
CloudSuite on Flexus

Alexandros Daglis
Djordje Jevdjic
Cansu Kaynak

CloudSuite on Flexus
• CloudSuite: Suite for scale-out datacenter services
• Flexus: Fast, accurate & flexible architectural Simulator

• The tutorial is interactive

– Please ask questions anytime during tutorial

2

Agenda

• CloudSuite 2.0 benchmarks overview

 Full-system simulation with Simics

 Flexus internals

 Fast simulation via statistical sampling

CloudSuite 2.0:
A Suite for Emerging Scale-out Applications

Cansu Kaynak

Clouds are Scale-out
• Cloud computing is pervasive

– User base growing exponentially
– New services appearing daily

• Serving a global-scale audience requires scaling-out
– Distribute data and computation to many servers

Need scale-out benchmarks

Which Benchmarks to Use?

• Benchmarks designed for scale-up

Don’t represent scale-out applications

Key Scale-Out Characteristics

• Serve independent requests/tasks
• Operate on huge dataset split into shards
• Communicate infrequently

Load balancer/
Master node

Cl
ie

nt
 R

eq
ue

st
s

Dataset
Server

Server

Server

SW Testing as a Service
Symbolic constraint solver

Media Streaming
Apple Quicktime Server

Web Search
Apache Nutch

Web Serving
Nginx, PHP server

Data Serving
Cassandra NoSQL

Covers popular scale-out services

CloudSuite 2.0 Overview

Graph Analytics
TunkRank

Data Caching
Memcached

Data Analytics
Machine learning

Cloud9

CloudSuite 2.0

• Data Analytics
• Data Caching
• Data Serving
• Graph Analytics
• Media Streaming
• SW Testing
• Web Search
• Web Serving

Data Analytics
• Massive amounts of human-generated data (Big Data)

• Extract useful information from data

– Predict user preferences, opinions, behavior
– Benefit from information (e.g., business, security)

• Several examples

– Book recommendation (Amazon)
– Spyware detection (Facebook)

Data Analytics Benchmark
• Application: Text classification

– Sentiment analysis

– Spam Identification

• Software: Mahout (Apache)
– Popular MapReduce machine learning library

• Dataset: Wikipedia English page articles

Data Analytics Benchmark

• Build a model from a Wikipedia training input
• Master sends Wikipedia documents for classification
• Slaves classify documents locally using model
• Slaves send results to master

Master

HDFS

HDFS

HDFS

U
se

r

Presenter
Presentation Notes
Model: associates a word with its probability of belonging to a category

CloudSuite 2.0

• Data Analytics
• Data Caching
• Data Serving
• Graph Analytics
• Media Streaming
• SW Testing
• Web Search
• Web Serving

Data Caching
• Web apps are latency-sensitive
• Fetching data from disk is slow
• Caching data in memory for fast data access

– General-purpose, in-memory key-value store
– Caches data for other apps, another tier before back-end

Data Caching Benchmark

Cached Tweets

• Driver emulates Twitter users
• Memcached software to cache data in memory
• If data not found in cache, issues a disk access request

User data req.

CloudSuite 2.0

• Data Analytics
• Data Caching
• Data Serving
• Graph Analytics
• Media Streaming
• SW Testing
• Web Search
• Web Serving

Data Serving
• Global-scale online services rely on NoSQL datastores

– Inherently scalable
– Suitable for unpredictable schema changes

• Scale out to meet service requirements
– Accommodate fast data generation rate

Data Serving Operation
Service User

Frontend
NoSQL DB

Service User

Backend

Read Req.
Write Req.

Data Serving
Benchmark

Data Serving Benchmark

Backend

• Yahoo! benchmark driver
- Predefined mixes of read/write operations
- Popularity of access distributions (e.g., zipfian)
- Interface to popular datastores (e.g., Cassandra, HBase)

Request Emulator

Read & Write
Requests

Data Serving Benchmark

Backend

• Cassandra datastore
- Popular NoSQL: many use cases (e.g., Expedia, eBay, Netflix)

• Driver generates dataset
- Defines number & size of fields
- Populates datastore

Request Emulator

Read & Write
Requests

CloudSuite 2.0

• Data Analytics
• Data Caching
• Data Serving
• Graph Analytics
• Media Streaming
• SW Testing
• Web Search
• Web Serving

