
Shelley Chen

Submitted to the Department of Electrical and Computer Engineering

In partial fulfillment of the requirements for the degree of

Masters of Science

at

Carnegie Mellon University

May 2004

Committee Members

Babak Falsafi, Associate Professor of ECE (advisor)

James C. Hoe, Assistant Professor of ECE

Direct SMARTS: Accelerating Microarchitectural
Simulation through Direct Execution

Abstract

Due to growing complexity and costs of hardware systems, computer architects traditionally rely on

software simulation to evaluate new designs. Although software simulation excels in convenience and

flexibility, it suffers from prohibitively long turnaround time. Researchers are constantly searching for

methods to accelerate software simulations. SMARTS is a framework that uses rigorous statistical sam-

pling to accelerate simulation time without sacrificing accuracy. Its turnaround time is limited by the speed

of the functional warming mode, which updates architectural state and select microarchitectural structures.

This paper presents direct warming as an efficient technique for accelerating functional warming.

Direct warming extends direct execution, in which the simulated program code is executed natively on the

host machine hardware rather than through emulation. To achieve identical simulation behavior to func-

tional warming, direct warming integrates instrumentation code for record generation into the direct execu-

tion code. In this paper, we investigate and analyze several implementation alternatives to maximize the

performance of direct warming by evaluating a collection of benchmarks on the RSIM simulator. On aver-

age, Direct SMARTS achieves a 96x speedup over full detailed simulation, with a maximum speedup of

134x. In addition, with the Direct SMARTS framework, we achieve an average error of 0.4%, with an

upper bound of 0.7%.

4

Table of Contents

1 Introduction... 8

1.1 Related Work ... 9

1.2 Organization Outline ... 11

2 SMARTS Background .. 12

2.1 The SMARTS Framework... 12

2.1.1 Warming.. 13

2.1.2 Switching .. 13

2.2 The RSIM Simulator ... 14

2.3 Applying SMARTS to RSIM .. 14

2.3.1 Machine Configuration and Benchmarks ... 14

2.3.2 Verification of Optimal Parameter Values .. 15

3 Direct SMARTS.. 19

3.1 RSIM’s Direct Execution Mode .. 19

3.2 Speedup Opportunity of Direct Execution .. 20

3.3 Implementing Direct Warming.. 21

3.4 Optimizations .. 23

3.4.1 Record Size Sensitivity Analysis .. 23

3.4.2 Quick Hits Array... 24

3.4.3 Reducing Storage Overhead.. 25

3.4.4 Results/Analysis.. 26

3.5 Speedup of Direct SMARTS ... 27

4 Conclusions... 30

5

5 Appendix... 31

6 Acknowledgements... 32

6

List of Figures

FIGURE 1: The SMARTS Framework. ... 12

FIGURE 2: U vs. Coefficient of Variation of CPI (VCPI). .. 16

FIGURE 3: Instructions Simulated in Detailed with W = 2000 Instructions............... 17

FIGURE 4: Accuracy of Direct SMARTS. .. 18

FIGURE 5: Functional Block Diagram of Direct Execution Mode of RSIM. 19

FIGURE 6: Functional Block Diagram of Direct Warming mode. 22

FIGURE 7: The Base Case Configuration. .. 23

FIGURE 8: The Sensitivity of Record Size. .. 24

FIGURE 9: The Bitmap Array Scheme.. 25

FIGURE 10: Performance of Different Optimizations... 26

FIGURE 11: Optimal Speedups For Select Benchmarks... 27

7

List of Tables

TABLE 1. RSIM Machine Configuration. ... 15

TABLE 2. Benchmarks Used in Evaluation. .. 15

TABLE 3. Speedup of Different Simulation Modes vs. Detailed Simulation............ 20

TABLE 4. Warming Parameters. .. 21

TABLE 5. Speedup vs. Detailed Simulation Including Warming. 28

8

1 Introduction

Software simulation is necessary for microprocessor system design and analysis. Not only does soft-

ware allow for the easy implementation of new ideas, but it facilitates the testing of new designs on many

different configurations. Many times, a simple change in the configuration file or the initialization of a

variable to a different value is sufficient. Unfortunately, the drawback to this design methodology is that

simulation with software is orders of magnitude slower than the native runtime of the program on the

actual hardware systems. The more detailed and accurate the simulator, the longer the total simulation time

compared to native execution. With the complexity of current microprocessors growing dramatically and

the instruction counts of common benchmark suites increasing with each new release, the execution time

for accurate simulation of these microprocessors becomes progressively longer. It has become impractical

to run full detailed simulations on the benchmark suites to model newly developed designs. Depending on

the scale of the tested benchmarks, researchers can spend days and even weeks waiting for simulations to

conclude.

As a result, researchers are constantly attempting to find alternative methods to shorten the runtimes of

their software simulations. These methods, which include using truncated simulation runs and input sets

that allow for smaller memory footprints, often lead to inaccurate measurements and misrepresented con-

clusions about the tested design [9]. Recently, proposals utilizing either statistical or trace-driven tech-

niques have been introduced [3][12][15][7]. These techniques use functional simulation to skip to

strategically chosen sections, or “sampling units,” of the benchmark for measurements. Functional simula-

tion emulates program behavior by updating the architectural state of the simulator and only necessary

microarchitecture structures. By performing detailed simulation only on the chosen sampling units,

researchers can reduce runtime considerably, while maintaining measurement accuracy. One technique,

called the Sampling Microarchitecture Simulation (SMARTS) framework, has shown significant speedup

9

with minimal error by applying systematic statistical sampling. However, the SMARTS simulation time is

limited by the runtime of the functional simulator.

This thesis introduces a straightforward method for accelerating the functional simulation portion of

the SMARTS simulator, called direct warming. The contributions of this thesis are as follows:

• Direct Warming. We explore a method of integrating direct execution in the functional warming mode

of the SMARTS framework to further improve simulation turnaround time. Different schemes to opti-

mize for performance and memory space are explored and evaluated.

