
SIMFLEX: A Fast, Accurate, Flexible Full-System Simulation
Framework for Performance Evaluation of Server Architecture

Nikolaos Hardavellas, Stephen Somogyi, Thomas F. Wenisch,
Roland E. Wunderlich, Shelley Chen, Jangwoo Kim,

Babak Falsafi, James C. Hoe, and Andreas G. Nowatzyk
Computer Architecture Laboratory (CALCM)
Carnegie Mellon University, Pittsburgh, PA

http://www.ece.cmu.edu/~simflex
Abstract
The new focus on commercial workloads in simulation

studies of server systems has caused a drastic increase in
the complexity and decrease in the speed of simulation
tools. The complexity of a large-scale full-system model
makes development of a monolithic simulation tool a
prohibitively difficult task. Furthermore, detailed full-
system models simulate so slowly that experimental results
must be based on simulations of only fractions of a second
of execution of the modelled system.

This paper presents SIMFLEX, a simulation framework
which uses component-based design and rigorous
statistical sampling to enable development of complex
models and ensure representative measurement results with
fast simulation turnaround. The novelty of SIMFLEX lies in
its combination of a unique, compile-time approach to
component interconnection and a methodology for
obtaining accurate results from sampled simulations on a
platform capable of evaluating unmodified commercial
workloads.

1. Introduction
Computer architects have long relied on software

simulation to study the functionality and performance of
proposed hardware designs. Despite phenomenal improve-
ment in system performance over the last decades, the
disproportionate growth in hardware complexity has
steadily increased software model complexity and eroded
simulation speed. Research studies of large-scale server
systems have shifted focus from scientific applications [12]
to commercial workloads [1]. This shift has forced simula-
tion tool developers to expand the scope of their simulation
tools to model system components beyond the processor
and memory hierarchy, and support execution of unmodi-
fied operating systems with commercial workloads for
which source code is unavailable [6][10]. The increasing
complexity of both the system model and target workloads
has elevated continued development of monolithic simula-

tors [8][9][10] to a task of herculean proportions.
Moreover, uniprocessor simulations of highly parallel
systems are so slow that researchers must base conclusions
on simulations of only fractions of a second of native
execution time[11][13].

This paper introduces SIMFLEX, a component-based
framework for creating timing models of uni- and multipro-
cessor server systems running commercial applications.
SIMFLEX addresses the problem of exploding model
complexity through a component-based approach to model
construction, inspired by the Asim simulator[4]. SIMFLEX
ensures that accurate and reliable performance results can
be obtained quickly by integrating the SMARTS method-
ology [13] for representative simulation sampling with
novel implementation techniques for eliminating the
runtime overheads that arise from component-based soft-
ware construction.

The following are the key features of SIMFLEX:
• Full System Simulation. SIMFLEX leverages the tech-

nology of the commercially-available Simics simulation
tool [6] to provide functional execution of unmodified
commercial operating systems and applications. SIMFLEX
provides a framework for rapidly building timing models
which augment the system emulation performed by
Simics.

• Compile-time component interconnection. SIMFLEX
takes a novel approach to the interconnection of simula-
tor components designed to eliminate the runtime over-
head of modular software design. SimFlex takes
advantage of generic programming features of C++ to
express component interconnection at compile-time. This
enables the compiler to perform optimizations across
component boundaries.

• Simulation Sampling. SIMFLEX applies the SMARTS
methodology [13] for choosing and rapidly measuring a
representative sample of each workload. SIMFLEX
extends SMARTS to multiprocessor simulations, and pro-
vides support for the development of the code for warm-

ing model state that is essential to achieving unbiased
measurement with SMARTS.

The remainder of this paper describes the design and
impact of each of the key features of SIMFLEX.

2. Full-System Simulation
Until very recently, simulation tools for studying

server architecture [7][8][9] have focused on the study of
scientific applications, such as the SPLASH-2 benchmark
suite [12]. In recent studies, the server architecture perfor-
mance evaluation community has shifted focus to
commercial applications, such as database management
systems and web servers [1]. With this shift in focus, a
new emphasis has been placed on full-system simulation.
With scientific workloads, overall system performance is
often governed by small kernels which stress CPU features
such as floating point performance, or memory system
bandwidth. Operating system code and peripheral devices
have only a second-order, if any, effect on overall system
performance. With commercial applications, however,
operating system and I/O performance are first-order
determinants of system performance, and must be
included in the software model.