Graph Analytics
• Parallel distributed graph processing

• Data mining on graphs

• Graph examples

– Social networks (Facebook, Twitter)
– Web graph

Graph Analytics Benchmark
• Application: TunkRank

– Measures influence of Twitter users
– How much attention followers can pay to a user

• Software: GraphLab
– Parallel framework for graph processing

• Dataset
– Twitter user graph

Graph Analytics Benchmark

• Distributes the graph across nodes
• Iterative computation: Always with adjacent vertices
• Communication across machines for adjacent vertices
• Outputs influence of each user in the graph

Master

Twitter
user graph

Presenter
Presentation Notes
Independent jobs per core.

CloudSuite 2.0

• Data Analytics
• Data Caching
• Data Serving
• Graph Analytics
• Media Streaming
• SW Testing
• Web Search
• Web Serving

Media Streaming
• Media streaming expected to dominate internet traffic

• Increasing popularity of media streaming services

– Video sharing sites, movie streaming services, etc.

Media Streaming Operation

Service User Media Server

Videos

Media Streaming Benchmark

Client Emulator Media Server

Videos

• Implements client-side RTSP communication
• Uses Faban traffic generator
• Allows a flexible mix of requests

- Durations and bitrates

RTSP
connection

Presenter
Presentation Notes
http: bulk download of video, not real streaming. Gets the whole video file delivered, not only the parts that a user wants to see. Uses tcp, which is optimized for delivery guarantee, which is not required by streaming apps.
Rtsp: live streaming (cannot be done by http as it requires bulk files).

Media Streaming Benchmark

Client Emulator Media Server

Videos

• Server required to support RTSP
- Using Apple Darwin Streaming Server

• Dataset consists of a mix of pre-encoded videos
- Ten durations: [1 – 10 minutes]
- Five bitrates: [42 – 1500 kbps]

RTSP
connection

CloudSuite 2.0

• Data Analytics
• Data Caching
• Data Serving
• Graph Analytics
• Media Streaming
• SW Testing
• Web Search
• Web Serving

Software Testing
• Clouds allow dynamic resource allocation as needed

– Enables previously impossible engineering practices

• Software Testing leverages cloud resources
– Large-scale symbolic execution for SW testing
– Needed as SW scales & complexity increases

• Scale-out engineering application running in cloud

Presenter
Presentation Notes
When a bug is hit, symbolic exec. Engine solves the constraints that lead to that path, to output a test case with concrete values.
Large-scale engineering application which became tractable with the use of scale-out hardware resources in the cloud.

Software Testing Benchmark

• Cloud9, SW Testing as a Service
• Master coordinates symbolic execution
• State maintained in slave, updated from master
• Master load-balances across slaves

U
se

r Worker

Worker

Worker

Cloud master

CloudSuite 2.0

• Data Analytics
• Data Caching
• Data Serving
• Graph Analytics
• Media Streaming
• SW Testing
• Web Search
• Web Serving

Web Search
• Most popular online service

– Numerous search engines deployed by industry

Web Search Operation

Search User Frontend

Index Serving Node (ISN)

Query
= “EPFL” Inverted Index

Web Search Operation

Search User Frontend

ISN

Query
= “EPFL” Inverted Index

Web Search Benchmark

Search User Frontend

ISN

Inverted Index

• Uses Faban traffic generator
• Flexible request mixes

- # terms per request from published surveys
- Terms extracted from the crawled dataset

Web Search Benchmark

Search User Frontend

ISN

• Apache Nutch search engine for front-end & ISNs

Inverted Index

Web Search Benchmark

Search User Frontend

ISN

• Dataset: Inverted index & snippets at ISN
 - Generated by crawling public web
 - Data at ISN must be memory resident
• Dataset size dictates the number of ISNs

Inverted Index

CloudSuite 2.0

• Data Analytics
• Data Caching
• Data Serving
• Graph Analytics
• Media Streaming
• SW Testing
• Web Search
• Web Serving

• Key to all internet-based services

• All services are accessed through web servers

• Various technologies construct web content

– HTML, PHP, JavaScript, Ruby

Web Serving

Database Server Web Server Client

Web Serving Operation

GET() Query
POST()