• General and Applicable. This thesis presents results from integrating the SMARTS framework into

another simulator with a different architecture and warming technique, verifying that the technique is

general and applicable to different simulators.

1.1 Related Work

A simple and common technique used for dealing with prohibitively slow simulation times is to collect

results based on abbreviated execution runs. In this technique, researchers bypass the initialization phase of

the benchmark (e.g. usually 100 million instructions), which does not represent a program’s typical behav-

ior. Then, they continue with detailed simulation of the benchmark for a large number of instructions (e.g.

500 million instructions). However, drawing conclusions based on a single snapshot of the benchmark exe-

cution may be erroneous and misleading. Many programs go through different phases of execution, where

each phase is repeated throughout the benchmark run. The behavior of a single phase of the benchmark

may be vastly different from the other phases. More importantly, the observed behavior from the snapshot

may not be representative of the program as a whole.

An alternative technique is to use reduced data sets. For example, the Spec2000 benchmark suite [11]

provides test inputs, which have execution times that are a fraction of the reference input sets. However,

the execution paths of these input sets are sometimes very different from those taken by the reference input

sets. Therefore, behavior observed from the test inputs may not be representative of the reference input

10

behavior. Hsu, et al. [9] report that test inputs of certain benchmarks in the Spec2000 suite have up to

300% error compared to the reference inputs when measuring the benchmark IPC (instructions/cycle).

Recently, researchers use more sophisticated trace-driven simulation methods to reduce execution time

[3][12][15]. Specialized algorithms choose which instructions need to be simulated. Then, a trace is pro-

duced for these instructions and the detailed simulator is run according to the information in the trace.

Since most programs have repeating phases, instructions in these phases need only be simulated once

rather than many times. Not only does this method reduce the final execution time of the simulation, but

since the traces are reusable, this method is very useful when running multiple simulations with the same

simulator configuration. However, instruction traces can be extremely large and the overhead required to

produce them prior to the actual simulation adds considerable time to the overall simulation time. Lauter-

bach [12] reduces trace creation overhead by using multiple computers to produce the traces in parallel, but

this solution is very costly and most researchers have limited computing resources.

Several direct execution simulators have also been introduced. Embra, which is part of the SimOS

project, uses dynamic binary translation to generate machine code for the native host [16]. Since machine

code is generated during simulation, workloads are determined on the fly. Fujimoto and Campbell [10], on

the other hand, make modifications directly to the benchmark binary by converting the binary into a higher

level intermediate language, inserting timing code, and then retranslating the intermediate code for execu-

tion on the native host.

Sherwood, et al. [15] developed a tool called SimPoint, which utilizes Basic Block Vectors to automat-

ically capture the behavior of programs over billions of instructions. Through a clustering algorithm, they

determine the minimal sections of code which need to be executed in detail. Through the use of SimPoint,

they achieve an average IPC error of 3%. Wunderlich, et al. [7] found that SimPoint implemented on Sim-

pleScalar [1] is slightly less than twice as fast as the SMARTS framework, which is presented next, on the

same simulator.

11

Wunderlich, et. al. [7] introduced an on-line algorithm for accelerating simulation time, utilizing both

statistical sampling and functional warming. Functional warming is similar to functional simulation,

except that the former only updates architectural state, while the latter also updates long history structures

like branch predictors, caches, and TLBs. The basic concept behind this framework is to take measure-

ments on a large number of sampling units, each consisting of roughly 1000 instructions. Functional warm-

ing is performed between sampling units. Before the start of the measurement phase of each sampling unit,

only a minimal amount of detailed warming (detailed simulation with all measurement variables deacti-

vated) is performed to bring the smaller structures (e.g. the load/store queue) up to date.

Sherwood et al. [15] also suggest the use of check-pointing for the start of a simulation period. Infor-

mation about both the architectural and microarchitectural state of the simulation environment is stored in

these checkpoints. Thus, making functional warming unnecessary. Not only this, but the checkpoints are

reusable if simulator configuration is constant. However, the overhead for creating these checkpoints is

large.

1.2 Organization Outline

The remainder of this paper is organized as follows. Chapter 2 introduces background information

required to understand the problem space, including a detailed description of the SMARTS framework and

the RSIM simulator. Chapter 3 describes the components of Direct SMARTS and presents the trade-offs of

the different performance optimizations which we analyzed. Chapter 4 concludes the paper, discussing

possible extensions and future work.

12

2 SMARTS Background

This chapter gives the necessary background information to understand this thesis. Section 2.1 briefly

covers the SMARTS statistical sampling framework. Section 2.2 describes the details of the modified

RSIM simulator that we use as a foundation for our work. Section 2.3 provides a proof of concept for the

SMARTS framework and evaluate the results presented in the SMARTS paper.

2.1 The SMARTS Framework

The Sampling Microarchitecture Simulation (SMARTS) framework [7] introduces an on-line simula-

tion technique that utilizes rigorous systematic sampling to achieve fast and accurate simulation without

the overhead of creating traces with the trace-driven techniques presented in Section 1.1. Statistical sam-

pling states that information obtained from a subset of a population can be representative of the population

as a whole. Systematic sampling spaces out the sampling units at regular intervals. We use systematic sam-

pling to facilitate implementation of the framework. Well-established statistical principles are applied to

obtain measurements from this subset of instructions, which are used to estimate measurements for the

entire population [13].

Figure 1 shows the basic functional layout of the SMARTS framework. SMARTS can accurately esti-

mate simulations by taking measurements on many small sampling units, evenly spread throughout the

0 N

U instructions are measured as a
 using detailed simulationsampling unit

... sampling unitsn

Benchmark dynamic instruction stream
j j k+ j k + 2

 instructions of detailed
simulation warm state before
each sampling unit

WU k W(– 1) – instructions are
functionally simulated and large
structures may be warmed

FIGURE 1: The SMARTS Framework. SMARTS switches between functional simulation of U(k-1) instructions
and detailed simulation of U instructions. W instructions are needed for detailed warming. Figure above is
courtesy of [7].