SIMFLEX is built on top of the Simics simulation envi-
ronment to provide functional emulation of a uni- or
multiprocessor system and associated peripheral devices
[6]. Simics models the complete instruction set architec-
ture and peripherals of a target system in sufficient detail
to boot an unmodified operating system and run commer-
cial applications. When run alone, Simics assumes a
simple timing model where all instructions and memory
accesses take a uniform amount of time. SIMFLEX adds
timing to Simics: Simics provides a stream of fetched
instructions to SIMFLEX, and SIMFLEX models system
timing and controls the advance of time in Simics.

Simics can emulate a wide variety of systems and
instruction set architectures (x86, SPARC, etc.). ISA-
specific parts of SIMFLEX are isolated in a single compo-
nent, making it easy to retarget SIMFLEX to provide a
timing model for any ISA supported by Simics. To date,
SIMFLEX has been used to model both x86- and SPARC-
based uni- and multiprocessor systems.

3. Component-based Design
As the scope of a detailed software model increases,

so does the complexity of the software itself. Simply
understanding the model requires a considerable invest-
ment of time and the learning curve that must be climbed
before starting research with monolithic simulation tools is
steep. The keys to successful design of a large-scale
timing model are abstraction and composability. When
working with a complex tool, a researcher must not be

forced to understand the intricate details of each part of the
model at all times. Rather, model detail must be hidden by
layers of abstraction which simplify details irrelevant to
the problem at hand. A complex model should be
composed of abstracted pieces whose general function can
be understood at a glance.

SIMFLEX is designed as a framework for connecting
model components. The conceptual design and termi-
nology of SIMFLEX follows that of Asim, a component-
based simulation tool developed at Intel[4]. Each SimFlex
component models a part of the system. Generally, these
components correspond directly to parts of the hardware
being modelled, for example, a level of cache hierarchy, or
a cache-coherence protocol engine. Other components are
pure software constructs, for example, the “feeder”
component which fetches instructions from Simics, or
components which collect traces of memory transactions
for offline analysis. A SIMFLEX simulator is a collection of
components connected together in a hierarchical fashion
as specified in what is called a wiring description.
SIMFLEX is unique in that these wiring descriptions are
C++ code which, when fed to the compiler, produce a
custom simulator binary reflecting the desired wiring.

3.1. Compile-time Interconnection
The concepts of abstraction, modularity and compos-

ability are not new innovations of SIMFLEX. Indeed, these
are the very foundations of successful software engi-
neering, and should be employed by any software
development effort of the size and scope of a detailed full-
system timing model. However, many traditional software
development approaches to modularization, such as
object-oriented programming, incur a performance over-
head when used to compose many components. In Asim,
components are interconnected by named wires. When
one component wishes to send data to another, the compo-
nent writes to the wire. This data is routed to the receiving
component by looking the wires name up in a global hash
table. For large hardware models, which can have
hundreds or thousands of signals, these hash table lookups
are a noticeable fraction of total simulation time, as much
as 20%[5].

In SIMFLEX, components are interconnected at
compile time, rather than at run time. SIMFLEX takes
advantage of C++’s template generic programming facili-
ties to describe components. Each component is written
with its connections to other components, called ports, left
as unspecified C++ template parameters. The description
of these ports specifies the nature and direction of data and
control flow between components. Components can
exchange arbitrarily complex data types, for example, a
description of a memory transaction or a type representing
a CPU instruction with associated functions for retrieving

the inputs and outputs of the instruction. To create a simu-
lator from a collection of components, the researcher
writes a wiring description in highly stylized C++ code
which concisely lists the components used in the simulator
and how their ports are interconnected. When fed to the
compiler, this wiring file results in the instantiation of
component templates with the specified connections.