Database Server Web Server Client Emulator

Web Serving Benchmark

• Faban traffic generator
• Pre-configured page transition matrix (CloudStone)

Database Server Web Server

Web Serving Benchmark

• Web server (Nginx)
• Application server (PHP)

- Serves a social calendar application (Olio)
• File store (image files)

Client Emulator

Database Server Web Server

Web Serving Benchmark

• Database server (MySQL)

Client Emulator

CloudSuite: Hands-on
• Media Streaming

– Installing the server
– Installing client generator
– Overview of the dataset
– Running the benchmark
– Checking quality of service

47

Hands-on Tutorial Page
http://parsa.epfl.ch/cloudsuite/CloudSuite-Flexus.html

Wifi password: isca40ta

http://parsa.epfl.ch/cloudsuite/CloudSuite-Flexus.html

CloudSuite
Full-System Simulation

Alexandros Daglis

49

CloudSuite Simulation Requirements

CloudSuite Workloads:
• Multi-threaded, multi-processor
• Data-intensive
• Multi-tier

⇒ Exercise OS and I/O extensively
⇒ OS and I/O are first-order performance determinants

Need full-system simulation
50

Presenter
Presentation Notes
- Should be taken into consideration for the overall system perf.
- Multithreaded (OS scheduler), Data intensive (disk I/O), server workloads (network)

Flexus Framework

• Functional Full-System Simulation: Simics

• Detailed Microarchitectural Simulation: Flexus

• Fast Simulation: Statistical sampling

51

Presenter
Presentation Notes
We rely on an already-existing full-system simulator, Simics, for functional simulation.
Since Simics does not provide any architectural timing details, we model timing of architectural events in Flexus and Flexus dictates the timing of architectural events that take place in Simics.
Since we do detailed full-system simulation of complete software stacks, simulation of realistic execution windows might take weeks or months. For practical simulation, we do statistical sampling of the workloads and simulate a representative sample in hours instead of weeks.

Flexus Framework

• Functional Full-System Simulation: Simics

• Detailed Microarchitectural Simulation: Flexus

• Fast Simulation: Statistical sampling

52

Full-System Simulation Requirements

Full-system functional simulator must support:

• Privileged-mode ISA

• I/O devices

• Networks of systems

• Saving/restoring architecturally-visible state

Simics provides these capabilities
53

Presenter
Presentation Notes
Full system simulation: Two aspects: Correctness + performance modeling
These challenges shift the focus from performance modeling to correctness, if we want to take care of correctness on our own.
On top of that, full-system simulation requires lots of infrastructure to interact with the simulator such as the disk format, CLI etc.

To make our lives easier, we deal with the correctness aspect of full-system simulation using an already-existing full-system simulator, called Simics.
Simics implements IO devices and models CPUs detailed enough to boot unmodified OSes.
Also provides a well-designed interface for users to interact

Simple scripting capabilities with either Cli: Command-line interface or Pyhton scripts
To access configuration attributes
Scripts can be tied to certain events (e.g., TLB misses, I/O ops)
To access registers and memory
-

Simics Configuration & CLI

• Configuration file defines system components
- Motherboard, CPUs, memory, I/O devices

• Command-line interface (CLI) provides interface to
simulation
- Start and stop simulation

- Save and restore target system checkpoints

54

Simics Checkpoints

• Contain full-system architectural state

• Are incremental - Require all files in chain

• Form the basis for Flexus simulation

55

Simics μArch Interface
• Simics does not provide timing details

- But provides a Micro-Architectural Interface (MAI)
- Allows a user module to take control over timing

• Simics feeds Flexus with instructions
• Flexus gives timing feedback to Simics

56

Presenter
Presentation Notes
System-level instruction set simulator
An instruction, memory access, exception, atomic operations all take one cycle
The user decides when things happen, while Simics handles how things happen