U
W
N
j

k
n

sampling unit size (instructions)
detailed warming (instructions)
benchmark length (instructions) / U
beginning offset (instructions)
sampling interval (instructions)
number of sampling units

13

duration of the benchmark. Between sampling units, the simulator emulates the microarchitectural effects

of the simulated instructions in a mode called functional warming, which we describe in the following sec-

tion.

2.1.1 Warming
The most challenging part of the framework is to determine how to recreate the proper state of the sim-

ulator at the point immediately prior to the detailed simulation measurement period. In order to reproduce

this state, detailed warming should be applied to a finite number of instructions prior to the measurement

period. Detailed warming is equivalent to detailed simulation, without statistical counters activated. How-

ever, since detailed warming is as expensive as full detailed simulation, long intervals of detailed warming

significantly add to the total simulation execution time. In addition, data structures with long histories,

such as the caches, TLBs, and branch predictors, need large amounts of detailed warming. A less expen-

sive functional warming mode executed continuously is more appropriate. Recall that functional warming

is similar to functional simulation in that the simulator’s architectural state is updated during emulation of

the instructions. However, unlike functional simulation, functional warming also keeps long history struc-

tures like caches, TLBs, and branch predictors updated.

Wunderlich, et al. [7] determined that with the SMARTS framework, more than 99% of instructions

are emulated in the functional warming mode, meaning that less than 1% of the instructions are executed in

detail. Thus, the speed of the SMARTS simulator is dependent on the speed of the functional warming sim-

ulator. Therefore, optimizations to the functional warming mode of the simulator are expected to shorten

the total execution time of the SMARTS simulator.

2.1.2 Switching
Another challenge is determining how to switch between the detailed and the functional warming

modes of the simulator. Switching from the functional warming to detailed simulation mode is trivial

because the functional warming mode executes instructions in order.

14

Switching from the detailed simulation mode to the function warming mode is complex. The detailed

simulator can execute instructions out of order, which means that instructions may get reordered in the

pipeline. In addition, instructions may take multiple cycles to complete, and all instructions in the pipeline

must complete prior to the start of the functional warming mode. Thus, the entire pipeline and memory sys-

tem need to be flushed before functional warming begins. This means that at the time when the functional

simulation mode is about to begin, if there is a memory access request in the ports of the L1 data cache, the

L1 cache needs to process this request, the L2 cache could need to process this request, and the directory

may need to update an entry as well, all before the functional warming mode can begin.

2.2 The RSIM Simulator

We use the Rice Simulator for ILP Multiprocessors (RSIM) [14] in this study. RSIM is a shared mem-

ory, directory based, multiprocessor simulator. We conduct our experiments with a single processor. This

serves as a proof of concept that the SMARTS framework is applicable to different architectures. In addi-

tion, having the SMARTS framework implemented on a multiprocessor simulator can initiate research to

the extension of SMARTS to a multiprocessor environment without having to deal with the implementa-

tion details of sampling.

2.3 Applying SMARTS to RSIM

2.3.1 Machine Configuration and Benchmarks
Table 1 shows the machine configuration for RSIM used to perform testing and verification. We

choose configuration parameters similar to those used by Wunderlich, et al. [7]. By choosing similar con-

figurations, we expect to see benchmark behavior similar to the previous implementation.

We run simulations on a quad processor 480 MHz UltraSPARC-II system. Each CPU has a 16 KB L1

instruction cache, 32 KB data cache, and 8 MB L2 cache.

15

Table 2 shows the benchmarks and input data sets that we use in our experiments. These benchmarks

are from the Splash-2[8], Olden[2], and Spec2000[11] benchmark suites. The SMARTS framework is only

beneficial when benchmarks are long. Otherwise, the difference in wait times between full detailed simula-

tion and SMARTS is insignificant. The three benchmarks in Table 2 have been scaled to result in instruc-

tion counts between 1 and 10 billion instructions.

2.3.2 Verification of Optimal Parameter Values
We first need to determine the optimal sampling unit size. Figure 2 plots the coefficient of variation

(VCPI) for various sampling unit sizes for the selected benchmarks. The VCPI determines the variance of

CPI (cycles/instruction) in a benchmark. Benchmarks with higher VCPI are harder to estimate with sam-

pling because more instructions need to be executed in detail to achieve the desired accuracy. The figure

shows that VCPI starts out high, sharply decreases, and finally levels off. The cause of the sharp drop is due

Parameter 8-way Superscalar

Active List size 128

Memory System 32 KB 2 way L1 I/D, 8 MSHRs
1024 KB 4 way L2, 8 MSHRs

ITLB/DTLB 128 entries, fully associative

L1/L2tag/L2data/mem latency 1/6/12/1000 cycles

Functional Units 4 I-ALU, 2 FPUs, 4 address generation units

Branch Predictor 2 bit history, 2K tables, 11 shadowmappers

TABLE 1. RSIM Machine Configuration.

Benchmark Input Data Set

Barnes Hut 4K particles

Em3d 32 nodes/thread, degree 8, 15% remote, span
8, 10000 steps

Tomcatv array size 1024, 10 iterations

TABLE 2. Benchmarks Used in Evaluation.

16

to the large variation that individual instructions can have. CPI can be low when many instructions are

being executed and the superscalar pipelines are full; yet CPI can be high due to long latency memory

instructions. Thus, with a sampling unit size of 1, VCPI is high. However, once the sampling unit size

increases to multiple instructions, VCPI drops significantly because the variations for each instruction aver-

age out. When the sampling unit size reaches 1000 instructions, short-term variations have been averaged

out, so variations in CPI are actually due to overall benchmark behavior rather than short-term variations

between instructions.

