) and microarchi-
tectural state (cache, TLB, branch predictor, etc.)
maintained by functional warming, the effects of an
instruction are bounded by the instruction’s lifetime in the
microprocessor. With the exception of store instructions,
when an instruction commits, its associated short-term
state is freed. A committed store instruction that misses in
the cache might stall a later store instruction by causing
the store buffer to overflow. Hence, a worst-case bound on
W is the product of store-buffer depth, memory latency in
cycles, and the maximum IPC. For our 8-way configura-
tion, this upper bound is 12,800 ()
instructions. In practice, this worst-case behavior does not
occur; all the 8-way results presented in this paper were
achieved with only 2000 instructions of detailed warming,
and 16-way results with 4000.

4.5. Effectiveness of functional warming
Even with both functional and detailed warming,

some inaccuracies in microarchitectural state remain and
contribute to errors in the estimates as bias. Table 5 reports
the residual bias in the CPI estimated by SMARTSim when
functional warming is employed in conjunction with

Table 4. Detailed warming requirements
without functional warming. (8-way)

W to achieve
< 1.5% bias Benchmarks

applu, apsi, art-1, art-2, eon-1, eon-2,
equake, fma3d, gzip-1, gzip-2, gzip-3,
gzip-4, lucas, mesa, sixtrack, twolf
crafty, eon-3, gap, gcc-1, gcc-3, gcc-4,
mcf, swim, vortex-3, vpr
ammp, bzip2-1, bzip2-2, galgel, gcc-2,
gcc-5, gzip-5, vortex-1, vortex-2
bzip2-3, facerec, mgrid, parser,
perlbmk, wupwise

W 50 103×≤

W 250 103×≤

W 500 103×≤

W 500 103×>

16 100 8××

Table 5. CPI bias achieved with functional warming and minimal detailed warming.

8-way
W = 2000

vpr galgel gcc-2 bzip2-2 parser gzip-5 facerec gcc-5 vortex-3 gcc-1 avg. rest (abs)
-1.6% 1.4% -1.1% -1.0% 1.0% 0.9% 0.9% -0.8% -0.6% -0.5% 0.2%

16-way
W = 4000

mcf gcc-2 vortex-3 eon-2 gcc-5 sixtrack wupwise bzip2-1 applu mesa avg. rest (abs)
1.9% -1.6% 1.2% -1.1% -1.1% -0.9% 0.9% 0.8% 0.7% -0.6% 0.2%
8

detailed warming of the aforementioned values of W.
Benchmarks with the worst bias are presented in sorted-
order. The final column of the table gives the average
magnitude of remaining benchmarks’ bias. All bench-
marks have bias under ±2.0% and only 6 benchmarks in
each configuration exceed ±1.0%. The bias is predomi-
nantly due to wrong-path and out-of-order effects in
caches and the branch predictor. This set of results corrob-
orates our conclusion that functional-warming with
bounded W is effective in reducing microarchitectural
state warming bias.

5. Using SMARTS

This section outlines an exact procedure for esti-
mating a target metric using statistical simulation
sampling. We evaluate the effectiveness of this procedure
by estimating the CPI and energy per instruction (EPI) of
SPEC2K using SMARTSim.

5.1. SMARTS procedure
One iteration of a SMARTS measurement run requires

the user to supply three sampling simulation parameters:
W, U, and k. First, W is selected to exceed the bounded
history of the microarchitectural state as described in
Section 4.4. We recommend utilizing functional warming
(see Section 4.5) whenever possible, as it greatly simpli-
fies the determination of W. Our 8-way results were
achieved with W = 2000 instructions, and 16-way results
with W = 4000. Second, we suggest setting U = 1000. We
have shown in Section 4.2 that U = 1000 is appropriate for
all SPEC2K benchmarks. Lastly, we elaborate on how to
determine n, and correspondingly k, to meet a desired
confidence in the following paragraphs.

In general, the correct value for n must be determined
in a two-step process. First, a sampling measurement is
made using a generic initial value that is a compro-
mise between simulation rate and the likelihood of
meeting the confidence requirement on the first try. If the
choice of is shown to be insufficient after one
sampling simulation, a second step is required where

 for a second run is calculated from the of the
initial run.

A priori, the minimum value of n to achieve a given
confidence is unknown for an arbitrary benchmark and
simulated microarchitecture. Given a fixed confidence
target, n must be adjusted according to the coefficient of
variation of the population. Based on our analysis of

 of SPEC2K benchmarks (in Section 3.3), we conjec-
ture that the values of tend to cluster around 1.0 for
most benchmarks and simulated microarchitectures when
U = 1000. Hence, from = , we infer that

= 10,000 is likely to yield 99.7% confidence interval
of ±3%. Given N = 9,420,910 for the smallest of our
SPEC2K benchmarks, = 10,000 still represents a
very small fraction of detail-simulated instructions and
hence has minimal impact on simulation turnaround time.