MAI is available for SPARC-v9 and x86

Simics Hands-On

57

Preparing a Workload for Simulation

1. Install OS

2. Reconfigure and reboot target machine

3. Install application & create dataset

4. Tune workload parameters

5. Run application

58

Preparing a Workload for Simulation

1. Install OS

2. Booting target machine

3. Install application & create dataset

4. Tune workload parameters

5. Run application

59

Media Streaming in Simics Hands-on

1. Loading a freshly-installed OS checkpoint

2. Preparing target system

3. Running applications in Simics

4. Saving system checkpoints

5. Loading system checkpoints

60

Initial Checkpoint

• Freshly-installed OS: Solaris 10 u9

• Media Streaming binaries & datasets
– Faban client on Client machine

– Darwin Streaming Server on Server machine

– Video dataset on Server machine

• Necessary libraries

61

Getting Started with Media Streaming

Simulated target system:
• Server (1 core)
• Client (1 core)

• Binaries:
 /opt
• Dataset:

/streaming_data

62

Preparing Target System
• Move configuration files
• Move experiment files
• Start experiment

63

Media Streaming in Action
• Monitoring
• QoS check

64

Flexus Simulator Toolset

Cansu Kaynak

Software Simulation
• Allows for fast & easy evaluation of an idea

– Minimal cost, simulator runs on your desktop
– Reuse components, don’t implement everything

• Enables various benchmarks (e.g., SPEC, CloudSuite)
– Can execute real applications
– Can simulate thousands of disks
– Can simulate very fast networks

66

Main Idea
• Use existing system simulator (Simics)

– Handles BIOS (booting, I/O, interrupt routing, etc.)

• Build a “plugin” architectural model simulator
– Fast – read state of system from Simics
– Detailed – interact with and throttle Simics

67

Presenter
Presentation Notes
-Simics
- full system simulator
 Models complete ISA (we use x86 and SPARC) and peripherals
 able to boot unmodified OS and run applications
 when run alone assumes a simple timing model (all instructions & memory accesses take a uniform amount of time)

68

Developing with Flexus
• Flexus philosophy

• Fundamental abstractions

• Important support libraries

• Simulators and components in Flexus 4.1

• Hands-on

69

Flexus philosophy
• Component-based design

– Compose simulators from encapsulated components

• Software-centric framework
– Flexus abstractions are not tied to hardware

• Cycle-driven execution model

– Components receive “clock-tick” signal every cycle

• SimFlex methodology
– Designed-in fast-forwarding, checkpointing, statistics

Presenter
Presentation Notes
Component based design:
Abstraction of the unnecessary components
Reusability of the components

Software-centric:
It has nothing to do with bits&wires
E.g. you don’t have to implement LRU in the circuit level, just use some data structures

70

Developing with Flexus
• Flexus philosophy

• Fundamental abstractions

• Important support libraries

• Simulators and components in Flexus 4.1

• Hands-on

71

Flexus organization

/components /simulators /core

Cache

Interconnect

Feeder

CMP.OoO

UP.OoO

Debug

Simics
Interface

Stats

FLEXUS_ROOT

Presenter
Presentation Notes
Define a component
 No need to know to which component it will be connected to
 Each component has input and output ports left as unspecified C++ template parameters
Every kind of data structure can be sent through the ports

Wiring
Components call each others’ functions to get the messages
Advantage of C++ templates: compiler optimizes by inlining get msg functions and get rid of time overhead of function calls

72

Fundamental abstractions
• Component

– Component interface
• Specifies data and control entry points

– Component parameters
• Configuration settings available in Simics or cfg file

• Simulator

– Wiring
• Specifies which components and how to connect
• Specifies default component parameter settings

73

Component interface

• Component interface (terminology inspired by Asim [Emer 02])

– Drive: “clock-tick” control entry point to component
– Port: specifies data flow between components

Components w/ same ports are interchangeable

Component

Drive

Ports

74

Abstractions: Drive

COMPONENT_INTERFACE(
 …
 DRIVE (Name)
 …
);

• Control entry-point
• Function called once per cycle

Cache

CacheDrive

75

Abstractions: Port
COMPONENT_INTERFACE(
 …
 PORT (Type, Payload, Name)
 …
);

• Data exchange between components
• Ports connected together in simulator wiring

FrontSideOut
Cache

Presenter
Presentation Notes
Type: pushinput / pushoutput
Payload: MemoryMessage
Name: Snoop In/Out, Request in/out

76

Types of ports and channels

• Type - direction of data and control flow
– Control flow: Push vs. Pull
– Data flow: Input vs. Output