The optimal sampling unit size cannot simply be chosen at the point where the VCPI stabilizes. We

select the optimal sampling unit size so as to result in the smallest total number of instructions executed in

detail as possible, where detailed simulation is the cycle-accurate timing model of the simulated architec-

ture. Figure 3 shows the percentage of instructions executed in detail as a function of the sampling unit

size. We calculate the minimum number of sampling units analytically (see Wunderlich, et al. [7] for more

detailed information about calculation of minimum number of sampling units). We found that none of

these benchmarks need more than 10,000 sampling units to reach the desired accuracy. Thus, we set ntuned

FIGURE 2: U vs. Coefficient of Variation of CPI (VCPI).

0

1

2

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

U Sampling Unit Size (Instructions)

Vc
pi

Barnes Hut
Em3d
Tomcatv

 101 102 103 104 105 106 107

17

= 10,000. The dip in this graph is where the minimum number of instructions lies, which is near U=1000

instructions.

Figure 2 and Figure 3 confirm that the benchmarks used in our experiments have very similar behavior

to those benchmarks presented in the previous SMARTS paper. It is reasonable to conclude that the same

parameter value of U=1000 instructions works here as well. For Em3d, Figure 3 shows the minimum point

to be at a sampling unit size of 10,000 instructions. However, through practice, we found that using a sam-

pling unit size of 1000 instructions is sufficient for Em3d as well. In addition, through experimentation, we

found that W=2000 instructions results in the desired accuracy. For a more detailed analysis and explana-

tion see [7].

Wunderlich, et al. [7] verifies the accuracy of the SMARTS framework in SimpleScalar[1], a supersca-

lar uniprocessor simulator. We already determined the optimal parameters. Now, we need to check that the

accuracy of the implementation of Direct SMARTS is within acceptable bounds. The details of implement-

ing Direct SMARTS will be discussed in the next chapter, but to complete the verification section, the

FIGURE 3: Instructions Simulated in Detailed with W = 2000 Instructions.

0.01%

0.10%

1.00%

10.00%

100.00%

1.E
+0

1

1.E
+0

2

1.E
+0

3

1.E
+0

4

1.E
+0

5

1.E
+0

6

1.E
+0

7

U Sampling Unit Size (Instructions)

In
st

ru
ct

io
ns

 S
im

ul
at

ed
 in

 D
et

ai
l

Barnes Hut
Em3d
Tomcatv

 101 102 103 104 105 106 107

18

resulting accuracy is presented here. As seen in Figure 4, the average CPI measurement has an error of less

than 0.75%. We present optimal speedup numbers in the next chapter.

% Error CPI of Direct SMARTS

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%

Barnes Hut Em3d Tomcatv

Benchmarks

%
 E

rr
or

 C
PI

FIGURE 4: Accuracy of Direct SMARTS with U=1000 Instructions and W=2000 Instructions.

19

3 Direct SMARTS

3.1 RSIM’s Direct Execution Mode

The RSIM simulator has a direct execution mode which executes dynamically generated machine code

instructions [4]1. RSIM has the ability to switch from the detailed simulation mode into the direct execu-

tion mode, and vice versa. Figure 5 shows the functional flow diagram of the direct execution mode of

RSIM. The direct execution mode takes as input RSIM formatted instructions and does a lookup in the

translated cache to see if the corresponding basic block has previously been translated into machine code.

There is a translated cache, which maps basic block PCs to the corresponding location in memory of their

translated machine code. If the basic block entry already exists, then the corresponding machine code is

executed natively on the host machine. Otherwise, the simulator exits from direct execution, translates the

1. courtesy of Professor Vijay S. Pai of Electrical and Computer Engineering at Rice University

Instructions
left to

Execute?

In translated
cache?

Translate block
& insert into translated

cache

Execute translated
code on host and

update the PC

RSIM
Instruction

Format

NO

YES

NO

YES

Exit Direct
Exec Warming

FIGURE 5: Functional Block Diagram of Direct Execution Mode of RSIM.

20

block, and creates a new entry in the translated cache. The simulator then re-enters direct execution mode,

executes the most recently translated basic block, and does a lookup for the PC of the next basic block. If

the simulator continues to hit in the translated cache, RSIM stays in direct execution mode until the end of

the program.

3.2 Speedup Opportunity of Direct Execution

Historically, direct execution means the execution of the exact same binary in the simulator as you

would execute on the native host [5]. Usually, the binary is uncompiled into a higher level language, instru-

mentation is inserted, and the code is recompiled for execution on the native host. Thus, the register file

and memory of the native host are updated during simulation. However, much like Embra [16], RSIM exe-

cutes its own dynamically generated machine code. Although we are “directly executing” machine code on

the host machine, we are making updates to the simulated environment, not the native environment.

In [7], functional warming was limited to an average of 35x speedup over detailed simulation. How-

ever, in functional warming, we still emulate instructions. Thus, considerable overhead is incurred com-

pared to direct execution of the benchmark. Table 3 shows the speeds of the various modes of RSIM

compared to detailed simulation. For a benchmark which runs for an hour on the native machine, it would

take an average of 118 days to complete the same benchmark with detailed simulation. With functional

execution, the execution time is reduced to approximately 8.6 days. However, running direct execution on

the same benchmark takes only about 8 hours. By integrating direct execution into the SMARTS frame-

work, we can speed up the execution time of SMARTS by an order of magnitude over functional warming.

Benchmark Func Exec Direct Exec Native Exec

Barnes Hut 15.15 100.04 2487.29

Em3d 11.54 803.78 2826.33

Tomcatv 14.15 175.85 1257.14

TABLE 3. Speedup of Different Simulation Modes vs. Detailed Simulation.

21

3.3 Implementing Direct Warming

After seeing the speedup opportunity available with direct execution, we need to determine the best

way to integrate the needed warming instrumentation into direct execution while minimizing the overhead.

We have two separate records, which keep the information for cache accesses and for branch predictor

updates. Table 4 shows the information that needs to be collected to warm each structure. The d- and i-

cache accesses are kept in the same record to ensure that the interleaving of the accesses are conserved,

which can influence the state of the L2 cache.

