

 1

Abstract. PROTOFLEX is an FPGA-accelerated hybrid simu-
lation/emulation platform designed to support large-scale
multiprocessor hardware and software research. Unlike
prior attempts at FPGA multiprocessor system emulators,
PROTOFLEX emulates full-system fidelity—i.e., runs stock
commercial operating systems with I/O support. This is ac-
complished without undue effort by leveraging a hybrid
emulation technique called transplanting. Our transplant
technology uses FPGAs to accelerate only common-case
behaviors while relegating infrequent, complex behaviors
(e.g., I/O devices) to software simulation. By working in
concert with existing full-system simulators, transplanting
avoids the costly and unnecessary construction of the entire
target system in FPGA. We report preliminary findings from
a working hybrid PROTOFLEX emulator of an UltraSPARC
workstation running Solaris 8.

We have also started developing a novel multiprocessor
emulation approach that interleaves the execution of many
(10s to 100s) processor contexts onto a shared emulation
engine. This approach decouples the scale and complexity of
the FPGA host from the simulated system size but neverthe-
less enables us to scale the desired emulation performance
by the number of emulation engines used. Together, the
transplant and interleaving techniques will enable us to
develop full-system FPGA emulators of up to thousands of
processors without an overwhelming development effort.

1. INTRODUCTION
After years of focus on uniprocessor performance, the

“power wall” has overnight driven the microprocessor
hardware and software industry down the multicore path.
This abrupt transition has left everyone at a loss about the
designs of future multi-core and multiprocessor hardware
and software. Recently, full-system multiprocessor simu-
lators have emerged as the research vehicle of choice in
response to the shift towards studying and evaluating
experimental multiprocessor systems [MCE02, MSB05,
RHWG95]. These simulators have nevertheless been de-
veloped to run on single-threaded hosts. This severely
limits the speed and maximum size of simulated systems,
even on high-end workstations.

Conveniently, today’s FPGAs are large and fast
enough to provide a scalable alternative to software simu-
lation. Renewed interest in FPGA-based solutions has led
to initiatives such as RAMP [AAC05] to develop large-
scale (1000-way) emulation platforms. By supplying a
platform that is fast and large enough, experimental sys-
tems can be rapidly evaluated and co-developed by soft-
ware researchers, a practice that is infeasible with simula-
tors for systems larger than several processors.

The transition from software-based simulation into
FPGA-based emulation carries a non-trivial price. To-
day’s state-of-the-art multiprocessor research demands
first-class support for full-system simulation—the ability
to run commercial applications such as databases and
web servers with unmodified operating systems and I/O
subsystems. For example, existing software simulators
(e.g., Virtutech Simics [MCE02]) are capable of model-
ing complete, enterprise-level computer systems includ-
ing CPUs, memory, disks, and networks. A complete
port from full-system software simulation into FPGA
emulation necessitates reproducing every hardware unit
in detail (e.g., SCSI controller), which significantly ex-
ceeds current FPGA capabilities and requires detailed
design knowledge of each system component.

Furthermore, in a conventional FPGA emulation ap-
proach (mapping the target system directly onto the
FPGA host), the development complexity scales com-
mensurately with the size of the simulated system. De-
veloping and integrating 1000 processors in an FPGA
platform is an overwhelming effort compared to a simple
parameter change in a software-based simulator. To-
gether, the full-system and the scaling complexities pro-
hibitively elevate the threshold-of-entry for practical
FPGA emulation. In reconciling these complexity chal-
lenges, the PROTOFLEX FPGA-accelerated hybrid simula-
tion project is developing two important enabling tech-
niques: hybrid transplant simulation and multiple-context
emulation engines.