One run of SMARTS measurement with k =
produces an initial estimate of average CPI and of
the sample. Because the confidence of an estimate is
jointly quantified by the two interdependent terms confi-
dence level and confidence interval X, one
can either set a desired confidence level and calculate the
obtained confidence interval for a given sample, or vice
versa. For a set confidence level , the confidence
interval is where is the

 percentile of the standard normal distri-
bution. Commonly used confidence levels are 95% and
99.7% (a.k.a. or virtually-certain). Corresponding
values of z are 1.97 and 3, respectively. If the confidence
level and interval yielded by the initial sample are unac-
ceptable, the to achieve a desired confidence on the
next sample is . If the initial confidence is
overly below target, we suggest slightly overestimating

 for the subsequent run. In any case, the actual
confidence achieved by the subsequent sample must be
checked using the subsequent sample’s new .

The above treatment of confidence considers only the
error introduced by statistical sampling. In practice, the
true error margin in an estimate must also account for any
bias in the measurements. Recall from Section 2 that if the
bias is known, it can be accounted for by subtracting it

ninit

ninit

ntuned V̂x

VCPI
VCPI

VCPI

ninit z ε⁄()2

ninit

ninit

N n⁄ init
V̂CPI

1 α–() ε± ⋅

1 α–()
z V̂x x⋅ ⋅() n()⁄± z

100 1 α 2⁄()–[]

0%
2%
4%
6%
8%

10%

am
m

p

vp
r

gc
c-

2

bz
ip

2-
2

gc
c-

1

pa
rs

er

ga
p

bz
ip

2-
3

vo
rtx

-1

ap
si

bz
ip

2-
1

gc
c-

3

am
m

p

ap
si

vp
r

vo
rtx

-1

bz
ip

2-
2

gc
c-

2

fa
ce

re
c

bz
ip

2-
3

fm
a3

d

gc
c-

1

bz
ip

2-
1

pa
rs

er

C
PI

 E
rr

or 99.7% confidence interval

8-way 16-way

av
g.

 re
st

av
g.

 re
st

Figure 6. SMARTS results across SPEC2K with n = 10,000. Unacceptably large confidence intervals
(e.g., 8-way ammp, vpr, and gcc-2) can be improved by simulating with ntuned.

3σ

ntuned
z V̂x⋅() ε⁄()

2

ntuned

V̂CPI
9

from the estimate, without affecting confidence. If the bias
can only be bounded, then it introduces a proportional
amount of uncertainty in the estimate beyond the confi-
dence interval.

5.2. Evaluation of performance and accuracy
We applied the procedure outlined above to SPEC2K

benchmarks using SMARTSim. Figure 6 reports results of
CPI estimated using SMARTSim in one run with

= 10,000. Benchmarks with the worst confidence
intervals are shown in sorted order, plus the average of the
remaining benchmarks. For each benchmark, we show the
actual achieved error and the predicted confidence interval
calculated from for 99.7% confidence. The confidence
interval accounts for random error in the estimated CPI
that is introduced by systematic sampling. Notice that
actual error resulting from 10,000 sampling units is gener-
ally much less than the predicted confidence interval. A
large part of this error can be attributed to the residual bias
of imperfect microarchitectural state warming (functional
warming with fixed W), with only a very small component
caused by statistical sampling.

For most of the benchmarks, achieves a confi-
dence interval within ±3%. For benchmarks with
confidence intervals greater than ±3%, simulation
sampling needs to be repeated using —calculated
from the of the initial sample. For example, rerunning
simulations for the 8-way configuration with of
66,531 (ammp), 23,321 (vpr), and 21,789 (gcc-2) achieve
actual errors of 1.1%, 0.1%, and -0.9% with confidence
intervals of 3.0%, 2.9%, and 2.6%. To this confidence
interval, we must still add an uncertainty due to microar-
chitectural state warming bias, which we empirically
bound to below 2%.

Figure 7 presents the results of applying SMARTS to
estimating energy per instruction (EPI). As in CPI estima-
tions, we find in most cases initial sampling simulations
using = 10,000 achieves confidence intervals tighter
than ±3%. Confidence intervals for EPI estimation tend to
be tighter than CPI confidence intervals because of less
variability in EPI. Unfortunately, the smaller predicted
confidence intervals are overshadowed by the microarchi-
tectural state warming bias. With the exception of gap, the
actual errors are within the confidence interval. For gap,
we have determined experimentally that the 2.2% error is
almost entirely due to bias.

Table 6 compares simulation runtimes for functional
(i.e., sim-fast), detailed (i.e., sim-outorder with
detailed memory models), and SMARTSim simulation on a
2 GHz Pentium 4. SPEC2K benchmarks on the 8-way
configuration with the highest instruction counts are
shown in sorted order. As shown in Table 6, detailed simu-
lation takes on average 7.2 days and can take as long as 23
days. In contrast, SMARTSim takes on average 5.0 hours
and in the worst-case slightly less than 16 hours.
SMARTSim simulation speed is around 50% of functional-
only simulation for most microarchitecture configurations.

