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Abstract. PROTOFLEX is an FPGA-accelerated hybrid simu-
lation/emulation platform designed to support large-scale 
multiprocessor hardware and software research. Unlike 
prior attempts at FPGA multiprocessor system emulators, 
PROTOFLEX emulates full-system fidelity—i.e., runs stock 
commercial operating systems with I/O support. This is ac-
complished without undue effort by leveraging a hybrid 
emulation technique called transplanting. Our transplant 
technology uses FPGAs to accelerate only common-case 
behaviors while relegating infrequent, complex behaviors 
(e.g., I/O devices) to software simulation. By working in 
concert with existing full-system simulators, transplanting 
avoids the costly and unnecessary construction of the entire 
target system in FPGA. We report preliminary findings from 
a working hybrid PROTOFLEX emulator of an UltraSPARC 
workstation running Solaris 8.  

We have also started developing a novel multiprocessor 
emulation approach that interleaves the execution of many 
(10s to 100s) processor contexts onto a shared emulation 
engine. This approach decouples the scale and complexity of 
the FPGA host from the simulated system size but neverthe-
less enables us to scale the desired emulation performance 
by the number of emulation engines used. Together, the 
transplant and interleaving techniques will enable us to 
develop full-system FPGA emulators of up to thousands of 
processors without an overwhelming development effort.  

1. INTRODUCTION 
After years of focus on uniprocessor performance, the 

“power wall” has overnight driven the microprocessor 
hardware and software industry down the multicore path. 
This abrupt transition has left everyone at a loss about the 
designs of future multi-core and multiprocessor hardware 
and software. Recently, full-system multiprocessor simu-
lators have emerged as the research vehicle of choice in 
response to the shift towards studying and evaluating 
experimental multiprocessor systems [MCE02, MSB05, 
RHWG95]. These simulators have nevertheless been de-
veloped to run on single-threaded hosts. This severely 
limits the speed and maximum size of simulated systems, 
even on high-end workstations.  

Conveniently, today’s FPGAs are large and fast 
enough to provide a scalable alternative to software simu-
lation. Renewed interest in FPGA-based solutions has led 
to initiatives such as RAMP [AAC05] to develop large-
scale (1000-way) emulation platforms. By supplying a 
platform that is fast and large enough, experimental sys-
tems can be rapidly evaluated and co-developed by soft-
ware researchers, a practice that is infeasible with simula-
tors for systems larger than several processors.    

The transition from software-based simulation into 
FPGA-based emulation carries a non-trivial price. To-
day’s state-of-the-art multiprocessor research demands 
first-class support for full-system simulation—the ability 
to run commercial applications such as databases and 
web servers with unmodified operating systems and I/O 
subsystems.  For example, existing software simulators 
(e.g., Virtutech Simics [MCE02]) are capable of model-
ing complete, enterprise-level computer systems includ-
ing CPUs, memory, disks, and networks.  A complete 
port from full-system software simulation into FPGA 
emulation necessitates reproducing every hardware unit 
in detail (e.g., SCSI controller), which significantly ex-
ceeds current FPGA capabilities and requires detailed 
design knowledge of each system component.  

Furthermore, in a conventional FPGA emulation ap-
proach (mapping the target system directly onto the 
FPGA host), the development complexity scales com-
mensurately with the size of the simulated system. De-
veloping and integrating 1000 processors in an FPGA 
platform is an overwhelming effort compared to a simple 
parameter change in a software-based simulator. To-
gether, the full-system and the scaling complexities pro-
hibitively elevate the threshold-of-entry for practical 
FPGA emulation. In reconciling these complexity chal-
lenges, the PROTOFLEX FPGA-accelerated hybrid simula-
tion project is developing two important enabling tech-
niques: hybrid transplant simulation and multiple-context 
emulation engines. 

Hybrid transplant simulation. Only a small subset 
of total system behaviors contributes most of actual run-
time in a full-system simulation. Many complex behav-
iors (e.g., disk I/O) are exceedingly rare and benefit little 
from FPGA acceleration. As a result, we have developed 
a hybrid functional1 simulator that attains the perform-
ance benefits of FPGA hardware concurrency for the 
common operations (e.g., ALU instructions), while main-
taining full-system fidelity with software simulations of 
infrequent, complex behaviors (e.g., I/O). Our “trans-
plant” technology enables a simulated processor to switch 
dynamically between the FPGA and the simulator host at 
runtime. A processor can always fallback to simulation 
for behaviors unimplemented in FPGA. This enables the 
FPGA hardware development effort to focus solely on 

                                                      
1 Fast, large-scale functional emulators provide important bene-
fits for accelerating large-scale architecture and software re-
search. In particular, a fast functional simulator addresses the 
key bottleneck in well-established cycle-accurate sampling-
based techniques [WWF06]. Section 5 explains in more detail.  
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common-case behaviors that would actually benefit from 
FPGA acceleration. 