Hybrid transplant simulation. Only a small subset
of total system behaviors contributes most of actual run-
time in a full-system simulation. Many complex behav-
iors (e.g., disk I/O) are exceedingly rare and benefit little
from FPGA acceleration. As a result, we have developed
a hybrid functional1 simulator that attains the perform-
ance benefits of FPGA hardware concurrency for the
common operations (e.g., ALU instructions), while main-
taining full-system fidelity with software simulations of
infrequent, complex behaviors (e.g., I/O). Our “trans-
plant” technology enables a simulated processor to switch
dynamically between the FPGA and the simulator host at
runtime. A processor can always fallback to simulation
for behaviors unimplemented in FPGA. This enables the
FPGA hardware development effort to focus solely on

1 Fast, large-scale functional emulators provide important bene-
fits for accelerating large-scale architecture and software re-
search. In particular, a fast functional simulator addresses the
key bottleneck in well-established cycle-accurate sampling-
based techniques [WWF06]. Section 5 explains in more detail.

PROTOFLEX: FPGA-accelerated Hybrid Functional Simulation

Eric S. Chung, Eriko Nurvitadhi, James C. Hoe, Babak Falsafi, Ken Mai
Computer Architecture Laboratory at Carnegie Mellon (CALCM)

{echung, enurvita, jhoe, babak, kenmai}@ece.cmu.edu
http://www.ece.cmu.edu/~simflex

Computer Architecture Lab at Carnegie Mellon (CALCM) Technical Report 2007-2

 2

common-case behaviors that would actually benefit from
FPGA acceleration.

Multiple-context emulation engines. We address
scaling complexity by decoupling the size and complexity
of the FPGA host system from the size of the target mul-
tiprocessor system. This is achieved by mapping multiple
simulated processors onto single multiple-context emula-
tion engines hosted on FPGAs. In contrast to conven-
tional approaches, our technique allows integrating as
many emulation engines as needed solely based on target
emulation performance and not the size of the simulated
target system. Our initial estimates show that a 1000-way
emulation system performing at 1000 MIPS (sufficient to
conduct research) can be built out of merely tens of emu-
lation engines hosted on a small number of FPGAs.
Paper outline. Section 2 provides details of our trans-
plant technology. Section 3 describes our multiprocessor
multiple-context processor emulation approach. Section 4
reports our current status on a working hybrid PROTOFLEX
emulator of an UltraSPARC workstation running Solaris 8.
Section 5 discusses applications, and we conclude in Sec-
tion 6.

2. TRANSPLANT TECHNOLOGY
Figure 1 offers a high-level view of the PROTOFLEX

hybrid-simulation technology. We begin with an existing
complete software simulator (e.g., Virtutech Simics
[MCE02]) that already supports stand-alone full-system
execution executing on a workstation. From this full-
system simulator (top), we select the performance-
dominating components to implement for FPGA-
emulation in a hybrid-simulation (bottom). For example,
Figure 1 shows that main memory is completely imple-
mented in hardware (bottom-left). When a software-
simulated CPU or DMA I/O device accesses memory, it
is in fact accessing a hardware memory module through a
memory controller on the FPGA emulation platform.
Furthermore, in the example, the CPUs are shown as
emulated in an FPGA, but using an incomplete model
(dotted CPU modules). When an FPGA-hosted CPU
model encounters an unimplemented behavior (e.g., a

page table walk following a TLB miss), the emulated
CPU instance is suspended; thereafter, its state is “trans-
planted” (in Figure 1) to its fall-back instance in the
software simulator (which is a slow but complete CPU
model in the software simulator). The software-simulated
CPU instance performs the unimplemented behavior be-
fore transplanting the state back to the FPGA emulated
CPU instance (in Figure 1). The remaining compo-
nents are simulated entirely in software (e.g., disk storage
and network interfaces, etc).

An underlying transplant runtime system of hardware
and software wrappers encapsulates all components and
ensures that transplants and cross-host interactions are
transparent so that the illusion of a complete system is
preserved regardless of component-to-host associations.
Since the target processor is partitioned between FPGA
emulation and software simulation, it must transplant
dynamically between the FPGA and the simulator hosts
depending on the behavior it encounters at runtime. For
instance, a processor emulated on the FPGA executes
user-level instructions until it encounters a TLB miss
handler that is only implemented in the simulator. The
PROTOFLEX runtime transplant system handles this by
transplanting the processor component’s state from the
FPGA-hosted processor model into its corresponding
simulated processor in Simics. Next, the simulator exe-
cutes and completes the TLB miss handling operation.
Finally, the processor component’s updated state is trans-
planted back to the FPGA-hosted model to resume accel-
erated emulation. It should be clarified that all compo-
nents in the target system run concurrently on their re-
spective hosts (processors hosted on FPGAs and disks
hosted in simulation run concurrently).