• Payload - arbitrary C++ data type
• Type and payload must match to connect ports
• Availability - caller must check if callee is ready

push channel

Data Flow

push
input

pull
output

pull
input

push
output

pull channel

Caller

Caller

Callee

Callee

77

Port and component arrays

• 1-to-n and n-to-n connections
– E.g., 1 interconnect -> n network interfaces

• Array dimensions can be dynamic

COMPONENT_INTERFACE(

 …

 DYNAMIC_PORT_ARRAY(…)

 …

);

ToNode
Interconnect

78

Example code using a port
SenderComponent.cpp
 void someFunction() {
 Message msg;
 if (FLEXUS_CHANNEL(Out).available()) {
 FLEXUS_CHANNEL(Out) << msg;
 }
 }
ReceiverComponent.cpp
 bool available(interface::In) { return true; }
 void push(interface::In, Message & msg) { … }

79

Configuring components
• Configurable settings associated with component

– Declared in component specification
– Can be std::string, int, long, long long, float, double, enum
– Declaration:
 PARAMETER(BlockSize, int, “Cache block size", “bsize", 64)
– Use: cfg.BlockSize

• Usage from Simics console
– flexus.set “-L2:bsize” “64”

– flexus.print-configuration flexus.write-configuration “file”

80

Simulator wiring

simulators/name/Makefile.name
• List components for link
• Indicate target support

simulators/name/wiring.cpp
1. Include interfaces
2. Declare configurations
3. Instantiate components
4. Wire ports together
5. List order of drives

Feeder

IFetch Execute

L1I L1D

Mux

L2

81

Developing with Flexus
• Flexus philosophy

• Fundamental abstractions

• Important support libraries

• Simulators and components in Flexus 4.1

• Hands-on

82

Critical support libraries in /core

• Statistics support library
– Record results for use with stat-manager

• Debug library

– Control and view Flexus debug messages

83

Statistics support library
• Implements all the statistics you need

– Histograms
– Unique counters
– Instance counters
– etc.

• Example:

Stat::StatCounter myCounter(statName() + “-count”);
++ myCounter;

84

A typical debug statement
DBG_(Iface,
 Comp(*this),
 AddCategory(Cache),
 (<< "Received on FrontSideIn[0](Request): "
 << *(aMessage[MemoryMessageTag])
),
 Addr(aMessage[MemoryMessageTag]->address())
);

Severity level
Associate with this component

Put this in the “Cache” category

Text of the debug message

Add an address field for filtering

85

Debug severity levels
1. Tmp temporary messages (cause warning)
2. Crit critical errors
3. Dev infrequent messages, e.g., progress
4. Trace component defined – typically tracing
5. Iface all inputs and outputs of a component
6. Verb verbose output from OoO core
7. Vverb very verbose output of internals

86

Controlling debug output
• Compile time

– make target-severity
– (e.g. make UP.Trace-iface)

• Run time
– flexus.debug-set-severity severity

• Hint – when you need a lot of detail…
– Set severity low
– Run until shortly before point of interest (or failure)
– Set severity high
– Continue running

87

Developing with Flexus
• Flexus philosophy

• Fundamental abstractions

• Important support libraries

• Simulators and components in Flexus 4.1

• Hands-on

88

Simulators in Flexus 4.1
• UP.Trace fast memory system
• CMP.L2Shared.Trace fast CMP memory system
• CMP.MT4.L2Shared.Trace fast CMP memory system

 w/ 4-way MT support

• UP.OoO 1 CPU 2-level hierarchy
• CMP.L2SharedNUCA.OoO private L1 / shared L2
• CMP.MT4.L2SharedNUCA.OoO private L1 / shared L2
 w/ 4-way MT support
• CMP.L2SharedNUCA.DRAMSim.OoO private L1 / shared L2

 w/ DRAMSim 2.0

89

Memory hierarchy
• “top”, “front” = closer to CPU

• Allows for high MLP

– Non-blocking, pipelined accesses
– Hit-under-miss within set

• Coherence protocol support

– MESI and MOESI coherence protocols
– Non-inclusive
– Supports “Downgrade” and “Invalidate” messages
– Request and snoop virtual channels for progress guarantees