To perform an i-cache update, we need a flag to indicate that this entry is an i-cache access (as opposed

to a d-cache access) and the instruction PC. For a d-cache access, however, we need the flag to indicate a d-

cache access, the memory address being accessed, and the flag indicating a read or write. Having a sepa-

rate flag to indicate a d-cache or an i-cache access simplifies code translation when updating an entry,

resulting in a more optimized simulator.

Another problem to resolve is determining exactly when to perform the warming updates. Ideally, we

want to perform the updates when the corresponding instructions are executed during direct execution.

Structure Parameters Needed for Warming

Memory
System

Instruction PC

Memory Address

Data Cache Access?

Write?

Branch
Predictor

Instruction PC

Unconditional Branch?

Branch Hint

Next PC

TABLE 4. Warming Parameters.

22

However, this is impractical. Searching through large data structures is tedious when programming in

machine code. At a certain point, we realize that the compiler can create better optimized code than a per-

son can. To achieve on-line updates with high-level code, we need to exit from direct execution every time

a memory system or branch predictor update is performed. However, this is not ideal since switching

between direct execution mode and the simulator comes with a 164 instruction overhead for setting up the

different environments. We conclude that the best solution is to construct a record of memory system

updates and a second record of branch predictor updates. After exiting from direct execution, we initiate

the post-processing to update the caches, TLBs, and branch predictors to complete the direct warming

phase. Figure 6 shows the functional block diagram for direct warming.

Figure 7 depicts the base configuration layout of records for the branch predictor and memory system.

Each field of each entry in the records is an integer field, or 4 bytes. This is necessary for the address fields

since they are 32-bits, but the other fields are just boolean values. We later explore the use of bitmaps to

FIGURE 6: Functional Block Diagram of Direct Warming mode.

Instructions
left to

Execute?

In translated
cache?

Profiles
full?

Exit
Direct Execution,

flush profiles,
 update simulator

Translate block
& insert into translated

cache

Execute translated
code on host and

update the PC

RSIM
Instruction

Format

NO

YES

NO NO

YES

YES

Exit Direct
Exec Warming

23

minimize space overhead. Since absolute speed is our main goal, minimizing the total instruction count is

more important than space conservation. A single record for both d- and i-cache accesses is needed to

ensure that we conserve the interleaving of the accesses, which affects the accuracy of the unified L2 cache

at the start of each measurement cycle. In addition, implementing a generic memory access entry rather

than different types of entries for d- and i-cache accesses simplifies the processing needed for the records.

3.4 Optimizations

In this section, we evaluate the different optimizations described in the previous section.

3.4.1 Record Size Sensitivity Analysis
First, we want to determine the number of entries in each record. It is impossible to let direct warming

run indefinitely because there is no upper bound on the size to which the records may grow. It is possible to

dynamically reallocate memory for the records each time they fill; however, this involves considerable

overhead and is not a practical solution. Dynamically increasing the record size can cause them to eventu-

ally grow large enough to fill the host caches, creating slowdown due to thrashing. A more efficient solu-

tion is to break out of direct execution when a record fills up and conduct the post-processing for memory

system and branch predictor updates at this time.

Because it is impractical to test all the permutations of every size for each record, we evaluate three

representative sizes: a small size (8 entries for cache,16 entries for branch predictor), a large size (4096

entries for cache, 4096 entries for branch predictor), and a middle size which we predict to be the optimum

(512 entries for cache, 512 entries for branch predictor). For the large record size, we choose a size that is

large enough to cause thrashing in the L1 cache of the host machine (4096 entries for each record, resulting

Branch
PC

Uncond
branch Hint Taken

Addr

Dcache
Address Write Dcache

Access

......

......

Branch Record Array

Address Record Array

FIGURE 7: The Base Case Configuration.

24

in 128KB of memory, on a host machine with a 32KB L1 cache). We used the base configuration record

layout described in the previous section to evaluate sensitivity of record size.

Figure 8 shows select results from the described sensitivity analysis. Note that the results show nor-

malized execution times. Although we did perform the sensitivity analysis on all permutations of the three

sizes for each of the records, many of these results are uninteresting as they all lie within the bounds

depicted above. We see that 512 entries for each record is, as predicted, the optimal size for the sensitivity

analysis, although 4096 entries is not much slower. Em3d is actually faster for the 4096/4096 record con-

figuration. This is because the benchmark contains many tiny loops and hits frequently in the translated

cache so it stays in direct warming for long periods of time. This fills up the records. Thus, increasing the

size of the records does benefit the benchmark. The smaller size records are significantly slower because

they cause direct warming to break out of direct execution too frequently.

3.4.2 Quick Hits Array
We evaluate the implementation of a quick hits array, which is an array that keeps a record of the most

recently touched address for each set in the cache [6]. If the next address is the same as the last touched

0.9

1

1.1

1.2

1.3

1.4

1.5

8/16 512/512 4096/4096

Addr Profile Size / Branch Profile Size

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Barnes Hut
Em3d
Tomcatv

FIGURE 8: The Sensitivity of Record Size. Results normalized to 512/512 record size.

25

address of the set, the next access is not recorded into the record. Programs with high temporal locality

benefit the most from this optimization.

3.4.3 Reducing Storage Overhead
As mentioned previously, there are several fields in each record entry that hold boolean values. These

can be stored in a bitmap to save significant storage space. With bitmaps, each entry is about half the size

of the record entry from the base case. However, this scheme requires additional processing time to exe-

cute. The number of instructions to create the mapping and modification of the bitmap value may outweigh

the benefits of space conservation.