Micro-transplants. While transplants provide a fall-
back mechanism for arbitrary behaviors (complex in-
structions, I/O accesses, TLB misses, etc), they also incur
expensive overheads—this includes time to marshal data
over a cross-host connection and execute in sequential
software simulation on a workstation (in our implementa-
tion, a total of 10ms per roundtrip or 1,000,000 cycles at
100MHz). Figure 2 (left) illustrates an example. Suppose

CPU CPU CPU

Memory

MMU DMA

Graphics NIC SCSI

Terminal

PCI

Simulator host

Software-only simulation

CPU CPU

Memory

MMU DMA

Graphics NIC SCSI

Terminal

PCI

Simulator host

Hybrid simulation

FPGA
platform host

1

in physical DRAM

2

CPUCPU

Figure 1 Partitioning a simulated target system across FPGA emulation and

software simulation in the PROTOFLEX hybrid simulator.

 3

a PROTOFLEX processor model in FPGA has CPI=1 and
could handle 999,999 out of 1,000,000 dynamic instruc-
tions encountered (i.e., transplants just once every million
instructions). Due to the high transplant penalty (1 mil-
lion cycles), effective CPI would increase from 1 to 2
(losing half of ideal performance).

To overcome this severe limitation, we developed a
technique called micro-transplanting, which substan-
tially reduces the rate of expensive transplants. We ob-
serve that the majority of transplants (unimplemented
complex instructions) can be filtered and serviced by a
simple software simulation kernel running on a nearby
embedded processor. The effect on performance is simi-
lar to cache hierarchies—the embedded processor is
analogous to a “cache” that completes most of the unim-
plemented instruction behaviors to avoid the exorbitant
penalty of transplanting to the full-system simulator (the
“backing main memory”).

Modern FPGAs conveniently provide embedded on-
chip hard or soft service processors (e.g., Xilinx FPGA’s
embedded PowerPC405) which can be used to carry out
micro-transplants (i.e., simulate unimplemented instruc-
tion behaviors). The software simulation kernel on an
embedded processor could be developed with relative
ease for capturing the complete instruction set behaviors;
thus only processor interactions with simulated entities
such as an I/O device necessitate transplants to the full-
system simulator.

Figure 2 (right) illustrates how micro-transplants dra-
matically reduce the overhead of transplants. In the ex-
ample, micro-transplants (now instead of transplants)
occur once every million instructions but only incur 1000
cycles each time, resulting in negligible CPI increase.
Because micro-transplants act as a filter, full transplants
now only occur once every 10,000,000 instructions, re-
sulting in a small effective CPI increase from 1 to 1.1.

Aside from reducing transplants, micro-transplants
facilitate more flexible tradeoffs between FPGA hard-
ware and software implementation. For example, imple-
menting a rare double-precision divide instruction di-

rectly in reconfigurable logic is expensive in develop-
ment effort and in FPGA logic resources. If the instruc-
tion occurs sufficiently rare enough in a given workload,
simulating the instruction in software on the nearby em-
bedded processor requires little effort and incurs a negli-
gible overhead while saving resources and development
effort. The added option of micro-transplants raises the
question of how to systematically decide what instruction
behaviors are implemented in FPGA and what behaviors
are relegated to simulation (either micro-transplants or
full-transplants). This assignment should be based on a
multi-constraint optimization over the following factors:

1. How difficult is it to implement the behavior in
FPGA (add⇒easy; pagetable walk⇒hard)

2. How much FPGA logic resource is required by the
behavior (add⇒cheap; FP div⇒expensive)

3. What is the dynamic frequency of a behavior
(add⇒frequent; memory-mapped I/O ⇒infrequent)

4. What is the performance gain between emulating,
micro-transplanting, or transplanting a behavior?

5. What is the desired simulation performance target?
Figure 3 shows the breakdown of example assignments
made by a linear programming solver that attempts to
minimize the hardware development effort, subject to a
performance floor. Examples are given in the context of
both SPARCV9 and x86 full-system emulators. For these
examples, we have classified the instructions and system-
level behaviors into “equivalence” groups based on simi-
larity (94 groups for SPARCV9 vs. 369 groups for x86).
Implementing one behavior in a group in FPGA would
effectively support all of the nearly-identical behaviors in
the same group (e.g., “ADD” and “ADD with condition
codes” belong in the same group). The vertical axis plots
the percentage of all groups assigned to a specific host
(i.e., FPGA emulated, micro-transplanted, fully-
transplanted, or never encountered during profiling). We
set our linear programming constraints to permit solu-

FPGA
Fabric

Embedded
ISAsim

Full-
system

simulator

FPGA
Fabric

Full-
system

simulator

coverage=
99.9999%
CPI = 1

coverage=
99.99999%
CPI=1,000

coverage=100%
CPI=1,000,000

coverage=
99.9999%
CPI = 1

coverage=100%
CPI=1,000,000

CPIeffective = (0.999999)(1) +
(10-6)(106) = 2.0

CPIeffective = (0.999999)(1) +
(10-6)(1000) + (10-7)(106) = 1.10

No micro-transplants With micro-transplants

Full transplant

Micro-transplant

Full transplant

 Figure 2 Improving performance with micro-transplants

0%

20%

40%

60%

80%

100%

db2-
tpcc

oracle-
tpcc

gcc gzip gzip crafty vpr parser

SPARCV9 (94 total groups) x86 (369 total groups)

%
 o

f t
ot

al
 in

st
/s

ys
 b

eh
av

io
r g

ro
up

s

Emulated Micro-tplant Tplant Unused

Figure 3 Partitioning results from linear programming
(SPECINT apps are within 10% ideal performance)

(TPCC apps are within 30% ideal performance)

 4

tions that are within 10% (30% for TPCC apps2) of ideal
performance based on CPI estimates for our microarchi-
tecture (see Section 4). Ideal performance assumes zero
micro-transplant or transplant overheads. As expected,
relaxing the target performance requirement allows us to
implement only a subset of behaviors in FPGA hardware
(approximately 50% for SPARCV9 and 20% for x86). In
general, the transplant technology applied with our linear
solver methodology facilitates a systematic way to trade
away performance for lowered development effort and
resources. This substantially mitigates the full-system
complexity challenge. In the next section, we discuss a
systematic technique for addressing scaling complexity.

3. PROTOFLEXMP
The most important challenge for PROTOFLEX is to

achieve an unprecedented level of parallel functional si-
mulation performance beyond the capabilities of today’s
software-based simulators. Before presenting our ap-
proach, we first analyze how fast a useful multiprocessor
simulator needs to be.

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128 256 512 1024

Size of simulated system (# processors)

Sl
ow

do
w

n
re

la
tiv

e
to

 re
al

 s
ys

te
m

10 MIPS simulator 100 MIPS simulator 1000 MIPS simulator

Figure 4 Simulation slowdown versus system size

2 Our 16-way TPCC workloads exhibit a much wider and fre-
quent range of behaviors. Specifically, the I/O rate is high and
cannot be filtered by micro-transplants. As a result, no linear
programming solutions exist with less than 30% overhead.

MP Simulation Performance. Figure 4 plots the user
perceived performance of a simulated target system rela-
tive to a real system as the number of simulated proces-
sors is increased. We assume “real” systems have proces-
sors with nominally 1000-MIPS performance each. We
show three lines corresponding to simulators with aggre-
gate instruction simulation rates of 10 MIPS, 100 MIPS
and 1000 MIPS.