5.3. Comparison to SimPoint
A recent proposal, SimPoint [17], also enables

reduced simulation turnaround time. SimPoint selects
representative subsets of benchmark traces via offline
analysis of basic blocks. Using clustering algorithms,
SimPoint selects and weights several large sampling units
(up to ten 100M-instruction sampling units) such that the
frequency of each static basic block across the weighted
units matches that block’s frequency in the full dynamic
stream. A fundamental assumption of SimPoint is that all
dynamic instances of basic block sequences with similar
profiles have the same behavior, therefore a particular
sequence can be measured once and weighted appropri-
ately to represent all remaining instances.

SimPoint has two key advantages: (1) due to large
sampling units, SimPoint obviates the need for functional
warming and can be more quickly integrated into a simula-
tion infrastructure, and (2) SimPoint allows early
termination of simulation after all selected sections have
been visited. We implemented SimPoint with our
SimpleScalar toolset and verified our implementation
against the published configuration and results in [17]. For

ninit

V̂x

ninit

ntuned
V̂x

ntuned

0%
2%
4%

6%
8%

10%

am
m

p

bz
ip

2-
1

vp
r

gc
c-

2

lu
ca

s

bz
ip

2-
2

gc
c-

1

ga
p

ar
t-2

ar
t-1 ap
si

bz
ip

2-
3nJ

/in
st

ru
ct

io
n

Er
ro

r

av
g.

 re
st

99.7% confidence interval

8-way

Figure 7. SMARTS EPI results with n = 10,000.

ninit

Table 6. Runtimes for SMARTS compared to detailed and functional simulation. (8-way)

Runtime (hrs.) parser sixtrack mgrid galgel wupwise apsi twolf ammp mesa gap fma3d swim avg. rest

Detailed 541 466 414 405 346 344 343 323 279 266 265 223 98

Functional 9.2 7.9 7.0 6.9 5.9 5.8 5.8 5.5 4.7 4.5 4.5 3.8 1.7

SMARTS 15.8 13.6 12.1 11.8 10.1 10.1 10.0 9.6 8.1 7.8 7.8 6.5 2.9
10

the benchmarks in [17] and our 8-way configuration,
SimPoint resulted in an average improvement of 1.8 in
simulation rate over SMARTS.

However, SimPoint has several shortcomings: (1) it
may result in arbitrarily high CPI error, (2) it does not
offer quantifiable confidence in estimates, and (3) some
microarchitecture configurations may cause large varia-
tions in behavior across different instances of similarly-
profiled basic block sequences.1

Figure 8 presents a comparison of CPI error between
SimPoint and SMARTS for the benchmarks presented in
[17] running on our 8-way configuration. The comparison
shows that SimPoint has a higher average error (3.7% vs.
our 0.6%) and considerably higher worst-case error
(-14.3% for gcc-2).

Gcc-2 is an example where SimPoint produces an
unacceptably high CPI error when running on our 8-way
configuration. However, simulation using the published
microarchitecture configuration in [17] only results in a
1.6% error. In gcc-2, we observed that the basic block
sequences chosen by SimPoint exhibit large variations in
their L2 miss rate—due to variations in data cache
locality—across dynamic instances on our microarchitec-
ture configuration. Therefore, in this case, the SimPoint
estimate based on just a single instance of the basic block
sequences yields a large error. In contrast, independent of
benchmark and microarchitecture configuration, SMARTS
uses the measured coefficient of variation to help gauge
both the required sample size and the confidence in the
estimates.

6. Conclusion
To address the need for improved simulation accuracy

and performance, we propose the Sampling Microarchi-
tecture Simulation (SMARTS) framework that applies
statistical sampling to microarchitecture simulation.
Unlike prior approaches to simulation sampling, SMARTS
prescribes an exact and constructive procedure for
sampling a minimal subset of a benchmark’s instruction
execution stream to estimate the performance of the
complete benchmark with quantifiable confidence. The
SMARTS procedure obviates the need for full-stream simu-
lation by basing the strategy for optimal simulation
sampling on the outcomes of fast sampling simulation
runs.

We evaluated the SMARTS framework in the context
of a wide-issue out-of-order superscalar simulator running
SPEC2K benchmarks with varying inputs under two simu-
lated processor configurations. SMARTSim, an
implementation of SMARTS, is created by modifying
SimpleScalar’s sim-outorder to support systematic
sampling. The results of our evaluations demonstrated the
following: (1) SMARTSim achieves an actual average error
of only 0.64% on CPI and 0.59% on EPI by simulating
fewer than 50 million instructions in detail per benchmark.
(2) By simulating exceedingly small fractions of complete
benchmarks, SMARTSim achieves effective speeds of 9.2
MIPS and 9.0 MIPS simulating 8-way and 16-way out-of-
order processors on a 2 GHz Pentium 4. This corresponds
to speedups of 35 and 60 times over full-stream simulation
with sim-outorder for the two configurations.