Multiple-context emulation engines. We address 
scaling complexity by decoupling the size and complexity 
of the FPGA host system from the size of the target mul-
tiprocessor system. This is achieved by mapping multiple 
simulated processors onto single multiple-context emula-
tion engines hosted on FPGAs. In contrast to conven-
tional approaches, our technique allows integrating as 
many emulation engines as needed solely based on target 
emulation performance and not the size of the simulated 
target system. Our initial estimates show that a 1000-way 
emulation system performing at 1000 MIPS (sufficient to 
conduct research) can be built out of merely tens of emu-
lation engines hosted on a small number of FPGAs. 
Paper outline. Section 2 provides details of our trans-
plant technology. Section 3 describes our multiprocessor 
multiple-context processor emulation approach. Section 4 
reports our current status on a working hybrid PROTOFLEX 
emulator of an UltraSPARC workstation running Solaris 8. 
Section 5 discusses applications, and we conclude in Sec-
tion 6. 

2. TRANSPLANT TECHNOLOGY 
Figure 1 offers a high-level view of the PROTOFLEX 

hybrid-simulation technology.  We begin with an existing 
complete software simulator (e.g., Virtutech Simics 
[MCE02]) that already supports stand-alone full-system 
execution executing on a workstation.  From this full-
system simulator (top), we select the performance-
dominating components to implement for FPGA-
emulation in a hybrid-simulation (bottom).  For example, 
Figure 1 shows that main memory is completely imple-
mented in hardware (bottom-left).  When a software-
simulated CPU or DMA I/O device accesses memory, it 
is in fact accessing a hardware memory module through a 
memory controller on the FPGA emulation platform.  
Furthermore, in the example, the CPUs are shown as 
emulated in an FPGA, but using an incomplete model 
(dotted CPU modules).  When an FPGA-hosted CPU 
model encounters an unimplemented behavior (e.g., a 

page table walk following a TLB miss), the emulated 
CPU instance is suspended; thereafter, its state is “trans-
planted” (  in Figure 1) to its fall-back instance in the 
software simulator (which is a slow but complete CPU 
model in the software simulator). The software-simulated 
CPU instance performs the unimplemented behavior be-
fore transplanting the state back to the FPGA emulated 
CPU instance (  in Figure 1).   The remaining compo-
nents are simulated entirely in software (e.g., disk storage 
and network interfaces, etc). 

An underlying transplant runtime system of hardware 
and software wrappers encapsulates all components and 
ensures that transplants and cross-host interactions are 
transparent so that the illusion of a complete system is 
preserved regardless of component-to-host associations. 
Since the target processor is partitioned between FPGA 
emulation and software simulation, it must transplant 
dynamically between the FPGA and the simulator hosts 
depending on the behavior it encounters at runtime.  For 
instance, a processor emulated on the FPGA executes 
user-level instructions until it encounters a TLB miss 
handler that is only implemented in the simulator. The 
PROTOFLEX runtime transplant system handles this by 
transplanting the processor component’s state from the 
FPGA-hosted processor model into its corresponding 
simulated processor in Simics.  Next, the simulator exe-
cutes and completes the TLB miss handling operation. 
Finally, the processor component’s updated state is trans-
planted back to the FPGA-hosted model to resume accel-
erated emulation. It should be clarified that all compo-
nents in the target system run concurrently on their re-
spective hosts (processors hosted on FPGAs and disks 
hosted in simulation run concurrently).  

Micro-transplants. While transplants provide a fall-
back mechanism for arbitrary behaviors (complex in-
structions, I/O accesses, TLB misses, etc), they also incur 
expensive overheads—this includes time to marshal data 
over a cross-host connection and execute in sequential 
software simulation on a workstation (in our implementa-
tion, a total of 10ms per roundtrip or 1,000,000 cycles at 
100MHz).  Figure 2 (left) illustrates an example. Suppose 
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Figure 1    Partitioning a simulated target system across FPGA emulation and  

software simulation in the PROTOFLEX hybrid simulator. 
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a PROTOFLEX processor model in FPGA has CPI=1 and 
could handle 999,999 out of 1,000,000 dynamic instruc-
tions encountered (i.e., transplants just once every million 
instructions). Due to the high transplant penalty (1 mil-
lion cycles), effective CPI would increase from 1 to 2 
(losing half of ideal performance). 