90

Out-of-order execution
• Timing-first simulation approach [Mauer’02]

– OoO components interpret SPARC ISA
– Flexus validates its results with Simics

• Idealized OoO to maximize memory pressure
– Decoupled front-end
– Precise squash & re-execution
– Configurable ROB, LSQ capacity; dispatch, retire rates

• Memory consistency models (SC, TSO, RMO)

Hands-on
• Set up .run_job.rc.tcl file
• Launch Simics using the run_job script
• Build Flexus simulators

– Examine Flexus directory structure and source files

• Launch trace-based simulation
• Launch cycle-accurate (OoO) simulation

– Examine debug output and statistics

91

Boosting Simulation Speed with

Statistical Sampling

Djordje Jevdjic

Simulation Speed Challenges
• Longer benchmarks

– SPEC 2006: Trillions of instructions per benchmark

• Slower simulators
– Full-system simulation: 1000× slower than SimpleScalar

93

• Multiprocessor systems
– CMP: 2x cores every processor generation

1,000,000× slowdown vs. HW → years per experiment

Full-system simulation is slow
• Simulation slowdown per cpu

– Real HW: ~ 2 GIPS 1 s
– Simics: ~ 30 MIPS 66 s
– Flexus, no timing: ~ 900 KIPS 37 m
– Flexus, OoO: ~ 24 KIPS 23 h

94
2 years to simulate 10 seconds of a 64-core workload!

Statistical Sampling
• Random selection of population

– E.g., 3000 out of 300 million

• Predict the behavior based on
the selected sample

• Features:
– High accuracy
– Simple
– Strong mathematical foundation

95

Population

Statistical Sampling

Sample

Predict Behavior

Power of a small part to predict behavior of a whole

Statistical Sampling for Simulation
• Measure uniform or random locations

• Each measurement is on a group of instructions

• ~10,000x reduction in turnaround time

96

measurements

Challenge: programs are sequential

Sampling of Sequential Programs
• Correctness

– State of memory, registers, etc.

• Bias
– State of cache, branch predictor, reorder buffer, etc.

97

Functional Simulation
• Functional simulation is faster than detailed simulation

– Flexus (no timing) is 38 times faster than Flexus (OoO)

• Use functional simulation for “warmup”
– Memory (guarantees correctness)
– Registers (guarantees correctness)
– Cache hierarchy (avoids bias)
– Branch predictor (avoids bias)

98

Measurement Functional warming

No state for core microarchitecture  Bias

Handling Bias
• Core micro-architecture can be warmed up rapidly

– Detailed simulation to warmup core micro-architecture

• Perform warmup prior to measurement
– Functional warming during fast-forwarding
– Detailed warmup before each simulation window

99

SMARTS
Measurement Detailed warmup Functional warming

Simulation Speedup
• 10 seconds of a 64-core workload

– Normal execution: 2 years
– With sampling: 20 days

• 37x improvement in simulation speed but not enough
• Solution

– Avoid functional simulation (17 days)
– Accelerate detailed simulation (3 days)

100

Avoiding Functional Simulation

• Store warm cache & branch predictor state
– Same sample design, accuracy, confidence
– No warming length prediction needed

101

Checkpoint arch.,
cache & bpred state

checkpoint library

Experiments using
checkpoints

Works for any microarchitecture

Accelerating Detailed Simulation
• Checkpoint library makes measurement independent
• Run multiple measurements in parallel

102

...

...

...

...

...

...
Run in parallel

Simulation Speedup
• Sampling without a checkpoint library:

– 10 seconds of a 64-core workload: 20 days

• Sampling with a checkpoint library:
– 10 seconds of a 64-core workload: 3 hours with 100 cores

103

...

How to Choose the Sample Size?

104

X

population

High variability  Large sample size

X

population

Low variability  Small sample size

Variability determines sample size

Steps for Timing Simulation
1. Prepare workload for simulation

– Port workload into Simics

2. Measure baseline variance
– Determine required library size

3. Collect checkpoints
– Via functional warmup

4. Detailed Simulation
– Estimate performance results

105

checkpoint

...