The outcomes of this study have two fundamental
bearings on future simulator designs. First, designers
should not attempt to accelerate detailed simulators at the
cost of coding complexity or abstraction errors; instead
designers should focus on increasing the simulator’s flexi-
bility and realism. Second, designers should focus on
techniques to speed up fast-forwarding and functional
warming, because these ultimately determine sampling
simulation time.

Acknowledgment
The authors would like to thank Se-Hyun Yang, Zeba

Wunderlich, the members of the Carnegie Mellon Impetus
group, and the anonymous reviewers for their feedback on
earlier drafts of this paper. This work was funded in part
by grants from IBM and Intel corporations, an NSF
CAREER award, and an NSF Instrumentation award.

1. Consider a basic block comprised of a pointer-chasing loop. The
execution time of each dynamic instance depends on whether the
pointer deference hits in the cache and hence is a function of the
cache design and the precise memory placement of the linked list
nodes.

0%
3%

6%
9%

12%

gc
c-

2

si
xt

ra
ck

gc
c-

1

fm
a3

d

gc
c-

4

bz
ip

2-
1

vp
r

gc
c-

3

am
m

p

gc
c-

5

gz
ip

-2

gz
ip

-5

C
PI

 E
rr

or SimPoint

av
g.

 re
st

8-way

Figure 8. Comparison of SMARTS with SimPoint.
SimPoint’s mean runtime per benchmark

is 2.8 hours compared to 5.0 hours for SMARTS.

SMARTS
11

References
[1] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Frame-

work for Architectural-Level Power Analysis and Optimiza-
tions,” In Proceedings of the International Symposium on
Computer Architecture, June 2000.

[2] D. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Technical Report 1342, Computer Sciences
Department, University of Wisconsin–Madison, June 1997.

[3] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H.
Lipasti, “Precise and Accurate Processor Simulation,” In
Workshop on Computer Architecture Evaluation using
Commercial Workloads, HPCA, February 2002.

[4] T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing
State Loss for Effective Trace Sampling of Superscalar
Processors,” In Proceedings of the International Conference
on Computer Design, October 1996.

[5] M. Durbhakula, V. S. Pai, and S. Adve, “Improving the
Accuracy vs. Speed Tradeoff for Simulating Shared-
Memory Multiprocessors with ILP Processors,” In Proceed-
ings of the International Symposium on High-Performance
Computer Architecture, January 1999.

[6] S. Dwarkadas, J. R. Jump, and J. B. Sinclair, “Execution-
Driven Simulation of Multiprocessors: Address and Timing
Analysis,” IEEE Transactions on Modeling and Computer
Simulation, Volume 4, No. 4, October 1994.

[7] J. W. Haskins and K. Skadron, “Minimal Subset Evaluation:
Rapid Warm-Up for Simulated Hardware State,” In
Proceedings of the International Conference on Computer
Design, September 2001.

[8] W. C. Hsu, H. Chen, and P. C. Yew, “On the Predictability
of Program Behavior Using Different Input Data Sets,” In
Workshop on Interaction between Compilers and Computer
Architectures, HPCA, February 2002.

[9] AJ KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja,
“Adapting the SPEC 2000 Benchmark Suite for Simulation-
Based Computer Architecture Research,” In IEEE Work-
shop on Workload Characterization, ICCD, September
2000.

[10] T. Lafage and A. Seznec, “Choosing Representative Slices
of Program Execution for Microarchitecture Simulations: A
Preliminary Application to the Data Stream,” In IEEE
Workshop on Workload Characterization, ICCD, September
2000.

[11] S. Laha, J. H. Patel, and R. K. Iyer, “Accurate Low-Cost
Methods for Performance Evaluation of Cache Memory
Systems,” IEEE Transactions on Computers, Volume C-
37(11), February 1988.

[12] G. Lauterbach, “Accelerating Architectural Simulation by
Parallel Execution of Trace Samples,” In Hawaii Interna-
tional Conference on System Sciences, Volume 1: Architec-
ture, January 1994.

[13] P. S. Levy and S. Lemeshow, Sampling of Populations:
Methods and Applications, John Wiley & Sons, Inc., 1999.

[14] S. Nussbaum and J. E. Smith, “Modeling Superscalar
Processors via Statistical Simulation,” In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, September 2001.

[15] M. Oskin, F. T. Chong, and M. K. Farrens, “HLS:
Combining Statistical and Symbolic Simulation to Guide
Microprocessor Designs,” In Proceedings of the Interna-
tional Symposium on Computer Architecture, June 2000.

[16] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C.
Lewis, and D. A. Wood, “The Wisconsin Wind Tunnel:
Virtual Prototyping of Parallel Computers,” In Proceedings
of the International Conference on Measurement and
Modeling of Computer Systems, May 1993.