To overcome this severe limitation, we developed a 
technique called micro-transplanting, which substan-
tially reduces the rate of expensive transplants. We ob-
serve that the majority of transplants (unimplemented 
complex instructions) can be filtered and serviced by a 
simple software simulation kernel running on a nearby 
embedded processor. The effect on performance is simi-
lar to cache hierarchies—the embedded processor is 
analogous to a “cache” that completes most of the unim-
plemented instruction behaviors to avoid the exorbitant 
penalty of transplanting to the full-system simulator (the 
“backing main memory”).  

Modern FPGAs conveniently provide embedded on-
chip hard or soft service processors (e.g., Xilinx FPGA’s 
embedded PowerPC405) which can be used to carry out 
micro-transplants (i.e., simulate unimplemented instruc-
tion behaviors). The software simulation kernel on an 
embedded processor could be developed with relative 
ease for capturing the complete instruction set behaviors; 
thus only processor interactions with simulated entities 
such as an I/O device necessitate transplants to the full-
system simulator.  

Figure 2 (right) illustrates how micro-transplants dra-
matically reduce the overhead of transplants. In the ex-
ample, micro-transplants (now instead of transplants) 
occur once every million instructions but only incur 1000 
cycles each time, resulting in negligible CPI increase.  
Because micro-transplants act as a filter, full transplants 
now only occur once every 10,000,000 instructions, re-
sulting in a small effective CPI increase from 1 to 1.1.  

Aside from reducing transplants, micro-transplants 
facilitate more flexible tradeoffs between FPGA hard-
ware and software implementation. For example, imple-
menting a rare double-precision divide instruction di-

rectly in reconfigurable logic is expensive in develop-
ment effort and in FPGA logic resources.  If the instruc-
tion occurs sufficiently rare enough in a given workload, 
simulating the instruction in software on the nearby em-
bedded processor requires little effort and incurs a negli-
gible overhead while saving resources and development 
effort. The added option of micro-transplants raises the 
question of how to systematically decide what instruction 
behaviors are implemented in FPGA and what behaviors 
are relegated to simulation (either micro-transplants or 
full-transplants).  This assignment should be based on a 
multi-constraint optimization over the following factors:  

1. How difficult is it to implement the behavior in 
FPGA (add⇒easy; pagetable walk⇒hard) 

2. How much FPGA logic resource is required by the 
behavior (add⇒cheap; FP div⇒expensive) 

3. What is the dynamic frequency of a behavior 
(add⇒frequent; memory-mapped I/O ⇒infrequent) 

4. What is the performance gain between emulating, 
micro-transplanting, or transplanting a behavior? 

5. What is the desired simulation performance target? 
Figure 3 shows the breakdown of example assignments 
made by a linear programming solver that attempts to 
minimize the hardware development effort, subject to a 
performance floor. Examples are given in the context of 
both SPARCV9 and x86 full-system emulators. For these 
examples, we have classified the instructions and system-
level behaviors into “equivalence” groups based on simi-
larity (94 groups for SPARCV9 vs. 369 groups for x86). 
Implementing one behavior in a group in FPGA would 
effectively support all of the nearly-identical behaviors in 
the same group (e.g., “ADD” and “ADD with condition 
codes” belong in the same group). The vertical axis plots 
the percentage of all groups assigned to a specific host 
(i.e., FPGA emulated, micro-transplanted, fully-
transplanted, or never encountered during profiling). We 
set our linear programming constraints to permit solu-
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  Figure 2    Improving performance with micro-transplants 
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tions that are within 10% (30% for TPCC apps2) of ideal 
performance based on CPI estimates for our microarchi-
tecture (see Section 4). Ideal performance assumes zero 
micro-transplant or transplant overheads. As expected, 
relaxing the target performance requirement allows us to 
implement only a subset of behaviors in FPGA hardware 
(approximately 50% for SPARCV9 and 20% for x86). In 
general, the transplant technology applied with our linear 
solver methodology facilitates a systematic way to trade 
away performance for lowered development effort and 
resources. This substantially mitigates the full-system 
complexity challenge. In the next section, we discuss a 
systematic technique for addressing scaling complexity. 