2. Determine Sampling Parameters
• Guess variability
• Generate flexpoints for the variability
• Run timing simulation
• Measure error and correct the guess

106

Typical Sampling Parameters

107

Flexus
(64-CPU CMP.OoO)

Warming 100k cycles

Measurement 50k cycles

Target confidence 95%

Sample size 800

Sim. time per checkpoint ~ 20 min

3. Checkpoint Creation
• Spread Simics checkpoints

– Simics fast mode rapidly covers 10 seconds

• Collect flexpoints in parallel
– Via CMP.L2Shared.Trace
– From each Simics checkpoint

108

Simics + Flexus checkpoint, “Flexpoint”

Simics checkpoint, “Phase”

4. Detailed Simulation
• Run detailed simulation with OoO simulators
• Process all flexpoints, aggregate offline
• Manipulate results with stat-manager

– Each run creates binary stats_db.out database
– Offline tools to select subsets; aggregate
– Generate text reports from simple templates
– Compute confidence intervals for mean estimates

109

Matched-pair comparison [Ekman 05]

• Often interested in relative performance

• Change in performance across designs
varies less than absolute change

• Matched pair comparison
– Allows smaller sample size
– Reports confidence in performance change

110

Matched-pair example

111

0

4

8

12

16

20

Processed checkpoints

-10

-5

0

5

10

Processed checkpoints

Performance delta

Performance results for two microarchitecture designs
checkpoints processed in random order

Design- A Design- B

Lower variability in performance delta reduces sample
size by 3.5 to 150x

Matched-pair with Flexus
• Simple µArch changes (e.g., changing latencies)

– use same flex-points

• Complex changes (e.g., adding components)

112

Simics checkpoints

Flex-points for design A

Flex-points for design B

Hands-on
• Generate Flexpoints
• Launch timing simulation for all flexpoints
• Aggregate stats with stat-collapse
• Examine aggregate statistics

– Compute confidence
– Plot timing breakdown

113

Thanks!

How to Use CloudSuite Images

Cansu Kaynak

115

CloudSuite Simics Release
Released images (phase_000) contain:
• CloudSuite binaries & necessary libraries
• Tuned workloads at steady state
• Ready to run

116

CloudSuite Images
From 1 core to 64 cores:
1. Data Analytics
2. Data Serving
3. Media Streaming (4, 8, 16 cores)
4. Software Testing
5. Web Search (1 to 32 cores) ~ SW scalability
6. Web Serving (1 to 8 cores)
Coming soon:
1. Data Caching
2. Graph Analytics

117

Deploying CloudSuite Images
• Paths for logical components in configuration files:

– Binary disk
– Data disk(s)

checkpoint_path: (“/path/to/binary_disk”,

 “/path/to/data_disk”)

• Load initial state & save it as phase_000
• Detailed instruction are in setup document…

118

Directory Hierarchy for Flexus
 Workload

1cpu

baseline

phase_000

flexpoint_001

user_name

fxpt_name

simics

... flexpoint_M simics

... phase_N

2cpu ... Ncpu

119

What We Release
We provide phase_000:

– Steady state of workload execution

Execution

120

How Long To Simulate
Representative execution window of a workload:
• Steady architectural behavior (measured on real HW)
• 10 sec. of native execution (25 sec. for media streaming)

Execution

10 seconds (native execution)

121

Presenter
Presentation Notes
We use the smallest execution window of workloads that represent minutes/hours of native execution.
To find that smallest window, we ran the workloads on real hardware and compared the architectural
behavior of different execution windows using performance counters.

Phase Generation
Divides the entire execution into phases
• Generates phases (Simics checkpoints) using Simics fast mode
• As many phases as necessary for desired parallelism

– e.g., 10 phases

Execution

10 seconds (native execution)

122

Presenter
Presentation Notes
To parallelize functional warming within an execution window
Leverages Simics fast mode

Flexpoint Generation
Divides every phase into flexpoints (parallel across phases)
• Generates flexpoints using Flexus trace simulator

– Functional warming of cache and branch predictor state
• As many flexpoints as necessary for desired degree of confidence

– e.g., 80 flexpoints per phase

Execution

10 seconds (native execution)

123

Presenter
Presentation Notes
84 – not use first four phases
Functional warming

Timing Simulation
Cycle-accurate simulation in parallel across flexpoints
• First, detailed warm-up of microarchitectural state
• Then, takes measurements from the warmed state

– e.g., 100K-cycle warm-up, 50K-cycle measurement
– Longer warm-up necessary for Data Serving

Execution

Independent parallel simulations

124

Presenter
Presentation Notes
Except for Cassandra (2M warm-up, 50K measurement)

Wrap-Up
• Two steps before cycle-accurate simulation:

1. Phase generation
2. Flexpoint generation

• Refer to .run_job.rc.tcl in Flexus 4.1 for workloads,

phases, flex-points

125

Thanks!