Typically, performance simulation studies have been
possible at as much as 1000x to 10,000x slowdown; con-
ducting interactive software research on new experimen-
tal platforms can tolerate no more than 100x slowdown.
For example, Virtutech Simics is a commercial simulator
that targets interactive software development at roughly a
10 to 100x slowdown.

 The middle line in Figure 4 corresponds to the fastest
software-based simulators today (e.g., Simics) with ag-
gregate instruction throughputs of up to 100 MIPS. This
would yield a 10x perceived slowdown in uniprocessor
simulation–but this aggregate throughput must be divided
when the number of processors in the simulated system
grows. From the figure, we observe that a 100-MIPS
simulator (current single-threaded software-only simula-
tion technology) at best is practical for studying up to
tens of processors. The far-right line in Figure 4 would
suggest we need a 1000 to 10,000 MIPS simulator to
support effective hardware and software research of a
1000-way multiprocessor system.

The naive approach to construct a multiprocessor
emulator is to replicate 1000 FPGA cores and integrate
them together in a large-scale interconnection substrate.
While this meets the requirement of simulating a large-
scale system, the development effort and required re-
sources would be overwhelming and the final aggregate
throughput would be 100 to 1000x faster than needed.
Can we trade the excess simulation performance for a
more realistic hardware development effort?

A Performance-Centric Approach. From the above
insight, the goal of PROTOFLEXMP is to develop an emula-
tor for a 1000-node system with an aggregate throughput
of 1000 MIPS and with greatly reduced implementation
complexity. Our approach is based on the idea of using
multiple-context emulation engines to decouple the size

N‐way target system

Memory

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

EMU
Engine

EMU
Engine

Multiple context
processor pool

IFIF IDID EXEX MM WW

EMU
Engine

instr from proc 4 instr from proc 2

instr from proc 1

instr from proc 0

instr from proc 3

Multiple‐context emulation engine

FPGA
platform

Figure 5 PROTOFLEXMP emulation platform

 5

of the simulated system from the required size of the
FPGA host system. Instead, the required size of the
FPGA host system should only be a function of the de-
sired emulation performance.

Figure 5 illustrates the anatomy of our emulation sys-
tem, where multiple simulated processors in a large-scale
target system are mapped to share a small number of
emulation engines (i.e. 10 simulated processors map to 10
interleaved contexts in 1 emulation engine). These en-
gines consist of ordinary instruction pipelines but are
augmented with static interleaving multithreading support
that issues an instruction from a different, rotating proc-
essor context each cycle.

This idea closely resembles statically interleaved mul-
tithreaded instruction pipelines (e.g. HEP barrel proces-
sor) and comes with the associated implementation ad-
vantages. First, with enough available contexts to keep
the engine occupied, it is possible to design a deep pipe-
line without sacrificing emulation performance. Deeper
pipelines can improve clock frequency, and reduce de-
velopment complexity of emulation engines for complex
ISAs such as x86 (recall that even though the pipeline is
deep, there is no need to implement hazard detection or
forwarding). Second, long-latency events such as ac-
cesses to main memory or transplant execution can be
overlapped with other contexts doing useful work.

With static interleaving, an emulation engine should
comfortably reach 100 MIPS (at 100 MHz on today’s
FPGAs). Thus, only 10 emulation engines are needed to
deliver the desired aggregate throughput of 1000 MIPS.
Combining the tens of emulation engines in a FPGA
emulation system is far simpler than integrating together
a bona-fide 1000-way system in the naïve multiprocessor
emulation approach.

4. CURRENT STATUS
As a proof-of-concept, we have completed a fully-

operational hybrid simulator of a uniprocessor UltraS-
PARC server (Sun Microsystems Sun Enterprise 3800, 1-
CPU) running unmodified Solaris 8. By leveraging the

Simics full-system simulator and the Bluespec high-level
hardware design environment [Blue06], this development
progressed quickly from start to operation in only six
months by one student. Perhaps even more surprisingly,
this proof-of-concept hybrid simulator runs on inexpen-
sive commodity hardware—a standard Linux PC and a
$300 Xilinx XUP demo board. The hybrid-simulator
currently achieves as high as 16MIPS3 on integer SPEC
benchmarks running under Solaris 8.