3. PROTOFLEXMP 
The most important challenge for PROTOFLEX is to 

achieve an unprecedented level of parallel functional si-
mulation performance beyond the capabilities of today’s 
software-based simulators. Before presenting our ap-
proach, we first analyze how fast a useful multiprocessor 
simulator needs to be. 
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2 Our 16-way TPCC workloads exhibit a much wider and fre-
quent range of behaviors. Specifically, the I/O rate is high and 
cannot be filtered by micro-transplants. As a result, no linear 
programming solutions exist with less than 30% overhead. 

MP Simulation Performance. Figure 4 plots the user 
perceived performance of a simulated target system rela-
tive to a real system as the number of simulated proces-
sors is increased. We assume “real” systems have proces-
sors with nominally 1000-MIPS performance each. We 
show three lines corresponding to simulators with aggre-
gate instruction simulation rates of 10 MIPS, 100 MIPS 
and 1000 MIPS. 

Typically, performance simulation studies have been 
possible at as much as 1000x to 10,000x slowdown; con-
ducting interactive software research on new experimen-
tal platforms can tolerate no more than 100x slowdown. 
For example, Virtutech Simics is a commercial simulator 
that targets interactive software development at roughly a 
10 to 100x slowdown. 

 The middle line in Figure 4 corresponds to the fastest 
software-based simulators today (e.g., Simics) with ag-
gregate instruction throughputs of up to 100 MIPS. This 
would yield a 10x perceived slowdown in uniprocessor 
simulation–but this aggregate throughput must be divided 
when the number of processors in the simulated system 
grows. From the figure, we observe that a 100-MIPS 
simulator (current single-threaded software-only simula-
tion technology) at best is practical for studying up to 
tens of processors. The far-right line in Figure 4 would 
suggest we need a 1000 to 10,000 MIPS simulator to 
support effective hardware and software research of a 
1000-way multiprocessor system.  

The naive approach to construct a multiprocessor 
emulator is to replicate 1000 FPGA cores and integrate 
them together in a large-scale interconnection substrate. 
While this meets the requirement of simulating a large-
scale system, the development effort and required re-
sources would be overwhelming and the final aggregate 
throughput would be 100 to 1000x faster than needed.  
Can we trade the excess simulation performance for a 
more realistic hardware development effort? 

A Performance-Centric Approach. From the above 
insight, the goal of PROTOFLEXMP is to develop an emula-
tor for a 1000-node system with an aggregate throughput 
of 1000 MIPS and with greatly reduced implementation 
complexity. Our approach is based on the idea of using 
multiple-context emulation engines to decouple the size 
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of the simulated system from the required size of the 
FPGA host system.  Instead, the required size of the 
FPGA host system should only be a function of the de-
sired emulation performance. 

Figure 5 illustrates the anatomy of our emulation sys-
tem, where multiple simulated processors in a large-scale 
target system are mapped to share a small number of 
emulation engines (i.e. 10 simulated processors map to 10 
interleaved contexts in 1 emulation engine). These en-
gines consist of ordinary instruction pipelines but are 
augmented with static interleaving multithreading support 
that issues an instruction from a different, rotating proc-
essor context each cycle.  

This idea closely resembles statically interleaved mul-
tithreaded instruction pipelines (e.g. HEP barrel proces-
sor) and comes with the associated implementation ad-
vantages. First, with enough available contexts to keep 
the engine occupied, it is possible to design a deep pipe-
line without sacrificing emulation performance. Deeper 
pipelines can improve clock frequency, and reduce de-
velopment complexity of emulation engines for complex 
ISAs such as x86 (recall that even though the pipeline is 
deep, there is no need to implement hazard detection or 
forwarding). Second, long-latency events such as ac-
cesses to main memory or transplant execution can be 
overlapped with other contexts doing useful work.  

With static interleaving, an emulation engine should 
comfortably reach 100 MIPS (at 100 MHz on today’s 
FPGAs). Thus, only 10 emulation engines are needed to 
deliver the desired aggregate throughput of 1000 MIPS.  
Combining the tens of emulation engines in a FPGA 
emulation system is far simpler than integrating together 
a bona-fide 1000-way system in the naïve multiprocessor 
emulation approach. 