	CloudSuite on Flexus
	CloudSuite on Flexus
	Agenda
	CloudSuite 2.0: �A Suite for Emerging Scale-out Applications
	Clouds are Scale-out
	Which Benchmarks to Use?
	Key Scale-Out Characteristics
	Slide Number 8
	CloudSuite 2.0
	Data Analytics
	Data Analytics Benchmark
	Data Analytics Benchmark
	CloudSuite 2.0
	Data Caching
	Data Caching Benchmark
	CloudSuite 2.0
	Data Serving
	Data Serving Operation
	Data Serving Benchmark
	Data Serving Benchmark
	CloudSuite 2.0
	Graph Analytics
	Graph Analytics Benchmark
	Graph Analytics Benchmark
	CloudSuite 2.0
	Media Streaming
	Media Streaming Operation
	Media Streaming Benchmark
	Media Streaming Benchmark
	CloudSuite 2.0
	Software Testing
	Software Testing Benchmark
	CloudSuite 2.0
	Web Search
	Web Search Operation
	Web Search Operation
	Web Search Benchmark
	Web Search Benchmark
	Web Search Benchmark
	CloudSuite 2.0
	Web Serving
	Web Serving Operation
	Web Serving Benchmark
	Web Serving Benchmark
	Web Serving Benchmark
	Slide Number 46
	CloudSuite: Hands-on
	Hands-on Tutorial Page
	Slide Number 49
	CloudSuite Simulation Requirements
	Flexus Framework
	Flexus Framework
	Full-System Simulation Requirements
	Simics Configuration & CLI
	Simics Checkpoints
	Simics μArch Interface
	Simics Hands-On
	Preparing a Workload for Simulation
	Preparing a Workload for Simulation
	Media Streaming in Simics Hands-on
	Initial Checkpoint
	Getting Started with Media Streaming
	Preparing Target System
	Media Streaming in Action
	Flexus Simulator Toolset
	Software Simulation
	Main Idea
	Developing with Flexus
	Flexus philosophy
	Developing with Flexus
	Flexus organization
	Fundamental abstractions
	Component interface
	Abstractions: Drive
	Abstractions: Port
	Types of ports and channels
	Port and component arrays
	Example code using a port
	Configuring components
	Simulator wiring
	Developing with Flexus
	Critical support libraries in /core
	Statistics support library
	A typical debug statement
	Debug severity levels
	Controlling debug output
	Developing with Flexus
	Simulators in Flexus 4.1
	Memory hierarchy
	Out-of-order execution
	Hands-on
	�Boosting Simulation Speed with Statistical Sampling
	Simulation Speed Challenges
	Full-system simulation is slow
	Statistical Sampling
	Statistical Sampling for Simulation
	Sampling of Sequential Programs
	Functional Simulation
	Handling Bias
	Simulation Speedup
	Avoiding Functional Simulation
	Accelerating Detailed Simulation
	Simulation Speedup
	How to Choose the Sample Size?
	Steps for Timing Simulation
	2. Determine Sampling Parameters
	Typical Sampling Parameters
	3. Checkpoint Creation
	4. Detailed Simulation
	Matched-pair comparison [Ekman 05]
	Matched-pair example
	Matched-pair with Flexus
	Hands-on
	Slide Number 114
	How to Use CloudSuite Images��Cansu Kaynak
	CloudSuite Simics Release
	CloudSuite Images
	Deploying CloudSuite Images
	Directory Hierarchy for Flexus
	What We Release
	How Long To Simulate
	Phase Generation
	Flexpoint Generation
	Timing Simulation
	Wrap-Up
	Slide Number 126