Implementation. Figure 6 (top) shows a block dia-
gram of our proof-of-concept hybrid-simulator imple-
mentation. On the right, a standard Linux PC executes
the Virtutech Simics full-system simulator. The emula-
tion platform on the left is a Xilinx XUP demo board
with an FPGA, Ethernet interface, and memory. The
Linux PC and the FPGA are connected by standard
100BT Ethernet (see bottom). On the Xilinx X2CVP30
FPGA, we implement a partial UltraSPARC III model
that shares a bus with physical DRAM and the embedded
PowerPC405 hard core, which forms the FPGA-side of
the transplant runtime system and service routines.

When starting a simulation from scratch, the booting
of the simulated target system is hosted completely in
simulation. This skips past “atypical” instructions used
during the boot-up process that never appear again in the
target application. Once booted, we use Simics’s check-
pointing facility to capture a snapshot of the architectural
state. Subsequent PROTOFLEX hybrid simulations start
directly from this checkpoint4. When starting from a
checkpoint, the embedded PowerPC405 initializes the
physical DDR memory with the target system’s main
memory (from a Simics checkpoint). Next the SPARC
core state is transplanted from Simics to the FPGA host.
From this point forward, full-system emulation proceeds
with hybrid transplantation as described in Section 2.

Processor Core Development. Although a number
of synthesizable SPARC RTL models are publicly avail-
able, they are described at a too low-level abstraction for
practical use in a high-level functional simulator. Instead,
we opted to develop our own UltraSPARC model using
Bluespec, a high-level operation-centric hardware de-
scription language [Blue06]. Bluespec lets us capture ISA
behaviors in a descriptive and human-readable format.
This enables a more malleable processor model that can
be maintained and modified by the user community at
large. Our core model can be automatically compiled for
FPGA synthesis. Our first implementation is a multi-
cycle machine (CPIideal=6) and runs at 100MHz on the

3 There are full-system simulators (Virtutech Simics) that can
deliver 10 to 100 MIPS. However, Simics’ performance erodes
sharply if any instrumentation or modification is made to the
default configuration. In contrast, our hybrid-simulator can be
fully instrumented (e.g., cache or branch predictor simulation)
with zero impact on performance.
4 No modifications to Simics checkpoints are necessary. There-
fore, our hybrid simulator is fully backwards-compatible with
any existing software checkpoints generated by Simics. This
allows us to leverage our large, existing library of tuned work-
loads originally created for software simulation.

Xilinx XUP Virtex-II Pro 30 Virtutech Simics

Transplant &
inter-host
interface

Ethernet

Simics
UltraSPARC

Simulated target
devices

SPARCV9
CPU

Embedded
PPC405

Embedded
PPC405

X2CVP30 FPGA Cross-over ethernet cable

DDR
memory

DDR
memory

Figure 6 Initial uniprocessor proof-of-concept

 6

Xilinx XC2VP30-7 FPGA. (We expect CPI to decrease
to 1 when we transition next to the interleaved pipelined
implementation described in Section 3.) With 8kB I/D
caches, it currently consumes 16K LUTs (50% of the
entire FPGA).

We are also pursuing an effort to develop an x86-
based high-level functional model in Bluespec. The
transplant technology will benefit our x86 implementa-
tion even further by allowing us to omit x86’s large num-
ber of rarely-used legacy complex instructions.

5. APPLYING FAST FUNCTIONAL SIMULATION
Interactive architecture and software develop-

ment. A new architecture requires a correctly matched
software base to demonstrate its full potential. Software
engineers (in applications, compilers, and operating sys-
tems) are generally unwilling to devote serious develop-
ment effort when given only a software simulator. The
PROTOFLEX hybrid simulator offers sufficient execution
speed to support non-trivial software development activi-
ties. In a similar vein, in order to extract meaningful data
using commercial workloads, commercially shipped ap-
plication binaries (e.g., databases and web servers) re-
quire many rounds of tuning calibration to optimally
match the hardware configuration and performance char-
acteristics. This activity is excruciatingly slow at soft-
ware simulator speeds.