[17] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program
Behavior,” In Proceedings of the International Conference
on Architectural Support for Programming Languages and
Operating Systems, October 2002.

[18] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, J. C. Hoe.
“SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling,” In Proceedings of the Inter-
national Symposium on Computer Architecture, June 2003.
12

Appendix A: Additional Results
Table 7. SPEC CPU2000 Benchmarks

Benchmark Input Instructions (bil.) 8-way IPC 16-way IPC 8-way EPI (nJ/Inst.)

ammp 326.5 1.04 1.60 42.7
applu 223.9 1.17 1.75 42.1

apsi 347.9 1.58 2.40 35.9
art-1 startx 110 41.8 0.39 0.66 88.0
art-2 startx 470 45.0 0.39 0.66 87.6

bzip2-1 source 108.9 1.48 1.77 39.5
bzip2-2 graphic 143.6 1.56 1.95 37.2
bzip2-3 program 124.9 1.70 2.08 36.9

crafty 191.9 2.34 2.94 34.6
eon-1 kajiya 101.3 2.50 3.11 36.5
eon-2 cook 80.6 3.01 4.81 31.8
eon-3 rushmeier 57.9 2.85 4.11 33.2

equake 131.5 0.79 1.23 50.3
facerec 211.0 1.86 3.31 33.2
fma3d 268.4 1.53 2.57 38.0
galgel 409.4 0.96 1.77 45.2

gap 269.0 1.48 1.74 39.5
gcc-1 166 46.9 1.45 1.41 40.7
gcc-2 200 108.6 1.60 1.82 39.6
gcc-3 expr 12.1 1.63 1.73 40.1
gcc-4 integrate 13.2 1.64 1.62 38.9
gcc-5 scilab 62.0 1.64 1.80 40.2

gzip-1 source 84.4 1.76 1.91 37.2
gzip-2 log 39.5 1.81 1.94 35.9
gzip-3 graphic 103.7 2.26 2.54 35.7
gzip-4 random 82.2 2.22 2.48 36.0
gzip-5 program 168.9 1.81 2.00 36.1

lucas 142.4 0.11 0.11 207.1
mcf 61.9 0.10 0.14 245.2

mesa 281.7 2.92 4.44 29.6
mgrid 419.2 1.75 2.91 36.3
parser 546.7 1.32 1.58 41.4

perlbmk makerand 2.1 2.01 2.27 36.4
sixtrack 470.9 2.50 5.79 31.1

swim 225.8 1.03 1.51 42.8
twolf 346.5 0.76 0.83 52.7

vortex-1 lendian1 119.0 2.13 3.38 31.4
vortex-2 lendian2 138.7 2.35 3.89 30.7
vortex-3 lendian3 133.0 2.12 3.36 31.5

vpr route 84.1 0.56 0.64 63.8
wupwise 349.6 2.37 4.26 30.4
13

8-way
0 5 10 15 20 25 30

eon-2
eon-3

sixtrack
eon-1

mcf
gzip-5
gzip-2
gzip-1
gzip-3
gzip-4
crafty
art-2
art-1

applu
apsi

equake
perlbmk

galgel
mesa
lucas
swim
gcc-1

fma3d
facerec

gcc-5
twolf

bzip2-3
bzip2-1

gcc-4
gcc-3

bzip2-2
ammp
gcc-2
mgrid

gap
wupwise

vortex-3
vortex-1
parser

vortex-2
vpr

Sampled Instructions (millions)

Figure 9. Minimum instructions required.

±1%

±3%

99.7% confidence
95% confidence

CPI Error
14

16-way
0 5 10 15 20 25 30 35 40

eon-1
eon-2
eon-3

sixtrack
gzip-5

mcf
gzip-2
gzip-1

perlbmk
art-1
art-2

gzip-3
gzip-4
crafty
lucas

equake
swim
applu
galgel
mgrid

bzip2-1
fma3d

bzip2-3
bzip2-2

wupwise
gap

gcc-1
mesa

facerec
apsi

parser
vpr

gcc-4
gcc-5
gcc-3

ammp
twolf

gcc-2
vortex-2
vortex-3
vortex-1

Sampled Instructions (millions)

Figure 10. Minimum instructions required.

±1%

±3%

99.7% confidence
95% confidence

CPI Error
15

Table 8. Bias achieved with functional warming and minimal detailed warming.