4. CURRENT STATUS 
As a proof-of-concept, we have completed a fully-

operational hybrid simulator of a uniprocessor UltraS-
PARC server (Sun Microsystems Sun Enterprise 3800, 1-
CPU) running unmodified Solaris 8.  By leveraging the 

Simics full-system simulator and the Bluespec high-level 
hardware design environment [Blue06], this development 
progressed quickly from start to operation in only six 
months by one student.  Perhaps even more surprisingly, 
this proof-of-concept hybrid simulator runs on inexpen-
sive commodity hardware—a standard Linux PC and a 
$300 Xilinx XUP demo board.  The hybrid-simulator 
currently achieves as high as 16MIPS3 on integer SPEC 
benchmarks running under Solaris 8. 

Implementation. Figure 6 (top) shows a block dia-
gram of our proof-of-concept hybrid-simulator imple-
mentation.  On the right, a standard Linux PC executes 
the Virtutech Simics full-system simulator.  The emula-
tion platform on the left is a Xilinx XUP demo board 
with an FPGA, Ethernet interface, and memory.  The 
Linux PC and the FPGA are connected by standard 
100BT Ethernet (see bottom).  On the Xilinx X2CVP30 
FPGA, we implement a partial UltraSPARC III model 
that shares a bus with physical DRAM and the embedded 
PowerPC405 hard core, which forms the FPGA-side of 
the transplant runtime system and service routines.  

When starting a simulation from scratch, the booting 
of the simulated target system is hosted completely in 
simulation.  This skips past “atypical” instructions used 
during the boot-up process that never appear again in the 
target application.  Once booted, we use Simics’s check-
pointing facility to capture a snapshot of the architectural 
state. Subsequent PROTOFLEX hybrid simulations start 
directly from this checkpoint4.  When starting from a 
checkpoint, the embedded PowerPC405 initializes the 
physical DDR memory with the target system’s main 
memory (from a Simics checkpoint).  Next the SPARC 
core state is transplanted from Simics to the FPGA host. 
From this point forward, full-system emulation proceeds 
with hybrid transplantation as described in Section 2. 

Processor Core Development.  Although a number 
of synthesizable SPARC RTL models are publicly avail-
able, they are described at a too low-level abstraction for 
practical use in a high-level functional simulator. Instead, 
we opted to develop our own UltraSPARC model using 
Bluespec, a high-level operation-centric hardware de-
scription language [Blue06]. Bluespec lets us capture ISA 
behaviors in a descriptive and human-readable format. 
This enables a more malleable processor model that can 
be maintained and modified by the user community at 
large.  Our core model can be automatically compiled for 
FPGA synthesis. Our first implementation is a multi-
cycle machine (CPIideal=6) and runs at 100MHz on the 
                                                      
3 There are full-system simulators (Virtutech Simics) that can 
deliver 10 to 100 MIPS.  However, Simics’ performance erodes 
sharply if any instrumentation or modification is made to the 
default configuration. In contrast, our hybrid-simulator can be 
fully instrumented (e.g., cache or branch predictor simulation) 
with zero impact on performance. 
4 No modifications to Simics checkpoints are necessary. There-
fore, our hybrid simulator is fully backwards-compatible with 
any existing software checkpoints generated by Simics. This 
allows us to leverage our large, existing library of tuned work-
loads originally created for software simulation.  
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Figure 6    Initial uniprocessor proof-of-concept 
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Xilinx XC2VP30-7 FPGA. (We expect CPI to decrease 
to 1 when we transition next to the interleaved pipelined 
implementation described in Section 3.) With 8kB I/D 
caches, it currently consumes 16K LUTs (50% of the 
entire FPGA).   

We are also pursuing an effort to develop an x86-
based high-level functional model in Bluespec. The 
transplant technology will benefit our x86 implementa-
tion even further by allowing us to omit x86’s large num-
ber of rarely-used legacy complex instructions.  

5. APPLYING FAST FUNCTIONAL SIMULATION 
Interactive architecture and software develop-

ment. A new architecture requires a correctly matched 
software base to demonstrate its full potential.  Software 
engineers (in applications, compilers, and operating sys-
tems) are generally unwilling to devote serious develop-
ment effort when given only a software simulator.  The 
PROTOFLEX hybrid simulator offers sufficient execution 
speed to support non-trivial software development activi-
ties.  In a similar vein, in order to extract meaningful data 
using commercial workloads, commercially shipped ap-
plication binaries (e.g., databases and web servers) re-
quire many rounds of tuning calibration to optimally 
match the hardware configuration and performance char-
acteristics.  This activity is excruciatingly slow at soft-
ware simulator speeds.    