Even when real hardware exists, developing multi-
threaded applications can be challenging due to non-
determinism and the lack of observability in the underly-
ing execution platform. A PROTOFLEX hybrid simulator
can be instrumented to expose relevant system internal
activities (race-conditions, performance counters, etc.).
A PROTOFLEX hybrid simulator can be made completely
deterministic (in replay) to allow detailed investigation of
timing-related bugs.

Simulation sampling. Although PROTOFLEX is a
functional simulator, it addresses one of the key bottle-
necks in performance studies using simulation sampling.
Simulation sampling research has shown that it is possi-
ble to achieve very accurate estimation of uniprocessor
and multi-processor performance by simulating an ex-
ceedingly small fraction of the total benchmark in cycle-
accurate mode [WWF06]. In short, the performance of
the detailed software cycle-accurate simulator is itself
inconsequential to the latency of performance data collec-
tion. The performance bottleneck instead lies in the
amount of time it takes to advance the system’s architec-
tural state across the large gaps between sampled sections
of the benchmark and to perform functional warming of
micro-architectural structures (e.g., caches). For even
medium-scale multiprocessor systems (16- to 32-way),
this process is the bottleneck in simulation turn-around
time (consuming days to weeks). As system sizes scale,
the turnaround time grows commensurately.

PROTOFLEX is a perfect complement to sampling-
based techniques by enabling accelerated functional

warming over long periods of execution. PROTOFLEX
provides enough flexibility to instrument and probe any
architectural state (e.g., extracting warmed cache state)
with virtually no slowdown (unlike software simulators).
The level of performance offered by PROTOFLEX would
enable for the first time, practical performance simulation
studies of systems with 100s to 1000s of processors.

6. CONCLUSION
FPGA-based emulation is being pursued as an attrac-

tive alternative to software-based simulation. However,
the transition from software to hardware introduces full-
system and scaling complexities. PROTOFLEX addresses
these challenges with hybrid simulation and multiple-
context emulation. We have already completed an initial
proof-of-concept for a uniprocessor full-system hybrid
emulation. We are currently extending our infrastructure
to support multiprocessor functional simulation by modi-
fying the current processor core models to support multi-
ple-context emulation as described in Section 3.

Beyond this, there are other practical issues that re-
quire addressing. For instance, unsynchronized host
communications between simulated and emulated com-
ponents can lead to nondeterministic behaviors. Determi-
nistic replay is an invaluable feature in multithreaded
software debugging and critical for experimental repro-
ducibility in architectural studies. Another issue is mem-
ory capacity—how to support the scale of main memory
capacity needed by a 1000-way system in a cost and per-
formance effective way?

Acknowledgements. This work was supported in part
by grants and equipment from two NSF Career awards,
and NSF grant CCR-509356.

7. REFERENCES
[AAC05] Arvind, K. Asanovic, D. Chiou, J. C. Hoe, C. Kozyrakis, S.-

L. Lu, M. Oskin, D. Patterson, J. Rabaey, J. Wawrzynek. RAMP:
Research accelerator for multiple processors – a community vision
for a shared experimental parallel HW/SW platform. Technical Re-
port UCB/CSD-05-1412, September 2005.

[Blue06] Bluespec, Inc. http://www.bluespec.com, 2006.
[LW95] U. Legedza and W. E. Weihl. Reducing synchronization over-

head in parallel simulation. In Proc. Workshop on Parallel and Dis-
tributed Simulation, 1995.

[MCE02] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform. IEEE Computer,
35(2):50–58, February 2002.

[MSB05] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. Computer Architecture News, September 2005.

 [RHWG95] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Fast and accurate multiprocessor simulation: The SimOS approach.
IEEE Parallel and Distributed Technology, 3(4), Fall 1995.

[WWF06] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. SimFlex: statistical sampling of computer
system simulation. IEEE Micro, 26(4):18-31, Jul-Aug 2006.