8-way CPI Bias EPI Bias 8-way CPI Bias EPI Bias 16-way CPI Bias 16-way CPI Bias

vpr -1.56% 0.52% vortex-1 -0.29% 0.80% mcf 1.88% gzip-1 -0.25%
galgel 1.37% 0.04% gcc-4 -0.29% -0.09% gcc-2 -1.60% galgel -0.25%
gcc-2 -1.07% 0.63% mgrid 0.28% 0.09% vortex-3 1.18% gcc-4 0.24%

bzip2-2 -1.04% 0.94% bzip2-1 -0.25% 0.55% eon-2 -1.11% bzip2-2 -0.19%
parser 1.01% 0.56% gzip-3 -0.25% 0.05% gcc-5 -1.10% mgrid -0.17%
gzip-5 0.94% 2.31% ammp 0.18% -2.42% sixtrack -0.93% art-1 -0.15%

facerec 0.86% 0.96% sixtrack 0.17% -0.27% wupwise 0.85% gzip-2 0.14%
gcc-5 -0.81% 0.04% wupwise -0.17% -0.05% bzip2-1 0.78% gzip-5 -0.12%

vortex-3 -0.55% 0.63% equake 0.13% 1.46% applu 0.65% vortex-2 -0.12%
gcc-1 -0.53% -1.03% applu -0.12% -0.04% mesa -0.58% lucas 0.09%

bzip2-3 -0.51% 0.36% gzip-4 -0.11% 0.09% eon-1 -0.56% art-2 0.07%
perlbmk -0.40% -0.09% eon-2 -0.10% -0.10% vortex-1 -0.54% apsi -0.07%

swim 0.38% 0.19% twolf 0.09% 0.00% ammp -0.53% parser 0.06%
gzip-1 0.38% 1.43% gzip-2 -0.09% 0.23% swim 0.44% gzip-3 -0.05%

mcf 0.36% 1.14% mesa -0.07% 0.11% vpr 0.38% twolf 0.04%
eon-1 -0.36% -0.14% gap 0.07% 2.49% gcc-3 -0.36% bzip2-3 -0.04%

fma3d -0.35% -0.22% gcc-3 -0.05% 0.00% crafty 0.32% eon-3 0.04%
crafty -0.35% -0.14% eon-3 -0.04% -0.15% perlbmk -0.30% facerec 0.03%
art-2 0.31% 0.13% lucas 0.03% 0.13% fma3d 0.28% equake 0.02%
art-1 -0.30% -0.40% vortex-2 0.02% 1.09% gap 0.28% gzip-4 0.00%
apsi 0.29% -0.42% gcc-1 0.25%

0%
2%
4%
6%
8%

10%

am
m

p
ap

si
vp

r
vo

rte
x-

1
bz

ip
2-

2
gc

c-
2

fa
ce

re
c

bz
ip

2-
3

fm
a3

d
gc

c-
1

bz
ip

2-
1

pa
rs

er
gc

c-
3

ga
p

gc
c-

5
gc

c-
4

vo
rte

x-
2

lu
ca

s
vo

rte
x-

3
ar

t-1
ar

t-2
tw

ol
f

m
es

a
m

cf
m

gr
id

cr
af

ty
w

up
w

is
e

ga
lg

el
gz

ip
-3

eq
ua

ke
gz

ip
-4

gz
ip

-2
ap

pl
u

gz
ip

-1
gz

ip
-5

eo
n-

1
eo

n-
3

eo
n-

2
si

xt
ra

ck
pe

rlb
m

k
sw

im

C
PI

 E
rr

or

99.7% confidence interval 16-way

0%

2%

4%

6%

am
m

p
vp

r
gc

c-
2

bz
ip

2-
2

gc
c-

1
pa

rs
er

ga
p

bz
ip

2-
3

vo
rtx

-1
ap

si
bz

ip
2-

1
gc

c-
3

gc
c-

4
fa

ce
re

c
fm

a3
d

gc
c-

4
lu

ca
s

ar
t-2

ar
t-1 m
cf

vo
rte

x-
2

vo
rte

x-
3

w
up

w
is

e
m

es
a

ga
lg

el
eq

ua
ke

m
gr

id
gz

ip
-2

gz
ip

-4
ap

pl
u

gz
ip

-3
tw

ol
f

gz
ip

-1
cr

af
ty

gz
ip

-5
sw

im
pe

rlb
m

k
eo

n-
1

si
xt

ra
ck

eo
n-

3
eo

n-
2

C
PI

 E
rr

or

99.7% confidence interval 8-way

Figure 11. SMARTS results across SPEK2K with n = 10,000.
16

Table 9. Runtimes for SMARTS compared to detailed and functional simulation. (8-way)