The advantage of the base case profiling scheme is that the record arrays are cache line aligned. How-

ever, this is not true in the bitmap scheme. To simplify the structures, we decided to separate the bitmaps

from the integer fields of the records. The layout for the bitmap scheme is shown in Figure 9. Having sep-

arate arrays for each entry also increases processing time by introducing the possibility for multiple cache

misses per entry. Although each boolean field only requires a single bit to store (rather than a 32-bit integer

used in the base case), the bookkeeping of the bitmaps during direct execution and the post-processing fol-

lowing direct execution requires more instructions. To update one bit in the bitmap, a new bitmap needs to

FIGURE 9: The Bitmap Array Scheme.

Instr 1
Dcache Address

Instr 1
Branch PC

Instr 2
Branch PC

Instr 2
PC

Instr 3
Dcache Address

......

......

......

......

......

......

Instr 1
Taken Address

Instr 2
Taken Address

......

Branch PC Array

Uncond Branch Bitmap Array

Hint Bitmap Array

Branch Taken Addr Array

Addresses Array

Write Bitmap Array

d-cache Access Bitmap Array

26

be created, the original bitmap value needs to be loaded, modified, and stored. This results in significantly

more machine code instructions generated per RSIM instruction compared to the base case.

3.4.4 Results/Analysis
Figure 10 shows the effects on execution time for the different optimizations just described. We

decided to evaluate not only the 512 entry record size, which was the optimal record size, but also the 4096

entry record size, in which the bitmap array scheme should be beneficial.

As predicted, the quick hits array scheme contributes a considerable amount of performance benefit for

benchmarks with many small loops like Em3d, which showed almost a 7x speedup. On average, adding a

quick hits array resulted in a 3.3x speedup for the benchmarks shown.

For the bitmap array scheme, we initially transferred the branch record into the bitmap array to observe

the effects of reducing the memory space on only that record. As we already concluded that the quick hits

array is beneficial, we implemented the bitmap scheme with the quick hits array optimization. These are

the results shown in Figure 10. From just implementing bitmap arrays for the branch record, the processing

overhead is already large enough to slow down the total execution time compared to the quick hits optimi-

zation. Based on these results, we find it unnecessary to transfer the memory access record into the bitmap

FIGURE 10: Performance of Different Optimizations. X/Y = X addr record entries / Y branch record entries.

Performance of Different Optimizations

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Barnes Tomcatv Em3d

Benchmark

Sp
ee

du
p

ov
er

 5
12

/5
12

512/512 Baseline

512/512 Quick Hits

512/512 Quick Hits,
Bitmap
4096/4096 Baseline

4096/4096 Quick Hits

4096/4096 Quick Hits,
Bitmap

27

array scheme. This would only increase the processing time overhead, slowing down the overall runtime of

the application even more.

Thus, the optimal configuration for direct warming is the quick hits scheme, which has a clear advan-

tage over the bitmap scheme. The additional amount of processing that is needed for the bitmap scheme

outweighs the benefits of the compression. The more memory instructions or branch instructions that are

being executed, the larger the slowdown of the bitmap array scheme. Appendix 1 in Chapter 6 shows the

optimal code translation of a memory instruction with direct warming for RSIM.

3.5 Speedup of Direct SMARTS

After optimizing the direct warming mode, we integrate it into the Direct SMARTS framework. We

showed previously that the evaluated benchmarks have similar characteristics to the Spec2000 benchmarks

from [7]. We set the parameters as in the original paper: U=1000 instructions, W=2000 instructions, and

ntuned = 10,000 instructions.

Figure 12 shows the speedups achieved with Direct SMARTS. The number of instructions run in

detailed simulation is constant: (2000 instructions in detailed warming +1000 instructions in detailed sim-

FIGURE 11: Optimal Speedups For Select Benchmarks. The boxed area represents the verified speedup
numbers.

0

20

40

60

80

100

120

140

160

10% 1% 0.1% 0.01% 0.001% 0.0001%

% Instructions Executed in Detail

Sp
ee

du
p

ov
er

 D
et

ai
l S

im

Barnes Hut
Em3d
Tomcatv

verified workloads

28

ulation) x 10,000 samples = 30,000,000 instructions. Thus, the higher the total number of instructions in a

program, the higher the speedup benefits we see from using Direct SMARTS. The boxed area in Figure 12

shows the range of instruction counts that we verified. The average speedup is 95x, with a maximum

speedup of 132x compared to the full detailed simulation runs of the benchmarks. We use the results

obtained from these experiments to calculate the speedups for larger input sets. It is impractical to spend

the time to actually run these long programs because it takes considerable time to run the full detailed sim-

ulations on these longer applications. From our analysis, maximum speedup is achieved when only 0.001%

of the benchmark is run in detail, which in this case means a total instruction count larger than 3 trillion

instructions, taking 774 days on average to complete with full detailed simulation.

Table 5 shows the speedups of the various modes of RSIM, including the warming modes, over

detailed simulation. Although direct warming is significantly faster than functional warming, it is still con-

siderably slower than direct execution. Direct warming is 3.4x slower than direct execution, but functional

warming is only 1.12x slower than functional execution. There are multiple reasons for this. First, direct

warming has an initialization phase, in which the basic blocks are first translated into machine code. The

larger the code footprint, the more time lost to initialization. Thus, benchmarks with small memory foot-

prints benefit most from direct warming. In addition, the number of instructions that need to be recorded

into the records also affects the resulting speedup of direct warming. A single RSIM memory instruction

translates into approximately 35 native instructions and a single RSIM branch instruction translates into

Benchmark Func Warm Func Exec Direct Warm Direct Exec Native Exec

Barnes Hut 13.43 15.15 58.32 100.04 2487.29

Em3d 10.43 11.54 133.42 803.78 2826.33

Tomcatv 12.54 14.14 96.29 175.85 1257.14

TABLE 5. Speedup vs. Detailed Simulation Including Direct Warming and Function Warming Modes.

29

approximately 17 native instructions. Therefore, benchmarks with a higher number of memory and branch

instructions will exhibit smaller speedup because of the additional overhead of record generation.

30

4 Conclusions

Software simulation is essential in the design of hardware systems due to its convenience and flexibil-

ity. However, with the increasing complexity of many hardware designs, the runtime of these software sim-

ulations have become extremely time consuming.