The strength of this approach is that each connection
between two components results in direct function calls
between the components at run time. Figure 1 shows an
example of a simplified SIMFLEX simulator with four
components, with two alternative versions of the feeder
component for x86 and SPARC. When the fetch compo-
nent is wired to the x86 feeder component, it calls a
function on the feeder component which returns the
fetched instruction. By making a simple change to the
wiring and recompiling, the fetch component will instead
call a similar function on the SPARC feeder. This change
also transparently changes the instruction data type
exchanged between all components to represent SPARC
instructions. The template facility of C++ allows the same
component code to interact with instructions from both
feeders, despite the large differences between the data
types used to describe instructions in each feeder.

Interconnection of components via function calls
could also be accomplished at run time by clever use of C
function pointers or C++ virtual functions. However, an
advantage of the C++ template approach is that, since the
function call destination is known at compile time, the
compiler can optimize the call. Analysis of compiled
SIMFLEX simulators reveals that nearly all function calls
across ports are inlined by the compiler, often several
levels deep and across multiple components. This kind of
compiler optimization is not possible if components are
interconnected at run time.

3.2. A Library of Reusable Components
Component-based model design enables development

of a library of reusable model components to represent
hardware structures common across many different archi-

tectures. Moreover, multiple versions of a component can
model the hardware structure at various levels of detail.
This allows researchers to trade off accuracy for simula-
tion speed for each component in the system. For example,
we have developed a simple memory component that
applies a constant latency to each memory access, and a
more complex and slower component that models DRAM
bank conflicts. Each experiment can choose to employ the
fast, simple model or more accurate and slow model.

The initial focus of research with SIMFLEX has been
on adding new hardware components to distributed shared
memory nodes to predict future memory requests and
initiate coherence transactions in advance of demand
requests by processing nodes. In order to support this
research, we require highly flexible and detailed models of
cache coherence protocols and the hardware implementa-
tions of these protocols. Thus, we have developed a
detailed simulation of a microcoded coherence engine,
based on the design of the coherence engines of the
Piranha prototype from Compaq [2], and cache models
which support a rich bus protocol sufficient for directory-
based and snoopy coherence protocols. New coherence
mechanisms can be specified in the abstract and intuitive
microcode language that the coherence engine employs,
without the need to modify the simulator code. Since the
focus of this research is on memory system behavior, we
have a correspondingly complex and slow model of
memory system components. However, we use a simpli-
fied in-order CPU model to save development and
debugging time, and accelerate simulation speed.

4. Fast and Accurate Measurement
The disadvantage of detailed software modeling of a

hardware system is the enormous slowdown of simulation
relative to the modelled hardware. Detailed uniprocessor
simulators, such as SimpleScalar [3] are 4000 times
slower than the modelled hardware. Multiprocessor simu-
lators, such as Rsim [8], are even slower, and suffer the
penalty of simulating parallel hardware nodes in series on
a single host. These low simulation speeds render it
impossible to simulate complete commercial workloads
from beginning to end.

To mitigate prohibitively slow simulations,
researchers often use abbreviated instruction execution
streams of benchmarks as representative workloads in
design studies. More than half of the recent papers in top-
tier computer architecture conferences presented perfor-
mance claims extrapolated from abbreviated runs.
Researchers predominantly skip the initial 250 million to
two billion instructions and then measure a single section
of 100 million to one billion instructions. However, this
technique rarely captures representative behavior.

x86
feeder fetch execute cache

SPARC
feeder

Figure 1. A Simple SIMFLEX Simulator.
Recompiling with the SPARC feeder binds the fetch function call

to code in the SPARC feeder, and transparently changes the
instruction data type exchanged by all components.

4.1. The SMARTS approach
In [13], we proposed the Sampling Microarchitecture

Simulation (SMARTS) framework which applies statistical
sampling theory to address prohibitively low simulation
speeds and the inaccuracy of using non-representative
samples. Unlike prior approaches to simulation sampling,
SMARTS prescribes an exact and constructive procedure
for selecting a minimal subset from a benchmark’s instruc-
tion execution stream to obtain performance estimates
with a desired confidence interval. SMARTS uses a measure
of variability (coefficient of variation) to determine the
optimal sample that captures a program’s inherent varia-
tion. An optimal sample generally consists of a large
number of small sampling units. Unbiased measurement
of sampling units as small as 1000 instructions is possible
by applying careful functional warming—maintaining
large microarchitectural state, such as branch predictors
and the cache hierarchy—during fast-forwarding between
sampling units.