Runtime (hrs.) Detailed Functional SMARTS Runtime (hrs.) Detailed Functional SMARTS

parser 541 9.2 15.8 bzip2-3 123 2.1 3.6
sixtrack 466 7.9 13.6 vortex-1 118 2.0 3.5

mgrid 414 7.0 12.1 bzip2-1 108 1.8 3.2
galgel 405 6.9 11.8 gcc-2 107 1.8 3.2

wupwise 346 5.9 10.1 gzip-3 103 1.7 3.0
apsi 344 5.8 10.1 eon-1 100 1.7 2.9

twolf 343 5.8 10.0 gzip-1 83 1.4 2.4
ammp 323 5.5 9.6 vpr 83 1.4 2.5
mesa 278 4.7 8.1 gzip-4 81 1.4 2.4

gap 266 4.5 7.8 eon-2 80 1.4 2.3
fma3d 265 4.5 7.8 gcc-5 61 1.0 1.8
swim 223 3.8 6.5 mcf 61 1.0 1.8
applu 221 3.8 6.5 eon-3 57 1.0 1.7

facerec 209 3.5 6.1 gcc-1 46 0.8 1.4
crafty 190 3.2 5.5 art-2 45 0.8 1.3
gzip-5 167 2.8 4.9 art-1 41 0.7 1.2

bzip2-2 142 2.4 4.2 gzip-2 39 0.7 1.2
lucas 141 2.4 4.1 gcc-4 13 0.2 0.4

vortex-2 137 2.3 4.0 gcc-3 12 0.2 0.4
vortex-3 132 2.2 3.9 perlbmk 2 0.0 0.1

equake 130 2.2 3.8

0%

1%

2%

3%

4%

am
m

p
bz

ip
2-

1
vp

r
gc

c-
2

lu
ca

s
bz

ip
2-

2
gc

c-
1

ga
p

ar
t-2

ar
t-1 ap
si

bz
ip

2-
3

m
cf

vo
rte

x1
gc

c-
3

fm
a3

d
fa

ce
re

c
gc

c-
5

gc
c-

4
eq

ua
ke

ga
lg

el
vo

rte
x3

vo
rte

x2
w

up
w

i
m

es
a

gz
ip

-2
ap

pl
u

gz
ip

-4
gz

ip
-3

tw
ol

f
m

gr
id

gz
ip

-1
gz

ip
-5

cr
af

ty
sw

im
eo

n-
1

eo
n-

3
eo

n-
2

pe
rlb

m
k

si
xt

ra
ck

pa
rs

er

nJ
/in

st
ru

ct
io

n
Er

ro
r

99.7% confidence interval
8-way

Figure 12. SMARTS EPI results with n = 10,000.

0%
3%
6%
9%

12%

gc
c-

2
si

xt
ra

ck
gc

c-
1

fm
a3

d
gc

c-
4

bz
ip

2-
1

vp
r

gc
c-

3
am

m
p

gc
c-

5
gz

ip
-2

gz
ip

-5
bz

ip
-2

fa
ce

re
c

ap
si

ga
lg

el
bz

ip
2-

3
m

es
a

vo
rte

x-
3

lu
ca

s
vo

rte
x-

2
w

up
w

is
ap

pl
u

eo
n-

3
pa

rs
er

m
cf

gz
ip

-1
tw

ol
f

ga
p

sw
im

gz
ip

-3
cr

af
ty

m
gr

id
eq

ua
ke

vo
rte

x-
1

pe
rlb

m
k

gz
ip

-4
ar

t-1
ar

t-2

C
PI

 E
rr

or SimPoint

8-way

Figure 13. Comparison of SMARTS with SimPoint.

SMARTS
17

Appendix B: Statistical Analysis of SimPoint
In this section, we present a statistical analysis of the

SimPoint clustering and selection technique presented in
[17]. SimPoint attempts to select less than 10 sampling
units, with unit size of 100M instructions each, to repre-
sent a benchmark. To select these sampling units, a
benchmark’s complete dynamic trace is divided into units
of 100M instructions. The units are grouped into up to 10
clusters based on the similarity of their basic block vectors
(defined in [17]). From each cluster, SimPoint selects a
single unit to represent that cluster. The key premise
behind SimPoint is that similarity in basic block vectors
correlate strongly to similarity in IPC. Therefore, a
weighted average IPC of only the selected units can esti-
mate a benchmark’s overall IPC.

We measure across the units assigned to each
cluster to evaluate statistically how well full-benchmark
system performance is represented. Because units in each
cluster have similar basic block vectors, we expect the

 within a single cluster to be low. Table 10 shows

 for each of the six clusters for gcc-2. The data in the
table is derived from simulations using the microarchitec-
ture configuration in [17]. We reproduced the cluster
assignments of [17] using the provided SimPoint analysis
tools. In the case of clusters 1 and 5, the coefficient of
variation within the cluster exceeds the coefficient of vari-
ation for the whole benchmark. Therefore, the probability
that any single unit selected from the cluster accurately
represents the cluster is low. For both of these clusters, the
difference between the average IPC over all of the
cluster’s units and the IPC of the selected unit is large
(26% and 16% respectively).

Figure 14 depicts the sampling units assigned to the
two highest-weighted clusters in gcc-2. The figure illus-
trates the large amount of variation within each cluster.
The single unit chosen to represent each cluster is marked.