We presented a simple and straightforward technique called direct warming, which is a faster alterna-

tive to functional warming. We analyzed the effects of different optimizations on execution time of the

chosen benchmarks. We found that the quick hits array scheme has the largest performance benefits. The

bitmap array scheme reduces space usage, but its added processing time is too expensive.

After the development of the direct warming mode, we evaluated the performance benefits of the inte-

gration of direct warming into the Direct SMARTS framework. We implemented the framework on the

RSIM simulator and tested it on several benchmarks. The results of the experiments demonstrate an aver-

age of 0.4% error, with an upper bound of 0.7%. In addition, we were able to achieve speedups of 96x

speedup, with a maximum speedup of 134x.

In addition to the evaluation of more benchmarks, we plan on expanding the speedup optimization to

increase the performance of the direct warming mode of RSIM. For example, certain checks are precau-

tionary rather than necessary. In addition, any optimizations to the translated code also reduces overhead

for direct execution. Since the instruction translations are run so frequently, small optimizations have a sig-

nificant impact on overall runtime. Further research can also explore ways of implementing Direct Mul-

tiSMARTS, the direct execution, multiprocessor version of SMARTS. Multiprocessor research with this

statistical sampling technique becomes more complex due to interactions between processors. Speedup is

limited by the amount of communication between processors, which is by itself an uncertain quantity. The

amount of warming required is also unclear because of the behavior of the network, in that messages can

be lost or stalled indefinitely.

31

5 Appendix

 Appendix 1: Code Translation for LDUW r1,imm(r2).

check if there's enough room in the addresses array.
sethi REG_SPARE5, num_addresses_touched
setlo REG_SPARE5, num_addresses_touched
lduwREG_SPARE5, 0(REG_SPARE4)
sethi REG_SPARE2, MAX_DE_INSTS-2
setlo REG_SPARE2, MAX_DE_INSTS-2
sub REG_SPARE2, REG_SPARE4, REG_SPARE2
srl REG_SPARE2,31,REG_SPARE2
int branch_blockindexDestAddr = remapped_blockindex;
brz_PT REG_SPARE2 # sign bit was 0 (pos.)
nop

array is too large. Need to exit direct exec and flush the array
(FailureCase)

put PC value into spare register
sethi REG_SPARE1, pc << 2
setlo REG_SPARE1, pc << 2

check for an i-cache hit.
srl REG_SPARE1,captr_block_bits,REG_SPARE2
sethi REG_SPARE1,FastSimICacheReadHits
setlo REG_SPARE1,FastSimICacheReadHits
andi REG_SPARE2,NUM_HITARRAY_ENTRIES-1,REG_SPARE3
sll REG_SPARE3,2,REG_SPARE3
load tag in that hit position
lduw REG_SPARE1,REG_SPARE3,REG_SPARE3
sub REG_SPARE2,REG_SPARE3,REG_SPARE3
retval = remapped_blockindex;
brz REG_SPARE3
update the quick hits tag array.
andi REG_SPARE2,NUM_HITARRAY_ENTRIES-1,REG_SPARE3
sll REG_SPARE3,2,REG_SPARE3

i-cache MISS:
increment the counter
addi REG_SPARE4, 1, REG_SPARE2
stw REG_SPARE5, 0, REG_SPARE2

record the pc of the instruction
sethi REG_SPARE1, pc
setlo REG_SPARE1, pc
sethi REG_SPARE2, addresses_touched
setlo REG_SPARE2, addresses_touched
sll REG_SPARE4, 4, REG_SPARE4
stw REG_SPARE2, REG_SPARE4, REG_SPARE1

mark entry in d-cache access as zero as well
addi REG_SPARE4, 12, REG_SPARE4
stw REG_SPARE2, REG_SPARE4, 0

enter displacement if i-cache HIT.
branch_blockindexIC |= remapped_blockindex-branch_blockindexIC

sethi REG_VTLBCHECK,&FastSimVTLBCheck
setlo REG_VTLBCHECK,&FastSimVTLBCheck
lduw REG_VTLBCHECK,0,REG_VTLBCHECK
sethi REG_VTLB,&FastSimVTLB
setlo REG_VTLB,&FastSimVTLB
lduw REG_VTLB,0,REG_VTLB

First, copy the operation and change it to an add (for addr. gen.)
addi r2, imm, REG_SPARE1

manual handling of semi-aligned references
andi REG_SPARE1,READ
branch_blockindexADDR = remapped_blockindex;
brnz REG_SPARE2

srl REG_SPARE1,captr_block_bits,REG_SPARE2 # get line #
sethi REG_SPARE1,FastSimDCacheReadHits
setlo REG_SPARE1,FastSimDCacheReadHits
lduw REG_SPARE1,0,REG_SPARE1
andi REG_SPARE2,NUM_HITARRAY_ENTRIES-1,REG_SPARE3
sll REG_SPARE3,2,REG_SPARE3

lduw REG_SPARE1,REG_SPARE3,REG_SPARE3 # load tag in that hit
position

sub REG_SPARE2,REG_SPARE3,REG_SPARE3 # match if 0

retval = remapped_blockindex;
brnz REG_SPARE3 # branch around on success

update the quick hits tag array. make this functional first, then cut down
the runtime.
andi REG_SPARE2,NUM_HITARRAY_ENTRIES-1,REG_SPARE3 #
index into hit-check array
sll REG_SPARE3,2,REG_SPARE3

stw REG_SPARE1,REG_SPARE3,REG_SPARE2 # update QuickHitsTa-
gArray

recompute address since RabbitInlinedCacheAccess destroyed
addi r2, imm, REG_SPARE1