The SMARTS procedure details how to apply system-
atic sampling to choose an optimally small sample to
estimate performance metrics, such as cycles per instruc-
tion (CPI), with a desired degree of confidence. In
SMARTS, a sampling unit is defined as U consecutive
instructions in a benchmark’s dynamic instruction stream
such that the population size N is the length of the stream
divided by U. Changing the size of each sampling unit
affects the required sample size, n, since estimating CPI at
a given confidence is directly proportional to the square of
the population’s coefficient of variation, . The
coefficient of variation decreases due to averaging
effects as U is increased, resulting in fewer sampling units
required to achieve an acceptable estimate. In [13], we
demonstrate that choosing a sample with U = 1000 results
in a minimal number of detail-simulated instructions to
achieve estimates with a desired confidence. Typical
benchmark applications will require a sample size of
approximately n = 10,000 units to achieve 99.7% confi-
dence of ±3% error.

The challenge in applying SMARTS in a practical
simulator is in developing techniques to quickly skip past
the portion of each workload between the many sampling
units, and then computing the correct microarchitectural
state prior to detailed measurement of each sampling unit.

Simics simulation, with SIMFLEX disabled, provides a very
fast functional simulation mode, but leaves microarchitec-
tural state (e.g., cache hierarchy, branch predictors and
target buffers, or pipeline state) unchanged. Stale microar-
chitectural state introduces a large bias in the measurement
of individual sampling units and, consequently, the final
estimate. We have observed stale-state induced bias as
high as 50% for sampling units of 10,000 instructions.

We address this stale-state bias with a two-tier
strategy for warming model state. For model state which
has a long history, such as caches, we update the cache
state during functional simulation, an approach we call
functional warming. By continuously warming microar-
chitectural state with very long history, we can analytically
determine a bound on the detailed warm-up required to
initialize the remaining state. Figure 2 graphically illus-
trates how SMARTS alternates between functional warming
of instructions, detailed warm-up of W
instructions (without measurement), and detailed simula-
tion and measurement of U instructions. [13] details the
procedure for determining a sampling rate k to achieve a
desired level of confidence in the resulting estimate. We
believe functional warming with brief detailed warm-up is
the most cost-effective approach to achieve accurate CPI
estimation with simulation sampling.

4.2. Multiprocessor SMARTS
Simulating multiprocessor server systems with

SIMFLEX presents new challenges to simulation sampling.
Selecting systematic samples from a single-processor
program execution stream is a well-defined and straight-
forward procedure. A multiprocessor program execution,
on the other hand, is comprised of multiple instructions
streams with asynchrony and non-determinism among
them. A key challenge for SIMFLEX lies in acquiring a
sample measurement that is free of distortion from these
effects. In addition, because the emulation phases of
SMARTS do not capture timing information, another chal-
lenge is in approximating the relative progress of the
different processors.

The most important performance metric for multipro-
cessor systems is total program run time, which, in turn,
can be used to determine other metrics. To apply sampling
to this problem, we focus on multiprocessor program

n VCPI
2∝

VCPI

0 N

U instructions are measured as a
 using detailed simulationsampling unit

... sampling unitsn

Benchmark dynamic instruction stream
j j k+ j k + 2

 instructions of detailed
simulation warm state before
each sampling unit

WU k W(– 1) – instructions are
functionally simulated and large
structures may be warmed

Figure 2. Systematic sampling in SMARTS.

U k 1–() W–[]

execution along the critical path. In typical parallel execu-
tion, at any given moment, there are a small number of
processors that are responsible for generating critical
results for other processors. These critical path processors
set the pace for the entire system via interlocking synchro-
nization primitives. To estimate the total run time of a
multiprocessor program, we only need to sample the
program executing on the critical path processors during
the cycle-accurate measurement phase. Figure 3(left)
depicts an example execution of a parallel program and its
critical path. Figure 3(right) depicts how cycle-accurate
measurement along the critical path reduces to a (unipro-
cessor-like) interleaving of measurements across the
processors. The behavior of the off-critical-path proces-
sors does not contribute to the determination of overall
runtime. Synchronization along the critical path, and
between critical and non-critical paths, ensures that the
relative progress on each path seen during fast-forwarding
is representative of a native execution. This ensures that
measurements of the critical path processors are not
perturbed by incorrect relative progress on the non-critical
path. We are now working to evaluate the effectiveness of
the critical-path-driven sampling approach with the
SIMFLEX infrastructure.