Even when real hardware exists, developing multi-
threaded applications can be challenging due to non-
determinism and the lack of observability in the underly-
ing execution platform.  A PROTOFLEX hybrid simulator 
can be instrumented to expose relevant system internal 
activities (race-conditions, performance counters, etc.).  
A PROTOFLEX hybrid simulator can be made completely 
deterministic (in replay) to allow detailed investigation of 
timing-related bugs. 

Simulation sampling. Although PROTOFLEX is a 
functional simulator, it addresses one of the key bottle-
necks in performance studies using simulation sampling. 
Simulation sampling research has shown that it is possi-
ble to achieve very accurate estimation of uniprocessor 
and multi-processor performance by simulating an ex-
ceedingly small fraction of the total benchmark in cycle-
accurate mode [WWF06]. In short, the performance of 
the detailed software cycle-accurate simulator is itself 
inconsequential to the latency of performance data collec-
tion.  The performance bottleneck instead lies in the 
amount of time it takes to advance the system’s architec-
tural state across the large gaps between sampled sections 
of the benchmark and to perform functional warming of 
micro-architectural structures (e.g., caches). For even 
medium-scale multiprocessor systems (16- to 32-way), 
this process is the bottleneck in simulation turn-around 
time (consuming days to weeks). As system sizes scale, 
the turnaround time grows commensurately.  

PROTOFLEX is a perfect complement to sampling-
based techniques by enabling accelerated functional 

warming over long periods of execution. PROTOFLEX 
provides enough flexibility to instrument and probe any 
architectural state (e.g., extracting warmed cache state) 
with virtually no slowdown (unlike software simulators). 
The level of performance offered by PROTOFLEX would 
enable for the first time, practical performance simulation 
studies of systems with 100s to 1000s of processors. 

6. CONCLUSION 
FPGA-based emulation is being pursued as an attrac-

tive alternative to software-based simulation. However, 
the transition from software to hardware introduces full-
system and scaling complexities. PROTOFLEX addresses 
these challenges with hybrid simulation and multiple-
context emulation. We have already completed an initial 
proof-of-concept for a uniprocessor full-system hybrid 
emulation. We are currently extending our infrastructure 
to support multiprocessor functional simulation by modi-
fying the current processor core models to support multi-
ple-context emulation as described in Section 3.  

Beyond this, there are other practical issues that re-
quire addressing. For instance, unsynchronized host 
communications between simulated and emulated com-
ponents can lead to nondeterministic behaviors. Determi-
nistic replay is an invaluable feature in multithreaded 
software debugging and critical for experimental repro-
ducibility in architectural studies. Another issue is mem-
ory capacity—how to support the scale of main memory 
capacity needed by a 1000-way system in a cost and per-
formance effective way? 

Acknowledgements. This work was supported in part 
by grants and equipment from two NSF Career awards, 
and NSF grant CCR-509356. 
 

7. REFERENCES 
[AAC05] Arvind, K. Asanovic, D. Chiou, J. C. Hoe, C. Kozyrakis, S.-

L. Lu, M. Oskin, D. Patterson, J. Rabaey, J. Wawrzynek. RAMP: 
Research accelerator for multiple processors – a community vision 
for a shared experimental parallel HW/SW platform. Technical Re-
port UCB/CSD-05-1412, September 2005. 

[Blue06] Bluespec, Inc. http://www.bluespec.com, 2006. 
[LW95] U. Legedza and W. E. Weihl. Reducing synchronization over-

head in parallel simulation. In Proc. Workshop on Parallel and Dis-
tributed Simulation, 1995. 

[MCE02] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, 
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. 
Simics: A full system simulation platform. IEEE Computer, 
35(2):50–58, February 2002. 

[MSB05] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, 
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. 
Multifacet’s general execution-driven multiprocessor simulator 
(GEMS) toolset. Computer Architecture News, September 2005. 

 [RHWG95] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. 
Fast and accurate multiprocessor simulation: The SimOS approach. 
IEEE Parallel and Distributed Technology, 3(4), Fall 1995. 

[WWF06] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, 
B. Falsafi, and J. C. Hoe. SimFlex: statistical sampling of computer 
system simulation. IEEE Micro, 26(4):18-31, Jul-Aug 2006. 