Record the address accessed
sethi REG_SPARE5, num_addresses_touched
setlo REG_SPARE5, num_addresses_touched
lduw REG_SPARE5, 0, REG_SPARE2
addi REG_SPARE2, 1, REG_SPARE4# incr num_addresses_touched
stw REG_SPARE5, 0, REG_SPARE4

the block_cache if d-cache MISS:
sethi REG_SPARE4, addresses_touched
setlo REG_SPARE4, addresses_touched
sll REG_SPARE2, 4, REG_SPARE2

store address into the addresses_touched array
addi REG_SPARE2, 4, REG_SPARE2 # goto 2nd spot in entry
stw REG_SPARE4, REG_SPARE2, REG_SPARE1

also update the write_addresses array if this is a write.
addi REG_SPARE2, 4, REG_SPARE2 # goto 3rd spot in entry
stw REG_SPARE4, REG_SPARE2, REG_SPARE1

mark this as a d-cache access
addi REG_SPARE2, 4, REG_SPARE2
stw REG_SPARE4, REG_SPARE2, REG_SPARE1

enter displacement if d-cache HIT.
branch_blockindexDC |= remapped_blockindex-branch_blockindexDC

recompute address since RabbitInlinedCacheAccess destroyed
REG_SPARE1
addi r2, imm, REG_SPARE1

Now, calculate the mapping page
srl REG_SPARE1,12,REG_SPARE1
now index into the VTLB-Checker
andi REG_SPARE1,VTLBSIZE-1,REG_SPARE2
sll REG_SPARE2,2,REG_SPARE2
lduw REG_VTLBCHECK,REG_SPARE2,REG_SPARE3
now check if success
SUB_3REGS(REG_SPARE1,REG_SPARE3,REG_SPARE3
branch_blockindexVTLB = remapped_blockindex;
brz REG_SPARE3
lduw REG_VTLB,REG_SPARE2,REG_SPARE2 # do VTLB lookup for
success path
branch_blockindexADDR |= remapped_blockindex-
branch_blockindexADDR # displacement of address fault branch

NOW DEAL WITH THE FAILURE CASE
remapped_block[branch_blockindexDC |= (remapped_blockindex-
branch_blockindexDC # displacement of d-cache miss branch

(Failue Case)

NOW CONTINUE THE SUCCESS CASE
load the page-mapping from the VTLB
remapped_block[branch_blockindexVTLB |= (remapped_blockindex-
branch_blockindexVTLB # displacement of success branch

recompute address
addi r2, imm, REG_SPARE1

get offset within page
andi REG_SPARE1,4095,REG_SPARE1

actual execution of the instruction
LDUW r1, imm(r2)

32

6 Acknowledgements

I would like to thank my advisor, Babak Falsafi, who has guided and supported me these past two

years. I would not have been able to get to where I am without his help and leadership. In addition, I would

like to thank Roland Wunderlich and Tom Wenisch for countless discussions throughout the semester. In

addition, special thanks needs to be given to Vijay S. Pai from Rice University for allowing us access to the

Direct Execution simulator for RSIM.

I would also like to thank my parents, Joe and Jessie Chen, for the endless love and support throughout

my studies. In addition, I’d like to thank my friends from A-level with whom I have spent so much time

with during my stay at CMU.

One final note is that I need to thank EGO for having extremely cheap soda very accessible from my

cubicle. Definitely I would not have been able to get through those endless nights without the help of

countless cans of cherry coke.

33

References

[1] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical Report 1342, Univer-

sity of Wisconsin-Madison, Computer Sciences Technical Report, 1997.

[2] M. C. Carlisle. Olden: Parallelizing programs with dynamic data structures on distributed memory

machines, June 1996.

[3] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss for effective trace sampling of

superscalar processors. In Proceedings of the 1996 International Conference on Computer Design,

VLSI in Computers and Processors, pages 468–477, 1996.

[4] C. J. Hughes et al. RSIM: Simulating shared-memory multiprocessors with ILP processors. IEEE

Computer, 35(2):40–49, February 2002.

[5] R. C. Covington et al. The Rice parallel processing testbed. In Proceedings of the 1988 ACM Sigmet-

rics conference of Measurement and Modeling of Computer Systems, 1988.

[6] R. R. Kessler et al. Inexpensive implementations of set-associativity. In Proceedings of the 16th An-

nual International Symposium of Computer Architecture, pages 131–139, 1989.

[7] R. Wunderlich et al. SMARTS: Accelerating microarchitecture simulation via rigorous statistical

sampling. In Proceedings of the 30th International Symposium on Computer Architecture, pages 84–

95, June 2003.

[8] S. Woo et al. The Splash-2 programs: Characterizations and methodological considerations. In Pro-

ceedings of the 22nd International Symposium on Computer Architecture, pages 24–36, June 1995.

[9] W. C. Hsu et al. On the predictability of program behavior using different input data sets. In Work-

shop on interaction between compilers and computer architectures, (INTERACT-6) held with HPCA-

8, February 2002.

[10] R. M. Fujimoto and W. B. Campbell. Direct execution models of processor behavior and perfor-

34

mance. In Proceedings of the 1987 Winter Simulation Conference, pages 751–758, 1987.

[11] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the new millennium. IEEE Comput-

er, 33(7):28–35, 2000.

[12] G. Lauterbach. Accelerating architectural simulation by parallel execution of trace samples. In Ha-

waii International Conference on System Sciences, volume Volume 1: Architecture, pages 205–210,

January 1994.

[13] P. S. Levy and S. Lemeshow. Sampling of Populations: Methods and Applications. John Wiley &

Sons, Inc., 1999.

[14] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM reference manual, version 1.0. Technical Report

9705, Rice University, Department of Electrical and Computer Engineering, 1997.

[15] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large scale pro-

gram behavior. In Tenth international conference on architectural support for programming lan-

guages and operating systems on Proceedings of the 10th international conference on architectural

support for programming languages and operating systems (ASPLOS-X), pages 45–57, 2002.

[16] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation. In Proceedings of ACM

Sigmetrics International Conference on Measurement and Modeling of Computer Systems, pages 68–

79, 1996.