5. Conclusion
The key to successful simulation studies of large-scale

multiprocessor systems running commercial workloads is
to have a solid foundation for rapid comprehension and
development of timing models, and a rigorous method-
ology for obtaining representative measurement results
quickly and reliably. SIMFLEX leverages the latest
commercial technology, Simics, to execute complex work-
loads with minimal development effort; employs a low-
overhead component-based design to accelerate model
comprehension and development; and applies a rigorous
statistical methodology for ensuring accurate measure-
ment results with minimal simulation turnaround time.

Acknowledgements
This work was funded in part by grants and equip-

ment from IBM and Intel corporations, the DARPA PAC/
C contract F336150214004-AF, and an NSF CAREER
award.

References
[1] Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper,

Milo K. Martin, Daniel J. Sorin, Mark D. Hill, and David A. Wood.
Evaluating non-deterministic multi-threaded commercial work-
loads. In Fifth Workshop on Computer Architecture Evaluation
using Commercial Workloads, February 2002.

[2] L. Barroso, K. Gharachororloo, R. McNamara, S. Qadeer
A. Nowatzyk, B. Sano, S. Smith, R. Stets, and B. Verghese.
Piranha: A scalable architecture base on single-chip multipro-
cessing. In Proceedings of the 27th Annual International Sympo-
sium on Computer Architecture, June 2000. Primary Piranha
Reference.

[3] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.
Technical Report 1342, Computer Sciences Department, University
of Wisconsin–Madison, June 1997.

[4] J. Emer, P. Ahuja, E. Borch, A. Klauser, Chi-Keung Luk, S. Manne,
S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and
T. Juan. Asim: A performance model framework. IEEE Computer,
35(2):68–76, February 2002.

[5] Joel Emer. Personal communication., March 2003.
[6] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel

Forsgren, Gustav Hallberg amd Johan Hogberg, Fredrik Larsson,
Andreas Moestedt, and Bengt Werner. Simics: A full system simu-
lation platform. IEEE Computer, 35(2):50–58, February 2002.

[7] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-system
timing-first simulation. In Proceedings of the 2002 ACM Sigmetrics
Conference on Measurement and Modeling of Computer Systems,
pages 27–36, June 2002.

[8] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve.
RSIM: An execution-driven simulator for ILP-based shared-
memory multiprocessors and uniprocessors. In Third Workshop on
Computer Architecture Education, February 1997.

[9] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis,
and D. A. Wood. The Wisconsin Wind Tunnel: Virtual prototyping
of parallel computers. May 1993.

[10] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchell, and
Anoop Gupta. Complete computer simulation: The simos approach.
IEEE Parallel and Distributed Technology, 1995.

[11] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-
cally characterizing large scale program behavior. In Proceedings
of the Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, October 2002.

[12] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2 programs:
Characterization and methodological considerations. In Proceed-
ings of the 22nd Annual International Symposium on Computer
Architecture, pages 24–36, July 1995.

[13] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and
James C. Hoe. Smarts: Accelerating microarchitecture simulation
via rigorous statistical sampling. In Proceedings of the Interna-
tional Symposium on Computer Architecture, June 2003.

P0 …
critical
pathP1 Pn

P0

P1

Pn

P0

measurements

Figure 3. Sampling the critical path.

	Abstract
	1. Introduction
	2. Full-System Simulation
	3. Component-based Design
	3.1. Compile-time Interconnection
	3.2. A Library of Reusable Components
	4. Fast and Accurate Measurement
	4.1. The Smarts approach
	Figure 2. Systematic sampling in Smarts.

	4.2. Multiprocessor Smarts
	Figure 3. Sampling the critical path.

	5. Conclusion
	Acknowledgements
	References
	Figure 1. A Simple SimFlex Simulator. Recompiling with the SPARC feeder binds the fetch function call to code in the SPARC feeder, and transparently changes the instruction data type exchanged by all components.