These results also indicate that the clustering tech-
nique provides a rather low confidence in the estimates.
We find that achieving 95% confidence of ±3% CPI error
requires on the order of 1,000 sampling units (given a

 of approximately 0.5 for a unit size of 100M as seen

VCPI

VCPI

VCPI

Table 10. Statistical analysis of SimPoint clusters for gcc-2. (8-way as in [17])

Cluster Weight Actual IPC IPC of SimPoint
Full benchmark — 0.96 — 0.49

1 12.155% 2.93 3.69 0.52
2 18.785% 1.09 0.97 0.33
3 11.602% 0.64 0.52 0.18
4 47.053% 0.77 0.78 0.28
5 5.893% 2.58 2.98 0.56
6 4.512% 2.60 2.43 0.38

VCPI

0.0
0.5
1.0
1.5
2.0
2.5

0 10 20 30 40 50 60 70 80 90 100

IP
C

gcc-2 cluster 4

SimPoint

0.0
0.5
1.0
1.5
2.0
2.5

0 10 20 30 40 50 60 70 80 90 100
Instructions (billions)

IP
C

gcc-2 cluster 2

SimPoint

Figure 14. Cluster block IPC distribution for SimPoint.

VCPI
18

in Figure 2). It is possible that improvements in cluster
selection algorithms may indeed result in higher confi-
dence in estimates at the cost of a larger number of units
and a higher overall number of instructions measured in
detail. However, such improvements must accompany
careful quantitative analysis of the confidence.

Table of Contents

Applying SMARTS to SPEC CPU2000
Abstract... 1
1 Introduction... 1

1.1 Current approaches 1
1.2 The SMARTS approach 2

2 Statistical sampling ...2
3 The SMARTS framework....................................... 3

3.1 Technique overview...................................... 3
3.2 Benchmarks .. 5
3.3 Speedup opportunity..................................... 5
3.4 Simulation speedup model............................ 6

4 SMARTS in practice.. 7
4.1 SMARTSim...7
4.2 Optimal sampling unit size 7
4.3 Effectiveness of detailed warming................ 7
4.4 Bounding detailed warming.......................... 8
4.5 Effectiveness of functional warming 8

5 Using SMARTS .. 9
5.1 SMARTS procedure .. 9
5.2 Evaluation of performance and accuracy ...10
5.3 Comparison to SimPoint.............................10

6 Conclusion ... 11
Acknowledgment.. 11

References ...12
Appendix A: Additional Results13
Appendix B: Statistical Analysis of SimPoint......18
19

	Abstract
	1. Introduction
	1.1. Current approaches
	1.2. The Smarts approach
	2. Statistical sampling
	Table 1. Sampling variables.

	3. The Smarts framework
	3.1. Technique overview
	Table 2. Smarts variables.
	Figure 1. Systematic sampling in Smarts.

	3.2. Benchmarks
	Table 3. Machine configurations.

	3.3. Speedup opportunity
	Figure 2. Coefficient of variation of CPI.
	Figure 3. Minimum instructions required. This graph shows the minimum number of instructions whic...

	3.4. Simulation speedup model
	Figure 4. Modeled Smarts simulation rate. The two SD plots show the simulation rate without funct...

	4. Smarts in practice
	4.1. Smartsim
	4.2. Optimal sampling unit size
	Figure 5. Optimal U. The left chart shows that the optimal U increases with W. The right chart sh...

	4.3. Effectiveness of detailed warming
	Table 4. Detailed warming requirements without functional warming. (8-way)

	4.4. Bounding detailed warming
	4.5. Effectiveness of functional warming
	Table 5. CPI bias achieved with functional warming and minimal detailed warming.

	5. Using Smarts
	5.1. Smarts procedure
	Figure 6. Smarts results across SPEC2K with n�=�10,000. Unacceptably large confidence intervals (...

	5.2. Evaluation of performance and accuracy
	Figure 7. Smarts EPI results with n�=�10,000.
	Table 6. Runtimes for Smarts compared to detailed and functional simulation. (8-way)

	5.3. Comparison to SimPoint
	Figure 8. Comparison of Smarts with SimPoint. SimPoint’s mean runtime per benchmark is 2.8 hours ...

	6. Conclusion
	Acknowledgment
	References
	Appendix A: Additional Results
	Table 7. SPEC�CPU2000 Benchmarks
	Figure 9. Minimum instructions required.
	Figure 10. Minimum instructions required.
	Table 8. Bias achieved with functional warming and minimal detailed warming.
	Figure 11. Smarts results across SPEK2K with n�=�10,000.
	Figure 12. Smarts EPI results with n�=�10,000.
	Table 9. Runtimes for Smarts compared to detailed and functional simulation. (8-way)
	Figure 13. Comparison of Smarts with SimPoint.

	Appendix B: Statistical Analysis of SimPoint
	Table 10. Statistical analysis of SimPoint clusters for gcc-2. (8-way as in [17])
	Figure 14. Cluster block IPC distribution for SimPoint.

	Table of Contents

